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Abstract
The goal of this dissertation is to develop and evaluate algorithms and a prototype sys-

tem to retrieve frames depicting humans with specific identity attributes obtained from a

textual description. Solving this problem requires addressing three separate subproblems,

namely (i) defining the ontology of the identity and the identity-related attributes, (ii) de-

veloping and evaluating algorithms for extracting identity attributes from images, and (iii)

developing and evaluating an algorithm for attribute-based person search in databases of

image frames. This dissertation presents a list of methods on visual attribute classifica-

tion and person search that significantly improve the accuracy over previous work. The

methods presented tackle key limitations of previous work such as the class imbalance of

visual attributes, or the challenge of learning discriminative representations from the tex-

tual input. By learning to retrieve the most relevant images of individuals based on textual

descriptions, such techniques can have a broader impact in cases of missing children or

in surveillance applications. The works introduced in this dissertation are capable of suc-

cessfully identifying which images contain humans with such characteristics which could

reduce dramatically the effort and the time required to identify such information. In each

method a detailed overview of the benefits and limitations of each approach is introduced,

extensive experimental evaluation and ablation studies are provided to analyze the impact

of different modules, and further limitations have been identified that need to be addressed

by future work.
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Chapter 1

Introduction

1.1 Motivation

When humans are asked to provide a description of an object or a human, they tend to

use visual attributes to accomplish this task. For example, a laptop can have a widescreen,

a silver color, and a brand logo, whereas a human can be tall, female, wearing a blue

t-shirt, and carrying a backpack. Visual attributes in computer vision are equivalent to

the adjectives in our speech. Humans rely on visual attributes since (i) they enhance our

understanding by creating an image in our head of what this object or human looks like;

(ii) they narrow down the possible related results in search for a product online; (iii) they

can be composed in different ways to create descriptions; (iv) they generalize well as with

some fine-tuning they can be applied to recognize objects for different tasks; and (v) they

are a meaningful semantic representation of objects or humans that can be understood by

both computers and humans. However, effectively predicting the corresponding visual
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attributes of a human given an image remains a challenging task because images might be

of low-resolution, humans might be partially occluded in cluttered scenes, or there might

be significant pose variations.

1.2 Unsolved Challenges

Despite the promising performance of several person search and visual attribute classifi-

cation algorithms in the literature, there are several challenges that still remain.

Class Imbalance: Human attributes are imbalanced in nature. Bald people with a mus-

tache wearing glasses are 14 to 43 times less likely to appear in the CelebA dataset [73]

compared to people without these characteristics. Large-scale imbalanced datasets can

lead to biased models, optimized to favor the majority classes while failing to identify the

subtle discriminant features that are required to recognize the under-represented classes.

Attribute Presence in Images: An additional challenge is identifying which areas in the

image provide class-discriminant information. Giving emphasis to the upper part of an

image, where the face is located, for attributes such as “glasses” and to the bottom part for

attributes such as “long pants” can increase the recognition performance as well as the in-

terpretability of the designed models [85]. This challenge is usually addressed using visual

attention techniques that output saliency maps. However, in the human attribute domain,

attention ground-truth annotations are not available to learn such spatial attributions.

Learning from Text: Textual descriptions contain a large variability of words even when

they are used to describe the same image. What is considered as important information for
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one is not necessarily the same for another annotator. At the same time, textual descrip-

tions might contain obvious mistakes, the descriptions can be too long or the annotator

might describe additional information that is available on the image but is not related to

the person of interest. All these factors make the text-to-image retrieval a difficult problem

since learning good feature representations from such descriptions is not straightforward.

1.3 Limitations of Previous Work

Class Imbalance: Learning from imbalanced data is a well-studied problem in machine

learning. Traditional solutions include over-sampling the minority classes [10, 77] or

under-sampling the majority classes [23] to compensate for the imbalanced class ratio

and cost-sensitive learning [52] where classification errors are penalized differently. Such

approaches have been extensively used in the past but they suffer from some limitations.

For example, over-sampling introduces redundant information making the models more

over-fitting-prone, whereas under-sampling may remove valuable discriminative informa-

tion. Recent works with deep convolutional neural networks [39, 21] introduced a sam-

pling procedure of quintuplets or triplets of samples that satisfy some properties in the

feature-space and used them to regularize their models. However, sampling triplets is a

computationally expensive procedure and the characteristics of the triplets in a batch-mode

setup might vary significantly.

Attribute Presence in Images: Modern visual attribute classification techniques rely ei-

ther on contextual information [67, 29], side information [99], curriculum learning strate-

gies [96] or visual attention mechanisms [142] to accomplish their task. Although context
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and side information can increase the recognition accuracy, such approaches are over-

complicated and difficult to train or require additional annotations that might not be avail-

able.

Learning from Text: Setting the visual attributes aside, person search using textual de-

scriptions which is the third objective of this dissertation has received significant attention

recently due to the CUHK-PEDES dataset that was published in 2017. However must ap-

proaches suffer from important limitations: (i) they are constrained by the existing learn-

ing objective functions, (ii) they seem to ignore the large variability of the textual input by

solely relying on an LSTM to model the input sentences, and (iii) they demonstrate subpar

results as the best text-to-image rank-1 accuracy results in the literature are below 50%

and 40% in the CUHK-PEDES and Flickr30K datasets, respectively.

1.4 Goal and Objectives

The goal of this dissertation is to develop and evaluate algorithms and a prototype sys-

tem to search in a database of frames depicting humans with specific identity attributes

provided by the textual descriptions. Identity attributes are the set of traits used to de-

scribe a human that can be further split to identity attributes such as gender, height, age as

well as identity-related attributes such as clothing and accessories. Solving this problem

requires addressing two separate subproblems, namely visual attribute classification and

attribute-based person search. In this thesis, new methods that address the challenges and

limitations are proposed. In particular, the objectives of this dissertation are to:
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1. Define an ontology of the identity and identity-related attributes. This refers to find-

ing the set of soft-biometrics, visual attributes, scene attributes and other meta-data

that can describe an image of a human and can be used to perform person search in

videos.

2. Develop and evaluate an algorithm for extracting identity attributes from images.

Such algorithms can be further separated into three subcategories: namely 3D human-

pose estimation, soft-biometric prediction using privileged information and deep-

visual attribute classification.

3. Develop and evaluate an algorithm for attribute-based search in databases of images.

1.5 Contributions

1.5.1 Major Contributions

The major contributions of this dissertation are the following:

1. An attribute ontology is designed, implemented and evaluated which comprises

identity and identity-related attributes and can help the network learn better fea-

ture representations. The impact of the ontology is evaluated on text-based person

search applications and performance improvements of 2% over the previous work

are obtained. (Objective 1)
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2. An attribute-prediction algorithm is designed, implemented, and evaluated that han-

dles class imbalance and utilizes visual-attention mechanisms to predict visual at-

tributes. By addressing the challenges of class imbalance and the lack of semantic

annotations, state-of-the-art results were obtained in the two most widely-used pub-

licly available datasets. (Objective 2)

3. A text-to-image matching method is designed, implemented and evaluated that re-

trieves the most relevant images given a textual description as an input. By lever-

aging adversarial-domain training and deep-language models, better representations

can be learned. Improvements ranging from 2% to 5% are obtained in a variety of

different images containing humans, scenes, birds, and flowers. (Objective 3)

1.5.2 Additional Contributions

In addition to the major contributions, this dissertations has the following contributions:

1. A dataset of textual descriptions from the University of Houston police department

is collected. The proposed ontology is evaluated against it to ensure that it covers

most of the descriptions provided. (Objective 1)

2. An algorithm named CILICIA is designed, implemented, and evaluated that com-

bines curriculum learning and multi-task learning in a deep framework and predicts

visual attributes. By introducing a curriculum, the groups of visual attributes are

learned based on their difficulty which results in increased classification accuracy in

three publicly available datasets. (Objective 2)
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3. A survey on 3D human-pose estimation is designed, conducted, and presented. A

synthetic dataset is created to evaluate different algorithms and analyze the impact

of different covariates in the final performance. (Objective 2)

1.6 Dissertation Outline

The rest of the dissertation is organized as follows: the background and related work are

presented in Chapter 2. The proposed methods for each of the objectives are discussed

and evaluated in Chapter 3 to Chapter 5, respectively. Finally, Chapter 6 concludes all the

works and provides directions for future research.
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Chapter 2

Background and Related Work

In this chapter, an overview of essential concepts and existing literature in visual attribute classifi-

cation, person search, and other related fields is offered.

2.1 Visual Attributes

The first to investigate the power of visual attributes were Ferrari and Zisserman [25]. They used

low-level features and a probabilistic generative model to learn attributes of different types (e.g.,

appearance, shape, patterns) and segment them in an image. Kumar et al. [57] proposed an auto-

matic method to perform face verification and image search. They first extracted and compared

“high-level” visual features, or traits, of a face image that are insensitive to pose, illumination,

expression, and other imaging conditions, and then trained classifiers for describable facial visual

attributes (e.g., gender, race, and eyewear). A verification classifier on these outputs is finally

trained to perform face verification. In the work of Scheirer et al. [100], raw attribute scores are
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calibrated to a multi-attribute space where each normalized value approximates the probability of

that attribute appearing in the input image. This normalized multi-attribute space allows a uniform

interpretation of the attributes to perform tasks such as face retrieval or attribute-based similarity

search. Finally, attribute selection approaches have been introduced [24, 124, 139] which select

attributes based on specific criteria (e.g., entropy). Zheng et al.[139] formulated attribute selection

as a submodular optimization problem and defined a novel submodular objective function.

Following the deep learning renaissance in 2012, several papers [67, 30, 99, 142, 21] have ad-

dressed the visual attribute classification problem using ConvNets. Part-based methods decompose

the image to parts and train separate networks which are then combined at a feature level before

the classification step. They tend to perform well since they take advantage of spatial information

(e.g., patches that correspond to the upper body can better predict the t-shirt color than others that

correspond to other body parts). Zhang et al. [137] proposed an attribute classification method

which combines part-based models in the form of poselets [6] and deep learning by training pose-

normalized ConvNets. Gkioxari et al. [29] proposed a deep version of poselets to detect human

body parts which were then employed to perform action and attribute classification. Zhu et al. [144]

introduced a method for pedestrian attribute classification. They proposed a ConvNet architecture

comprising 15 separate subnetworks (i.e. one for each task) which are fed with images of different

body parts to learn jointly the visual attributes. However, their method assumes that there is a pre-

defined connection between parts and attributes and that all tasks depend on each other and thus,

learning them jointly will be beneficial. Additionally, they trained the whole ConvNet end-to-end

despite the fact that the size of the training dataset used was only 632 images. Based on our experi-

ments, the only way to avoid heavy overfitting in datasets of that size is by employing a pre-trained

network along with fine-tuning of some layers. Recycling pre-trained deep learning models with

transfer learning (i.e. exploiting the discriminative power of a network trained for a specific task

for a different problem or domain) is commonly used in the literature with great success [101, 133].

10



Finally, visual attributes have been employed recently for re-identification [109, 110], pose estima-

tion [95], 3D pose tracking [74], attribute mining or retrieval for clothing applications [41, 106],

zero-shot visual object categorization or recognition [58], and image annotation and segmentation

[103].

2.2 Visual Attention

Visual attention can be interpreted as a mechanism of guiding the network to focus its resources

on those spatial parts that contain information relevant to the input image. In computer-vision

applications, visual attribution is usually implemented as a gating function represented with a sig-

moid activation or a spatial softmax and is placed on top of one or more convolutional layers with

small kernels extracting high-level information. Several interesting works have appeared recently

that demonstrate the efficiency of visual attention [142, 121, 66, 119, 16, 12]. For example, the

harmonious attention of Li et al. [66] consists of four subparts that extract hard-regional attention,

soft-spatial, and channel attention to perform person re-identification. Deciding where to place

the attention mechanism in the network is a topic of active research with several single-scale and

multi-scale attention techniques in the literature. Das et al. [19], opted for a single attention mod-

ule, whereas others [121, 16] extract saliency heatmaps at multiple-scales to build richer feature

representations.
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2.3 Deep Imbalanced Classification

Two works that address this problem in an attribute classification framework are the large margin

local embedding (LMLE) method [39] and the class rectification loss (CRL) [21]. In LMLE, quin-

tuplets were sampled that preserve locality across clusters and discrimination between classes and

a loss was introduced. Dong et al. [21] demonstrated that careful hard mining of triplets within the

batch, acts as an effective regularization that improves the recognition performance of imbalanced

attributes. However, LMLE is prohibitively computationally expensive as it comprises an alternat-

ing scheme for cluster refinement and classification. CRL on the other hand, samples triplets within

the batch which complicates significantly the training process as the convergence and the perfor-

mance heavily rely on the triplet selection. In addition, CRL adds a fully-connected layer for each

attribute before the final classification layer, which increases significantly the number of parame-

ters that need to be learned. For example, adding a fully-connected layer with 64 units after the

last convolutional layer of a ResNet-101 introduces an additional 2048× 7× 7× 64 = 1.8 ∗ 106

parameters per attribute. Both methods approach class imbalance purely as a machine learning

problem without focusing on the visual traits of the images that correspond to these attributes.

Class imbalance arises also in detection problems [121, 70], where the foreground object (or face)

covers a small part of the image. A simple yet very effective solution is focal loss [70] which uses a

weighting scheme at an instance-level within the batch to penalize hard misclassified samples and

assign near-zero weights to easily classified samples.

2.4 Curriculum Learning

Solving all tasks jointly is commonly employed in the literature [17, 35, 81] as it is fast, easy to

scale and achieves good generalization. However, some tasks are easier than others and also not
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all tasks are equally related to each other [89]. Curriculum Learning was initially proposed by

Bengio et al. [5]. They argued that instead of employing samples at random it is better to present

samples organized in a meaningful way so that less complex examples are presented first. Pentina

et al. [89] introduced a curriculum learning-based approach to process multiple tasks in a sequence

and developed a method to find the best order in which the tasks need to be learned. They pro-

posed a data-dependent solution by introducing an upper-bound of the average expected error and

employing an Adaptive SVM [132, 97]. Such a learning process has the advantage of exploiting

prior knowledge to improve subsequent classification tasks but it cannot scale up to many tasks

since each subsequent task has to be learned individually. Curriculum learning has also been em-

ployed with success on performing data regularization on models trained on corrupted labels [50],

long short-term memory (LSTM) networks [38], reinforcement learning [80, 26], robot learning

policies [82] as well as object detection [65]. In parallel with our work, Dong et al. [22] also pro-

posed a multi-task curriculum transfer technique to classify clothes based on their attributes. They

approached the problem in a domain adaptation setup in which a classifier is first learned on easy

clean samples (source domain) and then it is adapted to harder samples (cross-domain). However,

the curriculum they utilize (which images correspond to the source domain and which to the cross-

domain) is selected manually based on the dataset whereas in our proposed framework it is done

automatically based on the label-cross correlation before training starts.

2.5 Transfer Learning

Deep transfer learning techniques learn feature representations, which are transferable to other

domains, by incorporating the adaptation to a new domain in the end-to-end learning process [75,

4]. Zhang et al. [136] suggested a technique to perform action recognition in real-time. They

transferred knowledge from the teacher (an optical flow ConvNet) to the student (a motion vector
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ConvNet) by backpropagating the teacher’s loss in the students’ network. Finally, Lopez-Paz et

al. [76] introduced generalized distillation; a method that unifies the LUPI framework with the

knowledge distillation paradigm.

Finally, a very interesting prior work which focuses on the correlation of visual attributes is

the method of Jayaraman et al. [48]. Aiming to decorrelate attributes at learning time, the authors

proposed a multi-task learning framework with the property of resisting the urge of sharing im-

age features of correlated attributes. Their approach disambiguates attributes by isolating distinct

low-level features for distinct properties (e.g., color for “brown”, texture for “furry”). They also

leveraged side information for properties that are closely related and should share features (e.g.,

“brown” and “red” are likely to share the same features). While our work also leverages infor-

mation from correlated attributes in a multi-task classification framework, it models co-occurrence

between different clusters of visual attributes instead of trying to semantically decorrelate them.

2.6 Learning Using Privileged Information

In 2009, the learning using privileged information (LUPI) framework was introduced by Vapnik

and Vashist [116]. This new paradigm places a nontrivial teacher who provides additional infor-

mation (i.e. features) during the training process, but it is not available for test examples. It can be

applied to both classification (i.e. SVM+ algorithm) and regression tasks (i.e. ε-SVR+ algorithm).

Following this work, new approaches that leverage privileged information in different ways have

been introduced. In the work of Sharmanska et al. [102], samples are examined whether they are

easy or difficult to classify in the privileged space. This information (i.e. distance from the mar-

gin) is then transferred to the observable space to improve the prediction performance. Lapin et

al. [60] related the privileged information framework to the importance of sample weighting and
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showed that prior knowledge can be encoded using weights in a regular support vector machine.

Recently, the LUPI paradigm was employed with applications on biometrics [131, 122, 51] such

as face verification, person identification, age estimation, and gender classification.

2.7 Soft Biometrics

Integrating soft biometrics such as gender, height, weight, age, and ethnicity to a primary bio-

metrics system (e.g., face) has been studied by Jain et al. [47]. In most of the existing literature

[117, 78], the problem of human classification assisted by soft biometrics has been approached

using facial information. However, in real-life scenarios, such information might not be available

(e.g., the face might be covered or occluded). This led to methods that employ information from the

human body to perform human identification and tracking based on soft biometrics [126, 45, 14].

Adjeroh et al. [1] studied the correlation of several anthropometric measurements from the CAE-

SAR anthropometric database [94] and proposed a cluster-driven prediction model which employs

information from human metrology. In the work of Guo et al. [7], the same dataset was used and a

method that predicts the gender and the weight was proposed.

2.8 Person Search

Text-based Person Search: Learning cross-modal embeddings has numerous applications ranging

from person identity PINs using facial and voice information [83], to generative feature learning

for image and text [33]. Text-to-image retrieval which is a subcategory of cross-modal matching

is a well-studied problem in computer vision facilitated by datasets describing birds, flowers or

regular objects [92, 134, 71]. However, person search using textual descriptions is a relatively new
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application that emerged in 2017 when the CUHK-PEDES dataset [64] was published. CUHK-

PEDES contains images of individuals along with two textual descriptions for each image. The

progress in the past two years on this benchmark has been remarkable with the rank-1 accuracy

increasing from 20% to 50%. Most methods [64, 63] rely on a mostly similar procedure: (i) extract

discriminative image features using a deep neural network, (ii) extract text features using an LSTM,

and (iii) propose a loss function that measures as accurately as possible the distance between the

two features. To improve the performance, Chen et al. [11] proposed two loss functions that aimed

to perform image-language association at a global level (whole sentence to whole image) as well

as at a local level (phrases in the sentence with image parts extracted from attention blocks). Zhang

and Lu [138] followed a different approach by treating person search as a matching problem in

which image features are projected into the text domain and vice-versa and KL divergence losses

are utilized to learn discriminative feature representations.

Image-based Person Search: Image-to-image person search is the retrieval of relevant whole-

scene images of an individual given a probe image without relying on manually cropped images

of pedestrians. Instead of trying to solve separately the tasks of pedestrian detection and person

re-identification, image-based person search methods jointly solve both problems in a single frame-

work [128]. Some works [128, 127] rely on sub-networks that propose pedestrian regions that are

then used extract features for human re-identification. In the work of Xiao et al. [128] region pro-

posals are first produced (similar to the way R-CNN produces region proposals) which are then fed

to an identification network for feature extraction. An online instance matching loss is then intro-

duced that maintains labeled identity proposals in a look-up-table and unlabeled identity proposals

into a circular queue. Other works focus on extracting discriminative features at different spatial

resolutions [59] or leverage temporal information when video information is available [42].
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Chapter 3

Objective 1: Define an attribute ontology

In this chapter, the objective is to develop an ontology for the identity and the identity-related

attributes. In order to perform text-to-image retrieval in a person search application, focusing

on accurately measuring the distance between the features of the two modalities is insufficient.

Aiming to introduce structure to the free-form textual input, an attribute ontology is introduced.

Word tokenization and part-of-speech tagging are performed to the input sentence to extract all the

nouns and adjectives that describe the depicted individual. These extracted traits are then mapped

to the attribute ontology that generates positive or negative labels for the set of attributes that it

includes. For example, if the description contains words such as “man”, “guy”, “boy” then the

“Sex” attribute of the ontology has a positive label. Using this ontology extract attribute pseudo-

labels are extracted that can then be used to train attribute classification models. This process

requires no additional supervision as only the attribute ontology (and the mapping) need to be

constructed once before training starts. By using the proposed ontology and leveraging attribute

classification as an auxiliary task, our model can learn better feature representations. The primary

contribution is a method with the following lessons learned:
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• Learning to match textual to image features and vice versa in an end-to-end learning frame-

work is of paramount importance. The baseline results indicate that jointly solving the prob-

lems of person identification and cross-modal matching can achieve superior results than the

best existing performing method.

• Introducing structure to the textual input through the proposed attribute ontology can be

beneficial. By extracting pseudo-visual attribute labels from the textual descriptions and

adding attribute classification as an auxiliary task to our network performance improvements

are observed without any additional need for data annotation.

• The proposed method can be applied to out-of-distribution textual queries originating from

the University of Houston police department with satisfactory retrieval results.

3.1 Method

In this work, the proposed method named is introduced which named TIPS: a Text-to-Image Person

Search approach that effectively retrieves the most relevant images of humans given a textual de-

scription as an input. During training, our aim is to learn discriminative visual and textual feature

representations capable of accurately retrieving the ID of an individual. The training procedure

is depicted in Figure 3.1 and is described in detail below. Specifically, the input at training-time

consists of triplets (Xi, Ti, Yi) where Xi is the image of the human, Ti, is the textual description

describing that image, and Yi is the identity of this human. To learn the visual representations de-

noted by φ(Xi) a ResNet-101 network is used as a backbone network. The feature map of the last

residual block is projected to the dimensionality of the feature vector using a global average pool-

ing and a fully-connected layer. For the textual input, each word is represented as a D-dimensional
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Figure 3.1: Given an image of a person along with the corresponding textual description

discriminative visual and textual representations are learned to perform effective person

search. Textual and visual features are learned through their corresponding sub-networks

which are then fed to an identification loss as well as a cross-modal projection loss func-

tion.

one-hot vector where D is the vocabulary size. Each one-hot vector is mapped to a word em-

bedding and is fed to a long short-term memory network (LSTM) which effectively summarizes

the content of the input textual description. Finally, the textual representation denoted by τ(Ti) is

obtained by projecting the output of the LSTM to the dimensionality of the feature vector using a

fully-connected layer. Following the work of Zhang and Lu [138], two separate loss functions are

employed to train our baseline network: (i) a norm-softmax cross entropy loss for identification

and (ii) a cross-modal projection matching loss. The norm-softmax cross entropy loss [72, 120] in-

troduces an L2-normalization on the weights of the output layer. By doing so, it enforces the model

to focus on the angle between the weights of different samples to perform identification instead of

their magnitude. For the visual features, the norm-softmax cross entropy loss can be described as
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follows:

Figure 3.2: Our proposed ontology groups the visual attributes to identity and identity-

related based on whether they can change over a short period of time or not. The identity-

related attributes can be further split into fine-grained categories based on which part of the

body they belong to. Four modifiers are also provided that can describe different attributes

of the ontology.

Lvs = 1
N

∑N
i=1− log

(
exp(WT

i φ(Xi)+bi)∑
j exp(W

T
j φ(Xi)+bj)

)
, s.t.||Wj || = 1 , (3.1)

where Wi, bi are the weights and the bias of the classification layer for the visual feature repre-

sentation φ(Xi). The loss for the textual features Lts is computed in a similar manner. However

focusing solely at performing accurate identification is not sufficient since the goal is to perform

cross-modal retrieval at test time. Towards this direction, the cross-modal projection-matching

loss [138] is used which incorporates the cross-modal projection into KL divergence to associate

the representations across different modalities. Intuitively, the larger the scalar projection from one

modality to another, the more similar the two representations are. The text representation is first
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normalized τ̄(Tj) =
τ(Tj)
||τ(Tj)|| and then the probability of matching φ(Xi) to τ̄(Tj) is:

pi,j =
exp

(
φ(Xi)

T τ̄(Tj)
)∑B

k=1 exp (φ(Xi)T τ̄(Tk))
, (3.2)

where B is the batch size. Since in each mini-batch there might be more than one positive matches

(i.e. visual and textual features originating from the same identity) the true matching probability is

normalized as follows:

qi,j =
Yi,j∑B
k=1 Yi,k

. (3.3)

The cross-modal projection matching loss of associating φ(Xi) with correctly matched text features

is then defined as the KL divergence from the true matching distribution qi to the probability of

matching pi. For each batch this loss is defined as:

Lv =
1

B

B∑
i=1

B∑
j=1

pi,j log

(
pi,j

qi,j + ε

)
, (3.4)

where ε is a very small number. The same procedure is followed to perform the opposite match-

ing (i.e. from text to image to compute loss Lt) and the summation of the two individual losses

constitutes the cross-modal projection matching loss Lc = Lv + Lt.

3.2 From Textual Descriptions to an Ontology

Learning textual and visual features in a joint manner, using the norm-softmax and cross-modal

projection matching losses, addresses the challenge of accurately measuring the similarity between

the two feature vectors. A major limitation of the existing approaches is the simplicity in which

the textual representation is handled. Unlike the image input which is fed to a deep architecture

that extracts discriminative visual features, the textual features are learned using just a bidirectional

LSTM. The input sentences contain typos and mistakes, words are written in American as well as
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British English (e.g., gray and grey) and sentences demonstrate a large variance in what is described

even for the same image.

To overcome this limitation one could (i) identify the most frequently used words in the training

set (e.g., man, woman, shirt, bag, pants), (ii) treat them as attribute classes that are positive when-

ever such words appear in the textual description, and (iii) train an attribute classifier that learns to

predict such attributes given the image features. Such an approach is a step in the right direction

since it adds structure to the text input and tries to learn features that are better for text-to-image

retrieval. However, choosing which words to use and how many as attributes is subjective and it is

not clear which attribute labels will lead to better performance versus some others. Additionally,

solely focusing on words is insufficient as attributes related to colors can describe multiple things

at the same time.

Thus, an attribute ontology is proposed that maps textual description to attribute classes. Given

a textual description, word tokenization part-of-speech tagging is performed to extract all nouns

and adjectives. The extracted nouns and adjectives are then mapped to an ontology that aspires to

introduce structure to the free-form text and help the network learn better feature representations.

3.2.1 Attribute Ontology

To better understand the visual attributes included in the textual descriptions a distinction is made

between identity and identity-related attributes. The former are attributes that cannot easily change

between subsequent days (e.g., sex, age, race, height, and build) whereas the latter are attributes

such as clothes or accessories that an individual can change over a short period of time. The

proposed ontology is depicted in Figure 3.2. Attributes are split based on the body-parts they

correspond to (head, upper-body, lower-body, full-body). Such information can be leveraged if
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the 2D pose is predicted within the network. For the identity-related attributes, a few “modifiers”

are also introduced which are attributes (usually adjectives) that are used to better describe such

traits. By observing the training textual description the following modifiers were identified: (i)

the color, (ii) the size, (iii) the length, (iv) the type. For example, a “blue, V-shaped, large t-shirt”

describes a t-shirt with modifiers color, type, and size. Datasets such as the PETA benchmark [20]

have separate classes for each of the modifiers given an attribute (e.g., black t-shirt is a separate

class from a gray t-shirt). Although this makes attribute classification systems easier to build, it

introduces a large class imbalance (gray t-shirts are way less likely to appear in a dataset compared

to t-shirts which might already be imbalanced as a class). The the same time such an approach is

limited since extracting all possible configurations of {color, type, size, length} for each individual

attribute extracted from textual descriptions is intractable.

3.2.2 Visual Attribute Classification

Once the input text is mapped to the ontology, attribute labels can be extracted to perform visual

attribute classification. All attributes are treated as binary labels (i.e. whether that attribute exists

or not). The last residual block of our backbone architecture is fed to a convolutional layer with

a 1 × 1 kernel followed by a fully-connected layer which maps the attribute-related features to

attribute classes.

To train our network a modified weighted binary cross entropy loss is used:

LwB = − 1

N

1

C

N∑
i=1

C∑
c=1

wcai,c log(âi,c) + (1− ai,c) log(1− âi,c), (3.5)

where C the number of the attribute classes, ai,c, âi,c are the ground-truth and prediction pairs

for each attribute respectively, and wc = exp(−ac) is the weight for c-th attribute. Note that

ac is the prior distribution of the c-th attribute in the training set. This cost-sensitive learning
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approach is used to account for the attribute imbalance. Alternative losses such as the focal loss

were investigated to tackle class imbalance but demonstrated inferior performance.

3.2.3 Training and Testing Details

The loss function that is used to train our network is the summation of the four individual losses:

L = Lvs + Lts + Lc + LwB. (3.6)

Stochastic gradient descent (SGD) was used with momentum equal to 0.9 to train the image and

attribute networks and the Adam optimizer [54] for the textual networks. The learning rate was

set to 2 × 10−4 and was divided by ten when there the rank-1 performance plateaued at the val-

idation set until 2 × 10−6. The batch-size was set to 64 and the weight decay to 4 × 10−4. The

dimensionality of all feature vectors was set to 512. Regarding the ontology, it was found that by

mapping textual descriptions to 11 distinct classes (depicted in Table 3.2) a significant performance

improvement can be obtained without adding a computational overhead. The modifier information

was not leveraged to avoid learning very specific attribute classifiers with highly imbalanced data

(e.g., blue v-neck t-shirts) as these would degrade our performance.

At testing time given a textual description, its textual features (τ(Ti)) are extracted and their

distance between all image features (φ(Xj)) in the test set is computed using the cosine similarity:

cos(θ) =
τ(Ti)φ(Xj)

||τ(Ti)|| ||φ(Xj)||
. (3.7)

The distances are then sorted and rank-1 through rank-10 results are reported.
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3.3 Experiments

3.3.1 Dataset Description and Evaluation Metrics

To evaluate our method the CUHK-PEDES [64] dataset was used which is the only publicly avail-

able dataset for person search using textual descriptions. It consists of 40,206 images of individuals

of 13,003 identities, and each image is described by two textual descriptions. The dataset is split

into 11,003/1,000/1,000 identities for the training/validation/testing sets with 34,054, 3,078 and

3,074 images respectively in each subset. All images are resized to 256× 128. Following the data

pre-processing steps of Li et al. [64] textual descriptions longer than 50 words are trimmed and

words that appear less than three times in the whole training set are discarded before creating the

vocabulary. Since person search is a retrieval problem, the most relevant results are retrieved given

a query textual description and report rank-1, rank-5 and rank-10 results for each method.

3.3.2 Quantitative Results

Our approach is evaluated against all 12 methods that have been tested on the CUHK-PEDES

dataset. Some key methods that have been evaluated on this dataset include (i) the method of Li

et al. [63] which learns discriminative features using two attention modules working on the both

modalities at different levels but it is not end-to-end; (ii) the work of Chen et al. [11] which identify

local textual phrases and tries to find the corresponding image regions using an attention mecha-

nism; (iii) and the method of Zhang and Lu [138] in which two projection losses are proposed to

learn features for text-to-image matching. The obtained results are presented in Table 3.1 which

demonstrates that our proposed approach achieves state-of-the-art results by improving the rank-1

accuracy by 2.33%. Our improvements over previous works (the relative improvement is 4.72%)
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Table 3.1: Text-to-image retrieval results (%) on the CUHK-PEDES dataset. The results

are ranked based on the rank-1 accuracy.

Method Rank-1 Rank-5 Rank-10

iBOWIMG [141] 8.00 - 30.56

Word CNN-RNN [92] 10.48 - 36.66

Neural Talk [118] 13.66 - 41.72

GMM+HGLMM [55] 15.03 - 42.47

deeper LSTM Q+norm I [3] 17.19 - 57.82

GNA-RNN [64] 19.05 - 53.64

IATV [63] 25.94 - 60.48

PWM-ATH [13] 27.14 49.45 61.02

GLA [11] 43.58 66.93 76.26

Dual Path [140] 44.40 66.26 75.07

CMPM + CMPC [138] 49.37 - 79.27

TIPS 51.70 74.33 82.39

are originating from the proposed attribute ontology that introduces structure to the textual input

and extracts attribute pseudo-labels which are then used to improve the retrieval results. This indi-

cates that by combining the joint feature learning with the auxiliary task of attribute classification

the network learns more discriminative visual and textual features.

During training, it was also observed that for the visual attribute classification task, the mean

average precision (mAP) on the validation set increased from 40% in the first epoch to 68%. This

indicates that besides learning features capable of performing image retrieval our method can also
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learn attribute-specific features that are used for classification. In Table 3.2 mean average precision

results (mAP) are reported for the 11 most prevalent attribute classes when three different loss

functions are used for training. The first loss is the standard binary cross-entropy loss, the second

is the weighted binary cross-entropy described in Eq. 3.5 and the third is the weighted focal loss

described in [70, 98]. Both of the last two loss functions handle class imbalance at a class-level by

introducing weight-specific class weights learned from the training set, whereas the weighted focal

loss focuses also at an instance-level. This is done by weighing the contribution of each sample to

the final loss based on how far is the probability prediction from the original label (raised to a power

γ). Attributes that are fairly balanced such as sex, shoes, and t-shirt have a high AP compared to

imbalanced attributes such as jacket or glasses that have a poor AP.

Table 3.2: Mean average precision results (mAP) on the CUHK-PEDES dataset using as

ground-truth the pseudo-labels extracted from the textual descriptions using the proposed

attribute ontology.

Attribute Cl. Imbalance LB Lw
B LF

Sex 1:1 94.22 94.11 94.56

T-shirt 1:2 89.03 89.05 88.95

Jacket 1:8 46.99 50.69 48.56

Dress 1:17 50.38 61.01 53.95

Pants 1:3 75.42 75.63 74.65

Backpack 1:11 59.96 57.79 53.49

Glasses 1:13 31.27 41.22 40.69

Shoes 1:1 73.11 73.42 74.28

mAP - 65.42 68.25 66.92
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Table 3.3: Ablation studies on the CUHK-PEDES dataset to asses the impact of individual

modules on the final performance of our method.

Method Rank-1 Rank-5 Rank-10

Baseline w/ ResNet-50 46.05 69.05 78.67

Baseline w/ ResNet-101 49.85 72.94 80.48

Baseline w/ Attributes 50.14 73.50 81.96

Baseline w/ Ontology 51.70 74.33 82.39

3.3.3 Ablation Study

Aiming to obtain a better understanding of the contributions of each individual component towards

the final performance an ablation study is conducted. To investigate to what extent the primary

network affects the final performance a ResNet-50 backbone architecture is first employed and then

its depth is increased to 101. This is because it is commonplace that as architectures become deeper,

the impact of individual add-on modules becomes less significant. By comparing the first two lines

of results of Table 3.3 it becomes apparent that the increase of depth improves the rank-1 accuracy

by 3.8%. Note that in both cases the networks were trained to perform identification and feature

matching and no attribute ontology was utilized. In addition, our baseline architecture achieves

better accuracy than the previous state-of-the-art [138]. This is because: (i) a bigger backbone is

used for the image input and (ii) the output of the LSTM was projected to a fully-connected layer

and learn its weights instead of simply performing max-pooling. In the next experiment, the top-10

most frequently used words were identified and by treating them as attribute classes (without any

ontology mapping) an attribute classifier is trained to learn to predict such attributes. This is process

is performed at the same time with the feature learning for person search in an end-to-end manner.
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The results are improved compared to the original baseline but the increase is very small in terms of

rank-1 accuracy. Focusing on some meaningful attribute classes related to identity attributes such

as sex and identity-related attributes such as clothing and accessories and mapping the textual input

to the proposed ontology can boost the performance and result in a better image retrieval system.

Figure 3.3: Qualitative results on the CUHK-PEDES dataset. Given a textual description

as a query, the top-5 most relevant images are ranked from left to right. Successful image

retrieval is performed in cases with poor lighting, under different poses, and with different

visual attributes. Even in failure cases, the retrieved results are still very relevant (e.g., in

the bottom left example the color of the shirt and pants are the opposite from the input

text).

3.3.4 Qualitative Results

To evaluate the performance of the proposed approach two sets of qualitative results are provided.

The retrieved images are presented in Figure 3.3. Our method is capable of learning cloth and

accessory-related correspondences as it can accurately retrieve images of people carrying bags

with the correct set of clothing. For example, in the bottom right query even the two incorrectly

retrieved results contain images of females that match the textual description even if the identity
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Figure 3.4: Qualitative results on the CUHK-PEDES dataset when the input textual query

is from the University of Houston police department suspect description list. Our method

successfully retrieves humans with blue hoodies and pants on the bottom left and individ-

uals with dark-colored clothes on the bottom right.

of that individual is not the right one. Even in the bottom left example in which all top-5 retrieved

images contain a different identity our method retrieves images of females with the correct set of

clothes (shoes, shorts, and shirt) and the correct colors for the top two images but with the colors

of the shirt and shorts retrieved the other way around.

Aiming to evaluate how well our method performs when the input textual descriptions are orig-

inating from a different distribution (and not from the descriptions of the CUHK-PEDES dataset)

the suspect descriptions from the University of Houston police department (UHPD) which were

publicly available between the years 2013 and 2018 were collected. After mapping them to the

existing vocabulary to perform word tokenization these descriptions were used as text queries at

test-time to qualitatively investigate how successfully our method retrieves relevant images. In

Figure 3.4 the top-3 retrieved images from the CUHK-PEDES dataset are depicted when the input

textual description is from UHPD descriptions. In most cases, the top-5 retrieved results contain
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at least two times the same identity which shows the consistency of our method in retrieving rele-

vant images. For example, in the bottom left query all three individuals wear blue hoodies, carry

backpacks and wear long pants. In the bottom right textual description, all three results have dark

pants and black upper body clothes. These results are still far from perfect and there is room for

improvement since attributes such as “polo shirt” are not retrieved at all in the upper right textual

input.
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Chapter 4

Objective 2: Develop an algorithm for

extracting identity attributes from images

In this chapter, two algorithms that extract soft-biometrics using privileged information are first

presented. Then two additional algorithms that extract visual attributes using neural networks are

provided.

4.1 Gender Classification using Human Metrology

4.1.1 Gender Prediction with LUPI

Below, a detailed review of the concepts of SVM is provided for completeness, and the SVM+ algo-

rithm as well as the Margin Transfer method of Sharmanska et al.[102] are provided. Throughout

this section the same notation as in the work of Sharmanska et al.[102] is used.
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Ratios of anthropometric measurements: Based on the findings of the work of Cao et al.[7],

using the actual values of anthropometric measurements (e.g., limb lengths in mm) from an an-

thropometric database results in good gender classification accuracy. However, such information

cannot be accurately obtained from state-of-the-art computer vision algorithms without employing

depth information (e.g., use data obtained from a Kinect RGB-D sensor). To address this limitation,

in this work we propose to use ratios of anthropometric measurements. Hence, errors during the

estimation of the actual values will be alleviated. A variety of anthropometric measurements from

the body and the head is provided in the CAESAR database [94]. These measurements are split into

two groups. The first group contains only ratios of body measurements that can be captured from a

regular surveillance camera and computed from state-of-the-art computer vision algorithms. This

set, which will be denoted as X , contains only observable information (e.g., arm or leg lengths)

and will be available during both the training and the testing phases. The second group, which will

be denoted by X∗, contains ratios of body measurements that are difficult to obtain with an auto-

mated acquisition system (e.g., circumferences of body parts) as well as a few measurements that

correspond to the head (e.g., head breadth or face length). This type of information is considered

as privileged and it will not be available at test time.

From SVM to SVM+: In the standard paradigm of supervised learning for binary classification,

the training set consists of N pairs of feature vectors xi, along with their respective labels yi,

represented as (x1, y1), . . . , (xN , yN ), xi ∈ Rd where d is the number of features of each sample

and yi ∈ {−1,+1}. The standard SVM classifier finds a maximum-margin separating hyperplane

between the two classes. In a LUPI setup, during the training phase, sets of triplets (xi, x
∗
i , yi), x ∈

Rd, x∗ ∈ Rd∗ , yi ∈ {−1,+1} are provided, where feature vectors x∗ represent the additional (i.e.

privileged) information. During the testing phase, features from the privileged space X∗ are not

available. The goal of LUPI is to exploit the privileged information during the training phase to

learn a model that further constrains the solution in the original space X and thus, it can more
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accurately describe the testing data. In this paradigm, the slack variables ξi are parameterized as a

linear function of privileged information ξi(w∗, b∗) = 〈w∗, x∗i 〉 + b∗. The SVM+ problem in the

training phase solves the following minimization problem:

minimize
w, b, w∗,b∗

1

2

(
||w||2 + γ||w∗||2

)
+ C

N∑
i=1

ξi(w
∗, b∗).

subject to: yi
(
〈w, xi〉+ b

)
≥ 1− ξi(w∗, b∗)

ξi(w
∗, b∗) ≥ 0, i = 1, . . . , N .

(4.1)

Margin Transfer: Sharmanska et al.[102] investigated the framework of using privileged infor-

mation for object recognition and introduced a Margin Transfer approach. The proposed method

interprets the LUPI concept as learning the easiness and hardness of each sample to be classified

based on the margin distance to the classifying hyperplane in the privileged space. This knowledge

is then transferred to the original space to train a classifier with improved performance. A standard

SVM classifier is first trained on X∗, the prediction function of which is f∗(x∗) = 〈w∗, x∗〉, and

the margin distance ρi := yif
∗(x∗i ) between the training samples and the decision function in the

privileged space is computed. Large values of ρi indicate that the respective sample can be classi-

fied easily, low values correspond to samples that are more difficult to classify, and negative values

samples that are impossible to classify. The minimization problem is formulated as follows:

minimize
w∈Rd, ξi∈R

1

2
||w||2 + C

N∑
i=1

ξi.

subject to: yi〈w, xi〉 ≥ ρi − ξi

ξi ≥ 0, i = 1, . . . , N .

(4.2)

Unlike SVM+, the performance of the classifier in the privileged space is very important for the

Margin Transfer method because the information in the privileged space defines the margin in the

original space.
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Table 4.1: Gender classification mean accuracy (%) and standard deviation on the CAE-

SAR dataset using SVM and SVM+.

Testing Features SVM SVM+

X 97.61± 0.44 98.18± 0.56

XL 95.34± 0.74 95.82± 0.81

XU 76.69± 2.98 76.54± 2.95

X ∪X∗ 99.10± 0.23 -

Cao et al.[7] 99.37 -

4.1.2 Experimental Evaluation

The CAESAR database [94] is employed which is comprised of 44 anthropometric measure-

ments (in mm), the weight (in kg) and the gender of 2,392 US and Canadian civilians. After

data-preprocessing and discarding data with missing values, the size of the dataset used for the

experimental evaluation is 2,369×39 including the gender. The ratios of anthropometric measure-

ments are split to: (i) X which contains (12×11)/2 = 66 observable features (i.e. ratios) for each

human subject and (ii) the privileged set X∗ with size of (26×25)/2 = 325 for each sample. When

no privileged information is used, a linear SVM is utilized which requires only the penalty pa-

rameter C to be cross-validated. For SVM+, a linear kernel was used in the original space and

a radial basis function kernel type in the correction space. In the latter case, additional tuning

of the kernel coefficient γ in the correcting space is necessary. The search-space for both C and γ

were [10−4, 10−3, . . . , 104]. A standard 5-fold cross-validation scheme was selected and a full-grid

search was performed.
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Gender Classification on the CAESAR dataset: In Table 4.1, we present the results of the pro-

posed approach using the standard SVM and SVM+ methods when the testing set comprises ob-

servable features: (i) from the whole human body (X), (ii) only the lower body (XL), and (iii) only

the upper body (XU ). The first column denotes which of the observable features are available at

test time. The last two rows employ all the available information during both training and testing,

and thus a LUPI framework is not applicable. The last two rows correspond to classification results

when all the measurements are used in both training and testing and can be interpreted as an upper

boundary for the classification performance. The second to last row uses ratios of anthropometric

measurements as features, whereas the method of Cao et al.[7] uses the corresponding actual val-

ues of the measurements. When all the observable features are used, the LUPI paradigm improves

gender classification accuracy. Interestingly, features from the lower part of the body exhibited

a significantly better classification accuracy compared to the ones obtained from the upper body.

When only upper body features are available at test time, the LUPI framework does not appear to

result in increased accuracy, and in both methods the classification accuracy is reduced to 76.6 %

while the standard deviation increases to almost 3 %.

Leveraging Privileged Information in Human Metrology: Beneficial or Redundant? Based on

the results obtained from the SVM+ method, the LUPI framework can improve the classification

accuracy. However, two important characteristics of LUPI have to be taken into consideration.

The first is what may be considered privileged information. Although conceptually it might be

appealing to use circumferences of human limbs as prior information to boost the gender prediction

accuracy, this is not always true as demonstrated by the experimental results (when only upper

body features are visible). The second is how the existence of privileged information is exploited

to improve the accuracy during test time.

Gender classification results are reported in Table 4.2 using a standard SVM for 20 random
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Table 4.2: Gender classification accuracy (%) on still images from the PaSC and SARC3D

datasets using an SVM when the feature set contains full, upper and lower-body features.

Set of features

Dataset X XL XU

PaSC 71.37± 1.64 57.65± 2.82 58.06± 2.73

SARC3D 86.00± 2.00 78.00± 4.00 72.00± 4.00

train-test splits. The reason the reported classification accuracy on SARC3D is higher than PaSC,

can be attributed to the fact that the 3D poses in SARC3D are easier to be estimated since peo-

ple are standing in an upright position. Columns two to four in Table 4.2 contain different results

depending on which parts of the human body are visible. Identifying the gender of humans from

real images using anthropometric measurements is a challenging task. Its difficulty arises from the

fact that the 3D pose estimation algorithm starts with an initial 3D pose and a dictionary of poses

(i.e. bases) and by exploiting this information maps the 2D joint locations to 3D through an opti-

mization scheme. The performance of this algorithm is sensitive to the initialization, and thus the

performance is not always robust. Note that employing privileged information from the CAESAR

dataset, and exploiting this information at test time using as features the obtained measurements

from the images, resulted in a worse performance. Thus, the LUPI paradigm using anthropometric

measurements estimated from images was not investigated further.
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4.2 Predicting Privileged Information for Height Estima-

tion

4.2.1 Privileged Information for Height Estimation

ε-SVR+: The SVM+ method was proposed by Vapnik and Vashist [116] to exploit privileged infor-

mation for binary classification tasks. They also generalized the LUPI paradigm for the regression

estimation task denoted by ε-SVR. The goal in support vector regression is to find a function that

has at most ε deviation from the obtained targets yi for the training set and is as flat as possible

[105]. This means that as long as the errors are less than ε they are not taken into consideration.

However, any deviation larger than this will not be accepted. The standard soft-margin ε-SVR is

formulated by the following optimization problem:

where w ∈ Rm represents the weight vector, ||w||2 indicates the size of the soft margin and

b ∈ R is the bias parameter. Additionally, ξi is the slack variable for one training sample and

indicates the deviation from the margin borders and C denotes the penalty parameter. Note that

the ξ∗ in ε-SVR has nothing to do with the privileged space. It denotes the space of width ε below

the margin as depicted in a toy example in Figure 4.1. When privileged information is available at

training time, three sets of linear functions are considered. The first set lies in the observable space

in which the decision function is approximated while the other two are functions that approximate

the correcting functions for the slack variables ξi and ξ∗i . The optimization problem is formulated
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Figure 4.1: The ε-insensitive band for a one-dimensional linear support vector regression

problem.

as:

minimize
w, w∗

1 , w
∗
2

b, b∗1, b
∗
2

1
2

(
||w||2 + γ(||w∗1||2 + ||w∗2||2)

)
+

+ C
∑l

i=1(〈w∗1, x∗i 〉+ b∗1) + C
∑l

i=1(〈w∗2, x∗i 〉+ b∗2)

subject to: yi − 〈w, xi〉 − b ≤ ε+ 〈w∗1, x∗i 〉+ b∗1

〈w, xi〉+ b− yi ≤ ε+ 〈w∗2, x∗i 〉+ b∗2

〈w∗1, x∗i 〉+ b∗1 ≥ 0

〈w∗2, x∗i 〉+ b∗2 ≥ 0

i = 1 . . . l .

(4.3)

where parameters with sub-indices equal to one and two correspond to the first and second correct-

ing functions, respectively.

Privileged Information Prediction (PIP): A novel method of estimating the height using support
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Table 4.3: Height estimation error (%) for a regular ε-SVR, ε-SVR+ and the proposed

privileged information prediction (PIP) approach.

ε-SVR+ PIP

Q Male Female Both Male Female Both

1st 3.95± 0.34 4.17± 0.27 4.28± 0.33 4.31± 0.24 4.27± 0.22 3.96± 0.34

2nd 1.68± 0.21 1.77± 0.11 2.50± 0.16 1.80± 0.12 1.71± 0.19 2.65± 0.12

3rd 1.87± 0.17 1.84± 0.11 2.71± 0.19 1.84± 0.15 1.66± 0.13 2.69± 0.11

4th 4.30± 0.26 4.01± 0.25 3.86± 0.33 3.96± 0.26 3.97± 0.30 3.73± 0.22

All 2.94± 0.13 2.91± 0.12 3.33± 0.10 2.95± 0.12 2.89± 0.10 3.25± 0.12

vector regression (ε-SVR) in two steps is proposed. Our method takes as an input the two groups

of observable and privileged human measurements and outputs its height, which is then mapped

to classes (i.e. quartiles) that correspond to percentile ranges. For the purposes of this work, it

is assumed that the anthropometric measurements of a human are available and provided to the

system. However, in a real-life scenario, the observable measurements are obtained from an image

of a human by applying a 3D pose estimation algorithm to obtain the location of the joints in

three dimensions. The estimated skeleton is used to derive the observable measurements (e.g., arm

length, hip to knee length). Another group of features is utilized (i.e. privileged measurements)

such as circumferences of body parts which will be available during the training phase. Ratios

of anthropometric measurements are computed for each of them, to alleviate the error that would

occur during the estimation of the actual values. The privileged vector x∗ is then used to find the

K most informative features denoted by x̂∗ using the minimum redundancy maximum relevance
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Algorithm 4.1: Privileged Information Prediction (PIP)
Input : Ratios of observable x and selected privileged x∗ features , labels y, number of selected

features K, ε, estimation error allowed e

1 for i= 1,...,K do

2 // privileged feature prediction

x̂∗
i ← ε-SVR model trained on (x,x∗

i )

3 end

4 // height estimation

h← ε-SVR model trained on ([xT x̂∗T ]T ,y)

hc ← mapping to height classes by allowing error e

Output: Height h in cm, hc ∈ {1st, 2nd, 3rd, 4th} quartiles

feature selection (mRMR) of Peng et al. [87] with the mutual information difference (MID) feature

selection scheme. For each selected feature, a support vector regression model is learned from x

that predicts its value x̂∗i . A new feature vector is formed which contains the concatenation of

x with the K predicted values of x̂∗ and a new regression model is trained to predict the height.

Since height is a continuous variable, performing classification (i.e. 1st quartile) would imply

that the boundaries of the classes would have to be strictly defined, which would result in many

misclassification errors. To address this challenge, a percentage of error is allowed between the

predicted height value and the actual height (i.e. ground truth value). Thus, if a testing sample

is misclassified but the error (%) in the estimation from the actual value is less than a threshold

then this sample is considered as correctly classified. Classification accuracy results are reported

in Section 4.2.2.

The key differences between ε-SVR+ and the proposed approach are that the former uses in-

formation from the privileged space to add an extra term to the optimization function and further

constrain the solution in the observable space. In contrast, our method employs the predictions of
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privileged features as extra information that can be used to estimate the height. This implies that

at testing time the proposed method contains an estimation error in the feature vector that is used

to predict the height. This is not the case for the ε-SVR+ algorithm. Unlike ε-SVR+, the proposed

approach, is significantly faster to train and cross-validate despite the two regression steps instead

of one. That is because the parameters that have to be tuned, except the parameter ε, are two for

a Gaussian kernel instead of four. Finally, to the best of our knowledge, an implementation of

ε-SVR+ is not currently available, whereas the proposed approach can be re-implemented using

standard programming packages.

4.2.2 Experimental Evaluation

For the purposes of this work, the CAESAR database [94] was used which comprises 44 anthro-

pometric measurements (in mm) such as the spine-to-elbow length or the chest circumference, the

weight (in kg), and the gender of 2,392 US and Canadian civilians. After data preprocessing and

discarding data with missing values, the size of the dataset for the experimental evaluation is 2,369

with 39 features for each sample, including the gender. The number of observable and privileged

features are 11 and 27, respectively, whereas gender is investigated separately. Thus, the ratios of

anthropometric measurements obtained are split into: (i) x which contains 11×10/2 = 55 observable

features (i.e. ratios) for each human subject and (ii) the privileged x∗ with size of 27×26/2 = 325 for

each sample. A Gaussian kernel was used for all three methods (i.e. SVR, SVR+, and PIP), which

means that besides the cost parameter C, the width γG of the kernel needs to be cross-validated.

In the case of SVR+, there is an additional γG that needs to be cross-validated along with the pa-

rameter γ of the correcting space as shown in Equation 4.3. The possible values for all parameters

were [10−4, 10−3, . . . , 104], and a standard 5-fold cross-validation scheme was employed. Note

that SVR+ requires careful selection of all four optimal parameters and thus, a full-grid search was
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Figure 4.2: Height prediction error for different number of selected features.

performed.

Both ε-SVR and ε-SVR+ optimization problems are convex and can be solved using quadratic

programming (QP). For large datasets and to enable fast training, a sequential minimal optimization

(SMO) [90] technique is frequently used which divides a large QP optimization problem into a

series of smaller QP problems. However, for the purposes of this work, a regular QP solver was

used as provided in the CVXOPT package [2] and implemented the ε-SVR+ algorithm following

the dual formulation described in the work of Vapnik and Vashist [116].

Regression-based Height Prediction: Three methods are evaluated: (i) a regular ε-SVR which

predicts the height attribute using ratios of observable anthropometric measurements, (ii) the ε-

SVR+ algorithm which leverages privileged information at training time to obtain a more accurate

optimization solution in the observable space, and (iii) the proposed PIP approach which predicts

the K most informative privileged features at test time and uses them with the observable space to

estimate the height. Different models are trained and cross-validated per gender, and thus separate

43



results are reported per gender and per height quartiles (e.g., the 1st quartile corresponds to the

shortest 25% of the subjects). The regression error (%) results of the aforementioned techniques

are depicted in Table 4.3 per gender and per quartile (Q).

Leveraging privileged information is beneficial for the estimation of soft biometric attributes

such as height because both ε-SVR+ and PIP performed better than a regular ε-SVR. Moreover,

when the gender of the human is not known beforehand, which would be the case in a real-life

biometric application, the proposed approach outperformed the other two techniques in all but one

case. Especially in the first and the fourth quartiles, which proved to be the most challenging ones,

PIP demonstrated smaller estimation error than the other two techniques. The most challenging

quartiles contain either the shortest samples (first female quartile) or the tallest subjects (fourth male

quartile). The reason for this is that these groups contain heights that are close to the boundaries

of the range of height values and are difficult to predict by a universal model. On the contrary, the

height estimation of samples belonging to the second and the third quartiles had the smallest error

in all cases. The overall performance between males and females appears to be approximately the

same. Finally, using the gender of a human as prior information can reduce the height estimation

error compared to a scenario in which the dataset comprises samples of both genders. Note that a

1% error corresponds approximately to a 1.6 cm absolute difference between the estimated and the

actual value.

Selecting the optimal number of privileged features: From our investigation of predicting the

privileged selected features at test time, two interesting questions arise: (i) what is considered priv-

ileged information, and (ii) what is the optimal number (K) of features to be selected that leads

to best prediction accuracy? Although conceptually it might seem reasonable to use circumfer-

ences of human limbs as prior information to boost the height prediction accuracy, this is possible

only through careful selection of the parameters. Second, K was selected by experimenting with
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different values, while concurrently performing cross-validation using the same parameters for all

models to reduce the training computational time, and then estimated the height for each value.

Note that our goal was to find the smallest number of K, thus, from the obtained results depicted

in Figure 4.2 K was set equal to six. A limitation of the mRMR algorithm [87], is that it does

not consider information from groups of features but ranks them individually, which explains the

fluctuations in the obtained error for a different number of selected features.

4.3 Curriculum Learning of Visual Attribute Clusters for

Multi-Task Classification

4.3.1 Methodology

In this section, we describe the proposed network architecture which given images of humans as an

input, outputs visual attribute predictions. We then introduce our approach for splitting attributes

into clusters. Finally, the proposed multi-task curriculum-learning framework is introduced.

In our supervised learning paradigm, we are given tuples (xi, yi) where xi corresponds to

images and yi to the respective visual attribute labels. The total number of tasks will be denoted

by T , and thus the size of yi for one image will be 1 × T . Finally, we will refer to the part of the

network that solves the ith group of tasks as Ci.

4.3.1.1 Multi-label ConvNet architecture

To mitigate the lack of training data we employ the pre-trained VGG-16 [104] network. VGG-16, is

the network from Simonyan and Zisserman [104] which was one of the first methods to demonstrate
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Figure 4.3: Architecture of the ConvNet used for several groups of tasks. The VGG-16

pre-trained part is kept frozen during training and only the weights of the last layers are

learned. The different groups of tasks are learned sequentially using a curriculum learning

paradigm. However, when the latter groups of tasks are trained, the tasks which have

already been learned, contribute to the total cost function (Figure best viewed in color.)

that the depth of the network is a critical component for good performance. We selected VGG

instead of a more modern network for the reason that it is a simple and homogeneous architecture,

which despite its inefficiencies (e.g., large number of parameters), is sufficient for solving multiple

binary-image classification tasks. VGG-16 is trained on ImageNet [93], the scale of which enables

us to perform transfer learning between ImageNet and our tasks of interest. The architecture of the

network we use is depicted in Figure 4.3. We used the first seven convolutional layers of the VGG-

16 network and dropped the rest of the convolutional and fully-connected layers. The reason behind

this is that the representations learned in the last layers of the network are very task dependent [133]

and thus, not transferable. Following that, for every task we added a batch-normalized [44] fully-

connected layer with 512 units and a ReLU activation function. We employed batch-normalization
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since it enabled higher learning rates, faster convergence, and reduced ting. Although shuffling

and normalizing each batch has proven to reduce the need of dropout, we observed that adding a

dropout layer [107] was beneficial as it further reduced overfitting. The dropout probability was

75% for datasets with less than 1,000 training samples and 50% for the rest. For every task, an

output layer is added with a softmax activation function using the categorical cross entropy.

Furthermore, we observed that the random initialization of the parameters of the last two layers

backpropagated large errors in the whole network even if we used different learning rates through-

out our network. To address this behavior of the network, which is thoroughly discussed in the

method of Sutskever et al. [112], we “freeze” the weights of the pre-trained part and train only the

last two layers for each task in order to learn the layer weights and the parameters of the batch-

normalization.

After we ensured that we can always overfit on the training set, which means that our network

is deep enough and discriminative enough for the tasks of interest, our primary goal was to reduce

overfitting. Towards this direction, we (i) selected 512 units for the fully connected layer to prevent

the network from learning several weights; (ii) employed a small weight decay of 10−4 for the

layers that are trained; (iii) initialized the learning rate at 10−3 and reduced it by a factor of 5 every

100 epochs and up to five times in total; and (iv) augmented the data by performing random scaling

up to 150% of the initial image followed by random crops, horizontal flips, and adding noise by

applying PCA to the RGB pixel values as proposed by Krizhevsky et al. [56]. At test time, we

averaged the predictions at three different scales (100%, 125%, and 150%) of five fixed crops and

their horizontal flips (30 in total) to obtain the predicted class label. This technique, which was

also adopted in the ResNet method of He et al.[37], proved to be very effective as it reduced the

variation on the predictions.
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Figure 4.4: Dendrogram illustrating the arrangement of clusters.

4.3.1.2 Group Split with Hierarchical Clustering

Finding the order in which tasks need to be learned so as to achieve the best performance is difficult

and computationally expensive. Given some tasks ti, i = 1...T that need to be performed, we seek

to find the best order in which the tasks should be performed so the average error of the tasks is

minimized:

minimize
S(ti)

1

T

T∑
j=1

E(ŷtj , ytj ) , (4.4)

where S(ti) is the function that finds the sequence of the tasks, ŷtj , ytj are the prediction and target

vectors for the jth task, and E is the prediction error.

However, the fact that a task can be easily performed does not imply that it is positively corre-

lated with another and that by transferring knowledge the performance of the latter will increase.
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Figure 4.5: Pairwise correlation matrix between the visual attributes of the SoBiR dataset.

Adjeroh et al. [1] studied the correlation between various anthropometric features and demon-

strated that some correlation clusters can be derived in human metrology, whereby measurements

in a cluster tend to be highly correlated with each other but not with the measurements in other

clusters.

In this work, we seek to find: (i) which tasks (i.e. attributes) should be grouped together so

as to be learned jointly, and (ii) which is the best sequence in which the groups of tasks should be

learned. We use the training labels Y of size N ×M where N the number of samples, and M

the number of attributes (i.e. ground truth labels) to compute the Pearson correlation coefficient

matrix which is of size M ×M . Each element in this matrix, represents to what extent these two

attributes are correlated (e.g., the “gender” with the “hair length” will have a higher value compared

to “gender” with “age”).
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We then employ the computed Pearson correlation coefficient matrix to perform hierarchical

agglomerative clustering using the Ward variance minimization algorithm. Ward’s method is biased

towards generating clusters of the same size and analyzes all possible pairs of joined clusters,

identifying which joint produces the smallest within cluster sum of squared (WCSS) errors. It is

a variance-minimizing approach and which resembles the k-means algorithm but tackled with an

agglomerative hierarchical approach. Assume that at an intermediate step, clusters s and t are to be

merged to form cluster u = s∪ t. Then, the new distance d(u, v) between cluster u and an already

existing (but yet unused) cluster v is defined as:

d(u, v) =

√
|v|+ |s|
T

d(v, s)2 +
|v|+ |t|
T

d(v, t)2 +
|v|
T
d(s, t)2 , (4.5)

where s, t are the clusters which are joined into cluster u, and T = |v|+|s|+|t|. Ward [125], points

out that this procedure facilitates the identification of that union which has an objective function

value “equal or better than” any of the n(n − 1)/2 possible unions. An illustrative hierarchical

clustering of the visual attributes from the SoBiR dataset [79] in the form of a dendrogram is

depicted in Figures 4.4 and 4.5. We observe that the proposed method for task split yields clusters of

visual attributes which cohere with our semantic understanding and intuition about which attributes

might be related to each other (e.g., gender with hair length, weight with muscle build). In addition

to the pairwise correlation matrix, which also provides an insight into the relation of attributes, the

proposed approach exploits this correlation between the attributes during the learning process.

By splitting the attributes into clusters using a WCSS threshold τ to cut the dendrogram hor-

izontally, we have identified which tasks should be grouped together so as to be learned jointly.

Following that, we now seek to obtain the sequence in which the clusters of visual attributes will

be learned. To address this problem, we propose to find the total dependency pi,c of task ti,c with

the rest within the cluster c, by computing the respective Pearson correlation coefficients but this
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Algorithm 4.2: Finding the learning sequence of attribute clusters
Input : Training labels Y , WCSS threshold τ

1 P ← compute Pearson correlation coefficient matrix split based on labels Y

G← split into clusters using Eq. (4.5) along with P , labels Y , and τ

for group gi in G do

2 Si ← compute average of cross-correlation within gi using Eq. (4.6)

3 end

4 S(gi) ← compute learning sequence of clusters by sorting Si’s in a descending

order

Output: Learning sequence of clusters of visual attributes S(gi)

time only within the cluster as follows:

pi,c =
T∑

j=1,j 6=i

cov(yti,c , ytj,c)

σ(yti,c)σ(ytj,c)
, i = 1, ..., T , (4.6)

where σ(yti,c) is the standard deviation of the labels y of the task ti,c. After we compute the total

dependencies for all the clusters formed, we start the curriculum learning process in a descending

order.

The process of computing the learning sequence of attribute clusters, which is described in

detail in Algorithm. 4.2, is performed once before the training starts. Since it only requires the

training labels of the tasks to compute the cross-correlations and perform the clustering, it is not

computationally intensive. Finally, note that the group split depends on the training set and it is

possible that different train-test splits might yield different groups of tasks.

51



Algorithm 4.3: Multi-task curriculum learning training
Input : Training set X , training labels Y , learning sequence of clusters S(gi)

from Algorithm 4.2

1 for group gi in S(gi) do

2 Initialize Ci from rest of already trained groups of tasks (if any)

Ci ← train model using (X, Yi) by minimizing the loss in Eq. (4.8)

3 end

Output: Parameters of network containing all groups of tasks

4.3.1.3 Multi-Task Curriculum Learning

In the scenario we are investigating, we solve multiple binary unbalanced classification tasks si-

multaneously. The proposed learning paradigm is described in Algorithm 4.3.

Similar to Zhu et al. [143], we employ the categorical cross-entropy function between predic-

tions and targets, which for a single attribute t is defined as follows:

Lt = − 1

N

N∑
i=1

M∑
j=1

(
1/Mj∑M
n=1

1/Mn

)
· 1[yi = j] · log(pi,j), (4.7)

where 1[yi = j] is equal to one when the ground truth of sample i belongs to class j, and zero

otherwise, pi,j is the respective prediction, which is the output of the softmax nonlinearity of sample

i for class j, and the term inside the parenthesis is a balancing parameter required due to imbalanced

data. The total number of samples belonging to class j is denoted by Mj , N is the number of

samples and M the number of classes. The total loss over all attributes is defined as
∑T

t=1 λt · Lt,

where λt is the contribution weight of each parameter. For simplicity, it is set to λt = 1/T . By

setting λt in this way, there is an underlying assumption that all tasks contribute equally to the

multi-task classification problem. To overcome this limitation, a fully-connected layer with T units
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could be added with an identity activation function after each separate loss Lt is computed. In that

way, the respective weight for each attribute in the total loss function could be learned. However,

we observed that for groups of tasks that consist of a few attributes there was no difference in the

performance, and thus we did not investigate this any further.

Once the classification of the visual-attribute tasks that demonstrated the strongest intra corre-

lation is performed, we use the learned parameters (i.e. weights, biases, and batch normalization

parameters) to initialize the network for the less diverse groups of attributes. The architecture of

the network remains the same, with the parameters of VGG-16 being kept “frozen”. The weights

of the tasks of previous groups of clusters continue to be learned with a very small learning rate

of 10−6). Furthermore, by adopting the “supervision transfer” technique of Zhang et al. [136] we

leverage the knowledge learned by backpropagating the following loss:

Lj = λ · Lt + (1− λ) · Lfj , (4.8)

where Lfj is the total loss computed during the forward pass using Eq. (4.7) over only the current

group of correlated tasks and λ is a parameter that controls the amount of knowledge transferred.

Since the parameters of the network that correspond to already trained groups of tasks keep be-

ing updated, the loss Lt changes during training of the tasks of interest each time. This enables

us to transfer the knowledge from groups of tasks with stronger intra cross-correlation to groups

which demonstrated less intra cross-correlation. This technique proved to be very effective, as it

enhanced the performance of the parts of the network which are responsible for the prediction of

less correlated groups of tasks, and contributed to faster convergence during training.
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4.3.2 Experiments

4.3.2.1 Datasets

To verify the effectiveness of the proposed method, we conducted evaluations in three challenging

datasets containing standing humans, and thus tested our method in almost all the possible varia-

tions that can be found in the datasets used in the literature. We used the SoBiR [79], VIPeR [32],

and PETA [20] datasets. The selected datasets are of varying difficulty and contain different visual

attributes and training set sizes. In each dataset, we follow the same evaluation protocol with the

rest of the literature.

SoBiR dataset: The recently introduced SoBiR dataset [79] contains 800 images of 100 people.

The dimensions of each image are 256 × 256. The SoBiR dataset comprises 12 soft biometric

labels (e.g., gender, weight, age, height) and four forms of comprehensive human annotation (ab-

solute versus relative and categorical versus binary). In our experimental investigation, we used the

comparative binary ground-truth annotations (e.g., taller/shorter instead of tall/short) instead of ab-

solute binary. The main reasons for this choice are: (i) relative binary annotations have been shown

to outperform categorical annotations [79, 86]; and (ii) class labels were balanced for all soft bio-

metrics. A 80/10/10 train/validation/test split based on human IDs is performed (so that only new

subjects appear at testing) and average classification results are reported over five random splits.

PETA dataset: The PETA dataset [20] consists of 19,000 images gathered from 10 different

smaller datasets. Parameters such as the camera angle, viewpoint, illumination, and resolution

are highly variant, which makes it a valuable dataset for visual-attribute classification evaluation.

It is divided in 9,500, 1,900, and 7,600 images for training, validation, and testing, respectively.

Similar to [143], highly imbalanced attributes are discarded and the remaining 45 binary visual

attributes are employed.

54



4.3.2.2 Results on SoBiR

Implementation details: For the SoBiR dataset, the batch size was set to 160. We split it into

four clusters containing 2, 5, 2, and 3 attributes by thresholding at within cluster sum of squares

τ = 1.9, trained our models for 5,000 epochs, and set λ = 0.25.

Evaluation results: Since the SoBiR dataset does not have a baseline on attribute classification

we reported results using handcrafted features and an SVM classifier as well as three different end-

to-end learning frameworks using our ConvNet architecture. In all cases, images were resized to

128× 128. The features used for training the SVMs consisted of: (i) edge-based features, (ii) local

binary patterns (LBPs), (iii) color histograms, and (iv) histograms of oriented gradients (HOGs).

To preserve local information, we computed the aforementioned features in four blocks for every

image resulting in 540 features in total. In addition, we performed SVM with features extracted

from the last fully-connected layer of the pre-trained VGG-16 network and the obtained results are

provided in the third column of Table 4.4. Feature vectors 4, 096×1 were extracted for each image,

and an SVM was trained using the optimal parameters obtained from the validation set. Further-

more, we investigated the classification performance when tasks are learned individually (i.e. by

backpropagating only their own loss in the network), jointly in a typical multi-task classification

setup (i.e. by backpropagating the average of the total loss in the network), and using the proposed

approach. We report the classification accuracy (%) for all 12 soft biometrics in Table 4.4. CILI-

CIA is superior in both groups of tasks to the rest of the learning frameworks. Despite the small

size of the dataset, ConvNet-based methods perform better in all tasks compared to an SVM with

handcrafted features. Multi-task learning methods (i.e. multi-task and CILICIA) outperform the

learning frameworks when tasks are learned independently since they leverage information from

other attributes. By taking advantage of the correlation between attributes, CILICIA demonstrated

higher classification performance than a typical multi-task learning scenario. However, estimating
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the “age” proved to be the most challenging task in all cases as its classification accuracy ranges

from 58.5% to 64.5% when it is learned individually using our ConvNet architecture. This poor

performance can be attributed to the fact that age estimation from images without facial traits is

a largely unsolved problem [129, 62]. In Figure 4.6, the convergence plots for all four CILICIA

groups are depicted and the following observations are made: (i) the first group (comprises only

two attributes) after epoch 3,000, demonstrates strong overfitting which proved to be inevitable

even when we experimented with smaller learning rates; (ii) Multi-Task learning demonstrated the

highest loss compared to the groups of the proposed method; and (iii) as we move from the groups

of attributes that are strongly correlated to the rest by transferring knowledge each time, the train-

ing loss becomes smaller and there is less overfitting (if any). Note that the depicted losses for the

corresponding groups are averaged over the tasks that belong to the cluster and thus, they can be

compared although the number of tasks in each group is not the same.

4.3.2.3 Results on PETA

Implementation details: For the PETA dataset, the batch size was set to 190. We split it into five

clusters containing 2, 11, 4, 10, and 18 attributes by thresholding at within cluster sum of squares

τ = 3, trained our models for 5,000 epochs, and set λ = 0.2.

Evaluation results: Since the training size of the PETA dataset is significantly higher than the rest

(almost 10,000) and the annotations provided are 45 instead of 20, some very interesting observa-

tions can be made from the clusters of visual attributes. The turquoise cluster comprises attributes

related to upper and lower body formal clothes along with black and leather footwear, and thus

it is beneficial if we learn these attributes at the same time. Other examples that follow to our

intuition and semantic understanding are the fact that being male is very strongly connected with

having short hair and not carrying any type of bag, or that carrying a backpack is linked with being
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Table 4.4: Classification accuracy of different learning paradigms on the SoBiR dataset.

In CILICIA, four clusters were formed and attributes are in descending order based on

their intra cross-correlation. Results highlighted with light blue indicate statistically sig-

nificant improvement using the paired-sample t-test.

Soft Label SVM with

Handcrafted

Features

SVM with Deep

Features

Individual

Learning

Multi-Task

Learning

CILICIA

Gender 72.1 74.5 80.4 79.6 85.2

Height 64.7 61.8 73.9 72.0 77.0

Age 58.5 55.3 62.6 61.9 64.5

Weight 57.7 65.3 67.7 71.0 74.1

Figure 57.8 64.3 68.7 67.1 67.3

Chest size 58.7 54.5 64.9 68.9 67.5

Arm thickness 60.1 70.5 72.0 73.1 73.7

Leg thickness 56.7 65.5 68.9 71.0 72.6

Hair length 71.8 72.5 78.9 79.2 85.9

Muscle build 58.5 66.3 73.3 74.5 75.8

Average 61.9 63.6 71.0 71.3 74.2

less than 30 years old. The proposed learning approach employs this information from attributes

strongly connected on the PETA dataset and outperformed the recent method of Zhu et al. [143].

Since many attributes are highly imbalanced and the classification accuracy as an evaluation

metric is not sufficient by itself they also reported recall rate results when the false positive rate

is equal to 10% as well as the area under the ROC curve (AUC). Following the same evaluation

protocol, we tested the proposed multi-task curriculum learning method on the PETA dataset and
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Figure 4.6: Convergence plot for all the groups of CILICIA as well as Multi-Task learning

on the SoBiR dataset.

report our results in comparison with those of Zhu et al. [143] after grouping the attributes in

Table 4.5. The imbalance ratio in this dataset, is defined as the ratio of the number of instances in

the majority class to the number of examples in the minority class in the training set. Although our

method is not part-based, as it does not split the human image into parts which are then learned

individually, it outperforms the part-based method of Zhu et al. [143] in all types of visual attributes

under all evaluation metrics. Due to highly imbalanced data (the imbalance ratio in most of the

categories is relatively high), the improvement in the classification accuracy is minor. However, for

the rest of the evaluation metrics, our method improved the average recall rate by 3.93% and the

AUC by 1.94%. In Figure 4.7 the ROC curves of some tasks in which our method performed really

well (e.g., “blue shirt”), reasonably well (e.g.,“gender”), and adequately (e.g.,“has backpack”) are

depicted.
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Figure 4.7: ROC curves for the visual attributes of “gender”, “blue shirt”, and “has back-

pack”. The x-axis is in semi-logarithmic scale and the depicted values correspond to the

recall rate (%) when the false positive rate is 10%.

4.3.3 Ablation Studies

Why is Knowledge Transfer important? To assess the impact of transferring knowledge from

groups of tasks which have already converged to ones that have not been learned yet we conducted

an ablation experiment. We selected the four most correlated and the four least correlated attributes

of the PETA dataset so as to form the two groups of strongly and weakly correlated attributes. We

compare the classification accuracy of the selected tasks with and without knowledge transfer.

When no knowledge is transferred to the latter group, we are simply training two multi-task clas-

sification frameworks. We report the obtained results in the last two columns of Table 4.6. In the

random split column, the strongly and weakly groups refer only to the learning sequence as the

split is not based on the correlation. CILICIA (w/o kt) corresponds to learning in correlation-split

groups but without knowledge transfer. Transferring knowledge from a strongly correlated group
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Table 4.5: Performance comparison on the PETA dataset for different types of attributes.

Visual Attribute Imbalance Ratio
Accuracy (%) Recall rate (%) @FPR = 10% AUC (%)

Zhu et al. [143] CILICIA Zhu et al. [143] CILICIA Zhu et al. [143] CILICIA

Accessories 7.63 93.11 93.48 75.68 76.66 91.06 92.13

Carrying Bags 5.01 83.68 84.78 57.21 62.73 82.79 85.63

Footwear 4.69 83.41 83.74 59.09 60.88 84.44 85.18

Hair 4.57 89.54 89.96 75.89 80.43 90.95 93.18

Lower Body 3.54 85.05 85.66 64.92 66.95 87.37 88.26

Upper Body 8.06 89.60 90.48 69.88 76.12 88.66 91.68

Age 7.05 87.84 87.90 71.03 72.49 88.93 90.24

Gender 1.22 84.34 87.59 74.80 82.04 91.74 93.84

Total Av. 6.07 87.23 87.91 67.29 71.22 87.66 89.60

of tasks to the weakly improves the performance of the latter by 1.89% compared to a typical

multi-task classification learning framework.

Why use Correlation as a Criterion for Group Split? To demonstrate the effectiveness of clus-

tering attributes into groups based on their cross correlation we conducted an ablation study using

the same eight attributes from the PETA dataset. However, in this experiment, instead of grouping

them based on their cross-correlation, we randomly assign them to two groups. We follow exactly

the same two-stage process (i.e. learning one group first and transferring knowledge to the second

which is learned right after) and report the obtained results in the first column of Table 4.6. We ob-

serve that learning in correlation-based groups of tasks is beneficial as CILICIA with and without

knowledge transfer performs better than learning at random. Additionally, transferring knowledge

between attributes that do not co-occur (or they are semantically completely different) has an ad-

verse effect on the performance. The obtained results are in line with previous methods that can be

found in the literature [43, 36] that have exploited label correlations to improve multi-task learning.
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Why is the Proposed Curriculum the Right One?

We argue that task similarity and thus the curriculum is not binary, but resides on a spectrum.

In the same way that humans learn with different curricula depending on the task, the process of

finding a curriculum that is beneficial for all tasks cannot have an optimal single solution. Learning

in correlation-split groups showed promising results (Tables 4.4 and 4.6) which led us to start

considering how can we improve the performance. Transferring knowledge between related tasks

is not beneficial as during the joint multi-task learning training the parameter sharing plays that

role. Transferring knowledge from randomly-split groups also proved to be ineffective (Table 4.6).

We then investigated whether the work of Bengio et al. [5], which proposed a curriculum based

on what is easier to learn first, would add value. We believe that the knowledge transfer from the

strongly to the weakly correlated group of tasks is a reasonable easy-to-hard curriculum which

resembles to the definition of Bengio et al. [5]. In addition, note that when Bengio et al. [5]

introduced curriculum learning after they defined an entropy-based curriculum they demonstrated

that introducing gradually more difficult examples speeds-up online training.

Table 4.6: Ablation experiments to assess the effectiveness of knowledge transfer and

correlation-based split.

Group Random Split CILICIA (w/o kt) CILICIA

Strongly 65.36 76.01 76.01

Weakly 63.08 69.91 71.80

Total 64.22 72.95 73.91
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4.3.4 Performance Analysis and Limitations

Despite its success and good performance, the proposed approach has a few limitations and ineffi-

ciencies. First, the existence of a fully-connected layer after the last convolutional layer increases

significantly the number of parameters that need to be learned for each task. This was partially

addressed this by freezing most of the network and employed a small number of units in the fully-

connected layer. This inefficiency is known for the VGG network and was addressed by more

recent networks that such as the GoogLeNet [113], or the Highway Networks [108]. Second, the

proposed approach contains two additional parameters that need to be cross-validated thoroughly.

The first parameter is λ, which controls the contribution of the already learned groups of clusters

and is found in several methods that perform transfer learning or knowledge distillation [76, 136].

For this parameter, we experimented on the validation set with different parameters (namely 0.25,

0.5, 0.75 and 1) and observed that a 25% contribution of the already learned clusters of visual at-

tributes was the most effective. The second parameter is the within-cluster sum of squares threshold

which controls the number of clusters formed. Finally, the goal of the proposed approach was to

classify the visual attributes of humans, the full body of whom was always fully-visible. Thus,

it was tested in re-identification datasets, which contain pairs of images of humans standing or

walking, and outperformed the state-of-the-art without even following a part-based approach.

4.4 Deep Imbalanced Attribute Classification using Vi-

sual Attention Aggregation

Given an image of a human our goal is to predict its visual attributes. More formally, our input

consists of an image x along with its corresponding labels y = [y1, y2, . . . , yC ]T where C is the
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Figure 4.8: Given an image of a human we aspire to predict C visual attributes. Visual

attention mechanisms are placed in two different levels of the network to identify spatial

information that is relevant to each attribute with only attribute-level supervision. The

predictions from the attention and the primary classifiers are aggregated at a score level

and the whole network is trained end-to-end with two loss functions that handle class

imbalance and hard samples (Lwfl) and penalize attention masks with high-prediction

variance (Latt).

total number of attributes and yc a binary label that indicates the presence or absence of a particular

attribute in the image. We aspire to learn a function f(x) that minimizes the prediction error over

all attributes:

f∗ = min
f

C∑
c=1

L (f c(x), yc) , (4.9)

where L corresponds to the selected loss function (e.g., binary cross-entropy loss) and f∗ is a deep

neural network.
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Figure 4.9: Our attention mechanism (upper-left) maps feature representations of spatial

resolution Hi ×Wi and Fi channels to C channels (one for each attribute) with the same

size which are then spatially normalized to enforce the model to focus its resources to

the most relevant region of the image. The attention masks are weighted by attribute

confidences (lower-left) which as we demonstrate on the right, apply larger weights to the

attribute-corresponding areas. For example, more emphasis is given in the middle-upper

part when looking for a t-shirt and to the upper part of the image when looking for a hat

(even when it is not there).

4.4.0.1 Multi-scale Visual Attention and Aggregation

In this work, we experimented with both ResNets [37] and DenseNets [40] as backbone architec-

tures and thus, we opted for the representations after the third and the fourth stage/block of layers.

The concept of extracting attention information can be expanded to more spatial resolutions/scales

besides two at the expense of learning additional parameters. We will thus refer to the first part of

the networks (up to stage/block three) as φ1(·) and to the part from there and until the classifier

as φ2(·). In our primary network, which unless otherwise specified is a ResNet-101 architecture
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(deep CNN module in Figure 4.8), given an image x, we obtain three-dimensional feature repre-

sentations:

k1(x) = φ1(x), k1(x) ∈ RH1×W1×F1 , k2(x) = φ2(k1(x)), k2(x) ∈ RH2×W2×F2 . (4.10)

For 224 × 224 images the attention mechanism is placed to features of channel size Fi equal

to 1, 024 and 2, 048 with spatial resolutions Hi × Wi equal to 14 × 14 and 7 × 7 respectively.

Finally, the classifier of the primary network outputs logits ŷprim(x) = Wprimk2(x)+bprim where

(Wprim, bprim) are the parameters of the classification layer.

With simplicity in mind, our attention mechanism, depicted in Figure 4.9, consists of three

stacked convolutional layers (along with batch-normalization and ReLU) with a kernel size equal

to one. Due to the multi-label nature of the problem, the last convolutional layer maps the channels

to the C number of classes (i.e. attributes). This is different than most attention works (with one

label per image) that extract saliency maps of the same spatial/channel size of the given feature rep-

resentation. The attribute-specific attention maps zch,w are then spatially normalized to ach,wusing a

spatial softmax operation:

ach,w =
exp(zch,w)∑
h,w exp(zch,w)

, (4.11)

where h,w correspond to the height and width dimension and c to the corresponding attribute label.

The spatial softmax operation results in attention masks with the property
∑

h,w a
c
h,w = 1 for each

attribute c and is used to enforce the model to focus its resources to the most relevant region of the

image. We will refer to the attention mechanism comprising the three convolutional layers asA and

thus, for each spatial resolution i we first obtain unnormalized attentions Zi(x) = A(ki(x)), which

are then spatially normalized using Eq. (4.11) resulting in normalized attention masks Ai(x).

Following the work of Zhu et al. [142], we concurrently pass the feature representations to
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a single convolutional layer with C channels (same as the number of classes) followed by a sig-

moid function. The role of this branch is to assign weights to the attention maps based on label

confidences and avoid learning from the attention masks when the label is absent. The weighted

attention maps reflect both attribute information at different spatial locations and label confidences.

We observed in our experiments that this confidence-weighting branch boosts the performance by a

small amount and helps the attention mechanism learn better saliency heatmaps (Figure 4.9 right).

Combining the output saliency masks from different scales can be done either at a prediction

level (i.e. averaging the logits) or at a feature level [123]. However, aggregating the attention masks

at a feature level provided consistently inferior performance. We believe that this is because the

two attention mechanisms extract masks that give emphasis to different spatial regions that when

added together fail to provide the classifier with attribute-discriminative information. Thus, we

opted for the former approach and fed each confidence-weighted attention mask to a classifier to

obtain logits ŷatti of the attention module i. The final attribute predictions of dimensionality 1×C

for an image x are then defined as ŷ = (ŷprim+ŷatt1+ŷatt2 )/3.

4.4.1 Deep Imbalanced Classification

Using the output predictions of the primary model ŷprim which have the same dimensionality 1×C

(i.e. one for each attribute), a straight-forward approach adopted by Zhu et al. [142] is to train the

whole network using the binary cross-entropy loss Lbce as:

Lbce(ŷprim, y) = −
C∑
c=1

log(σ(ŷcprim))yc + log(1− σ(ŷcprim))(1− yc), (4.12)

where (ŷcprim, y
c) correspond to the logit and ground-truth labels for attribute c, and σ(·) is the

sigmoid activation function. However, such a loss function ignores completely the class imbalance.

Aiming to alleviate this problem both at a class- and at an instance-level, we propose to use for our
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primary model a weighted-variant of the focal loss [70] defined as:

Lwfl(ŷprim, y) = −
C∑
c=1

wc

((
1− σ(ŷcprim)

)γ
log
(
σ(ŷcprim)

)
yc +

+ σ(ŷcprim)γ log(1− σ(ŷcprim))(1− yc)
)
, (4.13)

where γ a hyper-parameter (set to 0.5), which controls the instance-level weighting based on the

current prediction giving emphasis to the hard misclassified samples, and wc = e−ac , where ac the

prior class distribution of the cth attribute as in [99].

Unlike the face attention networks [121], which learn the attention masks based on ground-

truth facial bounding boxes, in the human attribute domain such information is not available. This

means that the attention masks will be learned based on attribute-level supervisions y. The attention

masks of dimensionality Hi ×Wi × Fi are fed to a classifier which outputs logits ŷatti for each

spatial resolution i. To account for the weak supervision of the attention network, we decided

to focus on the attention masks with high prediction variance. Similar to the work of Chang et

al. [9], after some burn-in epochs in which Lbce is used, we start collecting the history H of the

predictions pH(ys|xs) for the sth sample and compute the standard deviation across time for each

sample within the batch:

ŝtds(H) =

√
v̂ar
(
pHt−1(ys|xs)

)
+
v̂ar
(
pHt−1(ys|xs)

)2
|Ht−1

s | − 1
, (4.14)

where t corresponds to the current epoch, v̂ar to the prediction variance estimated in history Ht−1

and |Ht−1
s | the number of stored prediction probabilities. The loss for the attention-masks at level

i with attribute-level supervision for each sample s is defined as:

Latti(ŷatti , y) =
(
1 + ŝtds(H)

)
Lbce(ŷatti , y). (4.15)
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Attention mask predictions with high standard deviation across time will be given higher weights

in order to guide the network to learn those uncertain samples. Note that for memory reasons, our

history comprises only the last five epochs and not the entire history of predictions. Finally, the

total loss that is used to train our network end-to-end (the primary network and the two attention

modules) is defined as:

L = Lwfl + Latt1 + Latt2 , (4.16)

where Latt1 is applied to the first attention module that extracts saliency maps of spatial resolution

14× 14, and Latt2 is similarly applied to the second attention module after the fourth stage of the

primary network with spatial resolution of 7×7. Disentangling the two loss functions enables us to

separately focus on different types of challenges. The weighted focal loss Lwfl, handles the prior

class imbalance per attribute using the weightwc and at the same time focuses on hard misclassified

positive samples via the instance-level weights of the focal loss. The attention loss Latt, penalizes

predictions that originate from attention masks with high prediction variance.

4.4.2 Experiments

To assess our method we performed experiments and ablation studies on the publicly available

WIDER-Attribute [67] and PETA [20] datasets, which are the most widely used in this domain.

The training details for both datasets are provided in the supplementary material.

4.4.2.1 Results on WIDER-Attribute

Dataset Description and Evaluation Metrics: The WIDER-Attribute [67] dataset contains 13,789

images with 57,524 bounding boxes of humans with 14 binary attribute annotations each. Besides

“gender”, which is balanced, the rest of the attributes demonstrate class imbalance, which can reach
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Table 4.7: Evaluation of the proposed approach against nine state-of-the-art methods.

Method
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Imbalance Ratio 1:1 1:3 1:18 1:3 1:4 1:1 1:13 1:6 1:11 1:2 1:9 1:28 1:3 1:18

RCNN [28] 94 81 60 91 76 94 78 89 68 96 80 72 87 55 80.0

R*CNN [30] 94 82 62 91 76 95 79 89 68 96 80 73 87 56 80.5

DHC [67] 94 82 64 92 78 95 80 90 69 96 81 76 88 55 81.3

VeSPA [99] - - - - - - - - - - - - - - 82.4

CAM [34] 95 85 71 94 78 96 81 89 75 96 81 73 88 60 82.9

ResNet-101 [37] 94 85 69 91 80 96 83 91 78 95 82 74 89 65 83.7

ResNet-101+MTL 94 86 68 91 81 96 83 91 79 95 83 74 90 65 83.8

ResNet-101+MTL+CRL [21] 94 86 71 91 81 96 83 92 79 96 84 76 90 66 84.7

SRN [142]* 95 87 72 92 82 95 84 92 80 96 84 76 90 66 85.1

Ours 96 88 74 93 83 96 85 93 81 96 85 78 90 68 86.4

1 : 18 and 1 : 28 for attributes such as “face-mask” and “sunglasses”. Following the training pro-

tocol of [99, 142], we used the human bounding box as an input to our model and mean average

precision (mAP) results are reported.

Baselines: We evaluate our approach against all the methods that have been tested on the WIDER-

Attribute dataset, namely R-CNN [28], R*CNN [30], DHC [67], CAM [34], VeSPA [99], SRN [142],

and a fine-tuned ResNet-101 network [37]. In addition, we transform the last part of the network to

perform multi-task classification (MTL) by adding a fully-connected layer with 64 units for each

attribute. This enables us to additionally evaluate against CRL [21] by forming triplets within the

batch using class-level hard samples. Note that DHC and R*CNN leverage additional contextual

information (e.g., scene context or image parts) that intuitively should boost the performance and
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VeSPA, which jointly predicts the viewpoint along with the attributes, did not train its viewpoint

prediction sub-network on the WIDER-Attribute dataset. In SRN [142], the validation set was

included in the training (which results in 20% more training data) and samples from the test set

were used to obtain an idea about the training performance. In order to allow for a fair comparison

with the rest of the methods, we re-implemented their method (which is why there is an asterisk

next to their work in Table 4.7) and trained it only on the training set of the WIDER-Attribute [67]

dataset. The difference between the reported results and our re-implementation is 1.2 in terms of

mAP which is reasonable given the access to approximately 20% less training data.

Evaluation Results: Our proposed approach achieves state-of-the-art results on the WIDER

dataset by improving upon the second best work by 1.3 in terms of mAP and by 2.7 over ResNet-

101 [37] which was our primary network. Our larger improvements are in imbalanced attributes

such as “Sunglasses” or “Plaid” that have visual cues in the image which demonstrates the impor-

tance of handling class imbalance and using visual attention to identify important visual informa-

tion in the image. DHC and R*CNN that use additional context information performed significantly

worse but this is partially because they utilize smaller primary networks. Overall the proposed ap-

proach performs better than or equal than the rest of the literature in all but one attributes and comes

second behind CAM [34] at recognizing hats.

4.4.2.2 Ablation Studies on WIDER

In our first ablation study (Table 4.8 - left), we investigate to what extent the primary network

affects the final performance. This is because it is commonplace that as architectures become

deeper, the impact of individual add-on modules becomes less significant. On the left, we report

mAP results just for the primary network (w/o adding any attention mechanisms) using different

backbone architectures. On the right, we investigate the additions in terms of performance for
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Table 4.8: Ablation studies on the WIDER dataset to assess the impact of individual mod-

ules on the final performance of our method.

Primary Net Params mAP

ResNet-50 25.6×106 82.3

DenseNet-121 8.1×106 82.9

ResNet-101 44.7×106 83.7

ResNet-152 60.4×106 84.2

DenseNet-201 20.2×106 84.5

Primary Net Lwfl Attention Latt Multi-scale mAP

ResNet-101 83.7

ResNet-101 X 84.4

ResNet-101 X X 85.0

ResNet-101 X X X 85.7

ResNet-101 X X X 85.9

ResNet-101 X X X X 86.4

attention at a single- and multi-scale level as well as the two loss functions we introduced. We

observe that (i) the difference between a ResNet-50 and a DesneNet-201 architecture is more than

2% in terms of mAP, (ii) DenseNet-201, which is the highest performing primary network, is almost

as good as SRN [142] due to its effective feature aggregation and reuse, and (iii) the mAP of the

proposed approach is 2.1 more than the best performing primary network. In our second ablation

study (Table 4.8 - right), we assess how each proposed component of our approach contributes to

the final mAP. Handling class imbalance using the weighted focal loss and adding our attention

mechanism just at a single scale result in mAP equal to 85.0 which performs almost as well as

the existing state-of-the-art. Adding the attention loss that penalizes attention masks with high

prediction variance and expanding the attention module to two scales improves the final mAP to

86.4.

Qualitative Results: In Figure 4.10, attention masks for six successful (left) and three failure cases

(right) are provided. For imbalanced attributes such as sunglasses that have discriminant visual

cues, the attention mechanism locates successfully the corresponding regions, which explains the
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Figure 4.10: Successful attention masks (left) and failure cases (right) for attributes of the

WIDER dataset. The attention masks learned are capable of finding formal clothes and

long pants in the bottom part of the image, logos in the middle and sunglasses or hats in

the top.

7% relative improved mAP for this attribute compared to the primary ResNet architecture.

4.4.2.3 Results on PETA

Dataset Description and Evaluation Metrics: The PETA [20] dataset is a collection of 10 person

surveillance datasets and consists of 19,000 cropped images along with 61 binary and 5 multi-value

attributes. We used the same train/validation/test splits with the method of Sarfraz et al. [99] and

followed the established protocol of this dataset by reporting results on the 35 attributes for which

the ratio of positive labels is higher than 5%. For the PETA dataset, two different types of metrics
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Table 4.9: Evaluation of the proposed approach against 9 state-of-the-art approaches on

the PETA dataset ranked by F1-score.

Method mA Acc Prec Rec F1

ACN [111] 81.15 73.66 84.06 81.26 82.64

SRN [142]* (w/ Lbce) 80.55 74.24 84.04 82.48 83.25

WPAL-FSPP [135] 84.16 74.62 82.66 85.16 83.40

DeepMAR [61] 82.89 75.07 83.68 83.14 83.41

GoogleNet [113] 81.98 76.06 84.78 83.97 84.37

ResNet-101 [37] 82.67 76.63 85.13 84.46 84.79

WPAL-GMP [135] 85.50 76.98 84.07 85.78 84.90

SRN [142]* (w/ Lwfl) 82.36 75.69 85.25 84.59 84.92

VeSPA [99] 83.45 77.73 86.18 84.81 85.49

Ours 84.59 78.56 86.79 86.12 86.46

are reported namely label-based and example-based. For the label-based metrics due to the unbal-

anced distribution of the attributes, we used the balanced mean accuracy (mA) for each attribute

that computes separately the classification accuracy of the positive and the negative examples and

then computes the average. For the label-based metrics, we report accuracy, precision, recall, and

F1-score averaged across all examples in the test set.

Baselines: We compared our approach with all the methods that have been tested on the PETA

dataset, namely the ACN [111], DeepMAR [61], two variations of WPAL [135], VeSPA [99], the

GoogleNet [113] baseline reported by Sarfraz et al. [99], ResNet-101 [37] and SRN [142].
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Evaluation Results: From the complete evaluation results in Table 4.9, we observe that the pro-

posed approach achieves state-of-the-art results in all example-based metrics and comes second

to WPAL [135] in terms of balanced mean accuracy (mA). We believe this is due to the fact that

different methods use different metrics, based on which they optimize their models. For example,

our approach is optimized based on the F1 score which balances between precision and recall and

is applicable in search applications. Our approach improves upon a fine-tuned ResNet-101 archi-

tecture by approximately 2% in terms of F1 score which demonstrates the importance of the visual

attention mechanisms. Notably, we improve upon VeSPA [99] in all evaluation metrics despite the

fact that they utilize additional viewpoint information to train their model. Finally, we observe that

by using the weighted variant of focal loss (Lwfl) instead of the binary-cross entropy loss (Lbce),

the F1 score of SRN [142] increases by 1.7%. This demonstrates why failing to account for class

imbalance affects the performance of deep attribute classification models.

4.4.2.4 Ablation Studies on PETA

Based on the experimental analysis an important question arises: can similar results be obtained

with significantly fewer parameters? Aiming to find out the impact of large backbone architectures

in the final performance, we investigated how each component of our work performs using a pre-

trained DenseNet-121 [40] architecture. DenseNet-121 contains 7.5× less parameters compared to

ResNet-101 due to efficient feature propagation and reuse. To our surprise, when all components

are included (last row in Table 4.10), the performance drop in terms of F1 score is less than 2%. In

addition a variety of feature aggregations were explored by either up-sampling the smaller attention

masks, max-pooling the larger or mapping the larger to the smaller using a convolutional layer

with stride equal to two. Although the latter approach performed better than up-sampling/down-

sampling, the aggregation of the attention information at a logit level is superior compared to
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feature level aggregation. This is because the two attention mechanisms extract masks that give

emphasis to different spatial regions that when added together fail to provide the classifier with

attribute-discriminative information.

Table 4.10: Ablation studies to assess the impact of each submodule to the final result

using a light-weight backbone architecture with 7.5× less parameters than a ResNet-101.

Primary Net Class

Weight

Lwfl Attention Multi-scale

(feature

aggr.)

Multi-scale

(score aggr.)

F1

DenseNet-121 X 82.1

DenseNet-121 X X 82.9

DenseNet-121 X X X 83.8

DenseNet-121 X X X X 84.1

DenseNet-121 X X X X 84.7

4.4.2.5 Sources of Error and Further Improvements

Where does the proposed method fail and what are the characteristics of the failure cases? A sig-

nificant limitation of most pedestrian attribute classification methods (including ours) is that they

resize the input data to a fixed square-size resolution (e.g., 224×224) in order to feed them to deep

pre-trained architectures. Human crops are usually rectangular captured from different viewpoints

and thus, when resized to a square, important spatial information is lost. One possible solution to

this would be feeding the whole image at a fixed resolution that does not interfere with the spatial

relations and then extract human-related features using ROI-pooling at a stage within the network.

To cope with the high viewpoint variance, the spatial transformer networks of Jaderberg et al. [46]
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could be employed to align the input image before feeding it to the network, a practice which is

very common in face recognition applications [88, 114, 49]. A second source of error is the very

low resolution of several images especially in the PETA dataset, which makes it hard even for the

human eye to identify the attribute traits of the depicted human. In addition, the provided anno-

tations contain a third unspecified/uncertain class, which is used as negative during training in the

literature, that further dilutes the learning process. Applying modern super-resolution techniques

[53, 18] could alleviate this issue but only to some extent. Regarding errors due to modeling richer

feature representations could be extracted using feature pyramid networks [69] since they extract

high-level semantic feature maps at multiple scales. Modern visual attention mechanisms [66, 119]

could be adapted to a multi-label setup and applied to achieve superior performance at the expense

of a larger parameter space.

4.4.2.6 Discussion on Class Imbalance

Class imbalance is an important problem in computer vision that is overlooked by the research

community. Visual attributes are largely imbalanced in nature and both datasets used in this work

contained attributes that demonstrated imbalance up to 1:28. Traditional solutions include over-

sampling the minority classes or under-sampling the majority classes to compensate for the im-

balanced class ratio as well as cost-sensitive learning where classification errors are penalized

differently. Such approaches have been extensively used in the past, but they suffer from some

limitations. For example, over-sampling introduces redundant information making the models

prone to overfitting [21], whereas under-sampling may remove valuable discriminative informa-

tion [21]. Recent works with deep convolutional neural networks introduced a sampling procedure

of triplets, quintuplets or clusters of samples that satisfy some properties in the feature-space and

used them to regularize their models. However, sampling triplets is a computationally expensive
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procedure and the characteristics of the triplets in a batch-mode setup might vary significantly.

This work demonstrated that while assigning prior class weights can alleviate part of this problem,

a weighted-variant of the focal loss works consistently better by handling imbalanced classes and

at the same time focusing on hard examples.
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Chapter 5

Objective 3: Text-to-image matching for

Person Search

In this chapter, a novel text-to-image matching approach named TIDAM is introduced which em-

ploys an adversarial learning framework to learn better feature representations.

5.1 Methodology

5.1.1 Joint Feature Learning

During training our objective is to learn discriminative visual and textual feature representations

capable of accurately retrieving the ID (or the category) of the input from another domain. The

training procedure is depicted in Figure 5.1 (here a text-based person search application is used as

an example) and is described in detail below. Specifically, our input at training-time consists of
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Figure 5.1: The proposed approach consists of three modules: (i) the feature extraction

module which extracts textual and visual features using their corresponding backbone ar-

chitectures, (ii) the identification and cross-modal projection losses that match the distri-

butions originating from the same identity, and (iii) a domain discriminator that pushes the

model to learn domain-invariant representations for effective text-image matching.

triplets (Vi, Ti, Yi) where Vi is the image input from the visual domain V , Ti a textual description

from the textual domain T describing that image, and Yi is the identity/category of the input. To

learn the visual representations denoted by φ(Vi) a ResNet-101 network is used as a backbone

network. The feature map of the last residual block is projected to the dimensionality of the feature

vector using global average pooling and a fully-connected layer. We opted for the original backbone

architecture without any attention blocks [11, 98] in order to keep the backbones simple and easy-

to-reproduce in any framework and avoid having to learn more parameters.

Learning discriminative representations from both modalities is of paramount importance for

text-to-image matching. While for the image domain, most existing methods [11, 63, 140] rely

on deep architectures that have demonstrated their capability of extracting discriminative features
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for a wide range of tasks, this is not the case for the text domain. Prior work usually relies on a

single LSTM [38] to model the textual input and learn the features that correspond to the input

sentence. We argue that one of the main reasons that prevent existing computer vision methods

from performing well on text-to-image matching problems is due to the fact that the textual features

are not discriminative enough. To address this limitation, we borrow from the NLP community a

recently proposed language representation model named BERT. The sequence of word embeddings

extracted from BERT are then fed to a bidirectional LSTM [38] which effectively summarizes the

content of the input textual description. Finally, the textual representation denoted by τ(Ti) is

obtained by projecting the output of the LSTM to the dimensionality of the feature vector using

a fully-connected layer. The reason an LSTM is employed on the output word embeddings is

because it gives us the flexibility to initially freeze the weights of the language model and fine-tune

only the LSTM along with the fully-connected layer and thus, significantly reducing the number of

parameters. Once an adequate performance is observed, we unfreeze the weights of the language

model and the whole network is trained end-to-end.

5.1.2 Cross-Modal Matching

Given the visual and textual features, our aim is to introduce loss functions that will bring the fea-

tures originating from the same identity/category close together and push away features originating

from different identities. To accomplish this task we introduce two loss functions for identification

and cross-modal matching. The identification loss is a norm-softmax cross entropy loss [72, 120]

that introduces an L2-normalization on the weights of the output layer. By doing so, it enforces the

model to focus on the angle between the weights of the different samples to perform identification

instead of their magnitude. For the visual features, the norm-softmax cross entropy loss can be
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described as follows:

LvI =
1

B

B∑
i=1

− log

(
exp(W T

i φ(Vi) + bi)∑
j exp(W T

j φ(Vi) + bj)

)
, s.t.||Wj || = 1 , (5.1)

where B corresponds to the batch size and Wi, bi are the weights and the bias of the classification

layer for the visual feature representation φ(Vi). The loss for the textual features LtI is computed

in a similar manner and the final classification loss for identification LI = LtI + LvI . Note that

for datasets that do not have ID labels but only image-text pairs (e.g., the Flickr30K dataset [91]),

we assign a unique ID to each image and use that ID as ground-truth for the identification loss.

However, focusing solely at performing accurate identification is not sufficient for cross-modal

matching since no connection between the representations of the two modalities has been intro-

duced thus far. Towards this direction, we use the cross-modal projection matching loss [138]

which incorporates the cross-modal projection into KL divergence to associate the representations

across different modalities. The text representation is first normalized τ̄(Tj) =
τ(Tj)
||τ(Tj)|| and then

the probability of matching φ(Vi) to τ̄(Tj) is given by:

pi,j =
exp

(
φ(Vi)

T τ̄(Tj)
)∑B

k=1 exp (φ(Vi)T τ̄(Tk))
. (5.2)

The multiplication between the transposed image embedding and the normalized textual embed-

ding reflects the scalar projection between φ(Vi) onto τ̄(Tj), while the probability pi,j represents

the proportion of this scalar projection among all scalar projections between pairs in a batch. Thus,

the more similar the image embedding is to the textual embedding, the larger the scalar projection

is from the former to the latter. Since in each mini-batch there might be more than one positive

matches (i.e. visual and textual features originating from the same identity) the true matching

probability is normalized as follows:

qi,j =
Yi,j∑B
k=1 Yi,k

. (5.3)
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The cross-modal projection matching loss of associating φ(Vi) with correctly matched text features

is then defined as the KL divergence from the true matching distribution qi to the probability of

matching pi. For each batch (B) this loss is defined as:

LvM = − 1

B

B∑
i=1

B∑
j=1

pi,j log

(
pi,j

qi,j + ε

)
, (5.4)

where ε is a very small number. The same procedure is followed to perform the opposite matching

(i.e. from text to image to compute loss LtM ) and the summation of the two individual losses

constitutes the cross-modal projection-matching loss LM = LvM + LtM .

5.1.3 Adversarial Domain Learning

When training domain adversarial neural networks [8, 27, 115] a two-player minimax game is

played between a domain discriminator D and a feature generator G. Both G and D are jointly

trained so as G tries to fool D and D tries to make accurate domain predictions. For the text-to-

image matching problem, the two backbone architectures discussed in Section 5.1.1 serve as the

feature generators Gv and Gt for the visual and textual domains that produce feature representa-

tions φ(Vi) and τ(Ti), respectively. The key idea is to learn a good general representation for each

input domain that maximizes the matching performance, yet obscure the domain information. By

learning to fool the domain discriminator, better feature representations are learned capable of per-

forming text-to-image matching. The generated embeddings are fed to the domain discriminator,

which classifies whether the input feature representation is drawn from the visual or the textual

domain. The domain discriminator consists of two fully-connected layers that reduce the embed-

ding size to a scalar value which is used to predict the input domain. The domain discriminator is

optimized according to the following GAN [31] loss function:

LD = − E
Vi∼V

[logD (φ(Vi))]− E
Ti∼T

[log (1−D (τ(Ti)))], (5.5)
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where V and T correspond to the image and text domains respectively where samples are drawn

and fed through the backbone architectures.

5.1.4 Training and Testing Details

The loss function that is used to train our network is the summation of two identification losses (LI ),

the two cross-modal matching losses (LM ) and the adversarial loss of the domain discriminator

(LD):

L = LI + LM + LD . (5.6)

We used stochastic gradient descent (SGD) with momentum equal to 0.9 to train the image and

discriminator networks and the Adam optimizer [54] for the textual networks. The learning rate

was set to 2 × 10−4 and was divided by ten when the loss plateaued at the validation set until

2 × 10−6. The batch-size was set to 64 and the weight decay to 4 × 10−4. The hidden dimension

of the bidirectional LSTM was equal to 512 and the dimensionality of all feature vectors was set

to 512. Finally, to properly balance the training between Gv, Gt, and D we followed several of the

tricks discussed by Chintala et al. [15].

At testing time given a textual description as a probe, its textual features (τ(Ti) extracted

through the language backbone) and their distance between all image features (φ(Vj) extracted

from the image backbone) in the test set is computed using the cosine similarity:

cos(θ) =
τ(Ti)φ(Vj)

||τ(Ti)|| ||φ(Vj)||
. (5.7)

The distances are then sorted and rank-1 through rank-10 results are reported. For image-to-text

matching the same process is followed by using the image features as probe and retrieving the most

relevant textual descriptions.
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5.2 Experiments

Datasets: To evaluate our method, four widely-used publicly available datasets were used and their

evaluation protocols were strictly followed. We opted for these datasets in order to test TIDAM

on a wide range of tasks ranging from pedestrians and flowers to objects and scenes. TIDAM

was tested on (i) the CUHK-PEDES [64] that contains images of pedestrians accompanied by

two textual descriptions, (ii) the Flickr30K dataset [91] which contains a wide variety of images

(humans, animals, objects, scenes) with five descriptions for each image, (iii) the Caltech-UCSD

Birds (CUB) [92] dataset that consists of images of birds with 10 descriptions for each image and

finally, (iv) the Flowers [92] dataset that consists of images of flowers originating for 102 categories

with 10 descriptions for each image.

Evaluation Metrics: The evaluation metrics used in each dataset are adopted. Thus, for the

CUHK-PEDES and Flickr30K datasets rank-1, rank-5, and rank-10 results are presented for each

method. For the CUB and Flowers datasets, the AP@50 metric is utilized for text-to-image re-

trieval and rank-1 for image-to-text matching. Given a query textual class, the algorithm first com-

putes the percentage of top-50 retrieved images whose identity matches that of the textual query

class. The average matching percentage of all test classes is denoted as AP@50. Finally, note that

in each dataset we compare TIDAM with the four to seven best-performing methods.

5.2.1 Quantitative Results

CUHK-PEDES Dataset: We evaluate our approach against the seven best-performing methods

that have been tested on the CUHK-PEDES dataset and present text-to-image matching results

in Table 5.1. Some key methods that have been evaluated on this dataset include (i) IATV [63]

which learns discriminative features using two attention modules working on the both modalities
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Table 5.1: Text-to-image results (%) on the CUHK-PEDES dataset. Results are ranked

based on the rank-1 accuracy.

Method Rank-1 Rank-5 Rank-10

GNA-RNN [64] 19.05 - 53.64

IATV [63] 25.94 - 60.48

PWM-ATH [13] 27.14 49.45 61.02

GLA [11] 43.58 66.93 76.26

Dual Path [140] 44.40 66.26 75.07

CMPM + CMPC [138] 49.37 - 79.27

TIDAM 54.51 77.56 84.78

at different levels but it is not end-to-end; (ii) GLA [11] which identifies local textual phrases and

aims to find the corresponding image regions using an attention mechanism; (iii) and CMPM [138]

in which two projection losses are proposed to learn features for text-to-image matching. TIDAM

outperforms all previous works by a large margin. We observe an absolute improvement of more

than 5% in terms of rank-1 over the previous best performing method [138] which originates from

learning better feature representations through the identification and cross-modal matching losses

as well as the proposed adversarial domain learning framework.

CUB and Flowers Datasets: We test TIDAM against the top-4 best-performing methods evalu-

ated on these datasets and present our matching results in Table 5.2. Our method achieves state-

of-the-art results in both image-to-text and text-to-image matching in both datasets. We observe

performance increases of 2.2% and 3.4% in terms of rank-1 accuracy as well as 3.6% and 2.4% in

terms of AP@50.

Flickr30K Dataset: We report cross-modal retrieval results on the Flickr30K dataset against the
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Table 5.2: Cross-modal matching results on the CUB and Flowers datasets. The results

are ranked based on the text-to-image AP@50 performance.

Method

CUB Flowers

Img2Txt Txt2Img Img2Txt Txt2Img

Rank-1 AP@50 Rank-1 AP@50

Word CNN-RNN [92] 56.8 48.7 65.6 59.6

Triplet Loss [63] 52.5 52.4 64.3 64.9

IATV [63] 61.5 57.6 68.9 69.7

CMPM+CMPC [138] 64.3 67.9 68.4 70.1

TIDAM 67.7 70.3 70.6 73.7

top-6 best-performing methods. Similar to the three best-performing methods, and only in this

dataset, a ResNet-152 is employed, which is why we also report the image backbone used, to al-

low for a fairer comparison. TIDAM surpasses all methods by a large margin in text-to-image

matching and comes second only to DAN [84] in image-to-text matching. DAN employs multi-

step attention blocks and thus, is able to learn “where to look” in an image which results into

better image features. Unlike the rest of the datasets that contain a single primary object (i.e. flow-

ers/birds/pedestrians only), Flickr30K contains a wide range of primary components ranging from

humans and animals to objects and scenes. This image variance coupled with the relatively small

number of training images make cross-modal matching a challenging task. While our approach in-

creases the rank-1 text-to image matching by 3.2% and is capable of learning correct associations

between images and descriptions as demonstrated in the qualitative results presented in Figure 5.2,

there is still room for further improvements by future research.
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Table 5.3: Ablation studies on the CUHK-PEDES dataset to assess the impact of individual

modules on the final performance of our method.

LI LC BERT ARL Rank-1 Rank-10

X 40.1 70.1

X 44.9 77.7

X X 49.8 81.5

X X X 51.3 82.4

X X X 52.9 83.5

X X X X 54.5 84.8

5.2.2 Ablation Studies

Impact of Proposed Components: In our first ablation study (Table 5.3), we assess how each pro-

posed component of our approach contributes to the final text-to-image matching performance on

the CUHK-PEDES dataset. We investigate the additions in terms of rank-1 and rank-10 accuracy

for the identification (LI ) and cross-modal projection (LM ) losses, the addition of BERT as a back-

bone architecture for language modeling, and the adversarial representation learning paradigm. We

observe that the identification (LI ) and cross-modal projection (LM ) losses result to a rank-1 accu-

racy of 49.85% when used together and significantly less when used individually. By introducing

BERT we demonstrate that better word embeddings can be learned that increase the accuracy to

52.97%. Finally, when the proposed adversarial representation learning paradigm (ARL) is in-

troduced, additional improvements are observed, regardless of whether BERT is used or not. We

observe relative improvements of 2.9% and 3% with and without the utilization of BERT respec-

tively, which demonstrates that ARL helps the network learn domain-invariant representations that
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can successfully be used at deployment-time to perform cross-modal matching. Similar results are

obtained in the Flickr30K dataset in which ARL improved the rank-1 matching performance from

51.2% to 53.1% and from 41.0% to 42.6% in image-to-text and text-to-image, respectively.

Impact Backbone Depth: In the second ablation study, we investigate to what extent the depth

of the backbone networks affects the final cross-modal matching performance. Similar to previ-

ous well-performing methods [11, 63, 138], a fully-connected layer was used to learn the word

embeddings (denoted by FC-Embed.) and compared it with the deep language model of BERT.

For the image modality, two different ResNet backbones were employed while the rest of our pro-

posed methodology remained the same. Rank-1 matching results in both directions are reported on

the Flickr30K dataset in Table 5.4. Introducing a language model yields significant improvements

(4.8% and 4.7%) regardless of the image backbone. In addition, increasing the image backbone

depth results in smaller text-to-image matching improvements of approximately 2%.

Table 5.4: Ablation studies on the Flickr30K dataset to assess the impact of the depth of

different backbone architectures on the final performance.

Image Backbone Text Backbone Img2Txt Txt2Img

ResNet-101 ResNet-152 FC-Emb. BERT Rank-1 Rank-1

X X 47.9 35.8

X X 52.0 40.6

X X 50.1 37.9

X X 53.1 42.6

Impact of normalization in the distance: While the cosine distance focuses on the angle between

vectors (thus not taking into consideration their weight or magnitude), Euclidean distance is similar
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to using a ruler to actually measure the distance. Cosine similarity is generally used as a metric for

measuring distance when the magnitude of the vectors does not matter. This happens for example

when working with text data represented by word counts. Aiming to investigate to what extent the

cosine distance impacts the final performance an ablation study on the CUHK-PEDES dataset was

conducted. The cosine and the Euclidean distances were used to measure the distance between

the probe textual features and the gallery image features and the obtained results are presented in

Table 5.5. The cosine distance results into superior rank-1 accuracy compared to the Euclidean

distance by 2.64%. The cosine distance has a special property that makes it suitable for metric

learning: the resulting similarity measure is always within the range of [−1, 1]. This property

is the reason why it is also frequently used in face recognition applications where experimental

comparisons have demonstrated that it outperforms other alternatives [130].

Table 5.5: Ablation study on the impact of cosine distance on the CUHK-PEDES dataset.

Distance Rank-1

Cosine 54.51

Euclidean 51.87

Qualitative Results: In Figure 5.2, cross-modal retrieval results for all four datasets are provided.

TIDAM is capable of learning cloth and accessory-related correspondences as it can accurately

retrieve images of people carrying bags with the correct set of clothing. In addition, TIDAM

retrieves consistent images given a textual query (e.g., group of people in snow) as well as similar

textual descriptions, given an image query (e.g., all three descriptions describe dogs or soccer

players in the first and second row on the right).
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Figure 5.2: Given a textual description as a query, the most relevant images ranked from

left to right are retrieved. Successful retrieval is performed in cases with poor lighting,

under different poses, and with different visual attributes.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This dissertation is focused on the problem of visual attribute classification and person search. An

ontology was first defined to perform such tasks and several algorithms were introduced that predict

the visual attributes of humans as well as effectively perform person search.

An attribute ontology was proposed which comprises identity and identity-related attributes.

Traits were extracted from the textual information and were then mapped to the attribute ontology

that generates positive or negative labels for the set of attributes that it includes. For example, if the

description contains words such as “man”, “guy”, “boy” then the “Sex” attribute of the ontology

has a positive label. By using this ontology attribute pseudo-labels are extracted that can then be

used to train attribute classification models with superior performance than previous work.

A series of methods were also introduced to tackle the visual attribute classification problem.

Two novel techniques were introduced that employ the LUPI framework to predict soft-biometric
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traits such as the gender or the height of an individual. Following that two deep-learning methods

were designed that perform visual attribute classification in images of humans. Detailed experi-

mental results, ablation studies and qualitative results were provided in each case to demonstrate

the performance of the proposed approaches as well as the contribution of individual components.

State-of-the-art-results were obtained in several publicly available datasets and further limitations

were provided to facilitate future research.

Finally, a text-to-image matching approach was designed that can be applied to text-to-image

person search applications. A domain discriminator was introduced that can help the network

learn better feature representations from both the image and the textual inputs. In addition, it was

demonstrated that deep language models are well-suited for this application as they can improve

the retrieval performance. Experimental evaluations were performed in four widely-used publicly

available datasets and state-of-the-art results were obtained across the board which demonstrates

the efficacy of the proposed approach.

6.2 Future Work

Objective 1: Attribute Ontology: The ontology introduced in this dissertation covers attributes

and modifiers based on the UHPD textual descriptions of the past five years as well as the most

frequent attributes that appeared in the descriptions of the CUHK-PEDES dataset. The limitations

along with the future work for this objective are the following:

1. The proposed ontology is limited to the most frequently used attributes. Thus, the present

ontology could be expanded to include a wider variety of attributes and more transient at-

tributes. For example, “tattoos” is an attribute that should be added to the ontology since it

appears three times in the descriptions collected from the UHPD between 2013 and 2018.
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2. The existing textual descriptions are insufficient in terms of the variety of attributes they

cover and at the same time contain several mistakes. For example, the input sentences

contain typos and mistakes, words are written in American as well as British English (e.g.,

gray and grey) and sentences demonstrate a large variance in what is described even for

the same image. To address this limitation, a better tool for annotation could be developed

that would ask the annotators to write detailed textual descriptions. Finally, careful data

cleaning that would remove or correct erroneous textual queries would help our algorithms

learn better representations and achieve better matching since the existing datasets contain

several mistakes.

Objective 2: Visual Attributes: The algorithms designed in this dissertation predict the visual

attributes of an individual given an image as an input. The limitations along with the future work

for this objective are the following:

1. A significant limitation of most pedestrian attribute classification methods is that they resize

the input data to a fixed square-size resolution (e.g., 224 × 224) in order to feed them to

deep pre-trained architectures. Human crops are usually rectangular captured from different

viewpoints and thus, when they are resized to a square, important spatial information is lost.

To address this limitation, future work will need to feed the whole image (before performing

the human crop) at a fixed resolution that does not destroy the spatial relations and then

extract human-related features using ROI-pooling at a stage within the network.

2. A second source of error is the very low resolution of several images especially in the PETA

dataset, which makes it hard even for the human eye to identify the attribute traits of the

depicted human. In addition, the provided annotations contain a third unspecified/uncertain

class, which is used as negative during training in the literature, that further dilutes the learn-

ing process. Applying modern super-resolution techniques [18, 53] could alleviate this issue
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but only to some extent. Regarding errors due to modeling richer feature representations

could be extracted using feature pyramid networks [69] since they extract high-level seman-

tic feature maps at multiple scales.

3. The attention mechanism was designed with simplicity and speed in mind and thus it does

not work as well as other alternatives in the literature. Modern visual attention mecha-

nisms [66, 68, 119] could be adapted to a multi-label setup and applied to achieve superior

performance at the expense of a larger parameter space.

Objective 3: Person Search: While the algorithms introduced in this thesis achieved state-of-the-

art results in four publicly available widely-used datasets there is still room for improvement since

the rank-1 accuracy is 55%. The limitations along with the future work for this objective are the

following:

1. The relation between different attributes in the image is not explored and the approaches in-

troduced in this dissertation treat each attribute separately without taking into consideration

the connection between them. To learn better feature representations that can effectively per-

form cross-modal matching, recent graph convolutional neural network approaches could be

utilized. After performing object and pedestrian detection in an image, the identified region

proposal could be fed to such networks that can extract discriminative representations by

taking into consideration the relation between the objects in the image.

2. The failure cases indicated that there are several examples in which the retrieved images

completely match the textual descriptions but they are marked as incorrect since the retrieved

identity is not the correct one. To address this limitation, the evaluation protocol would need

to be expanded with a metric that demonstrates to what extent the retrieved image contains

the attributes provided in the input textual queries.
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