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ABSTRACT

FROM BODY TO BRAIN: USING ARTIFICIAL INTELLIGENCE TO

IDENTIFY USER SKILLS & INTENTIONS IN INTERACTIVE SCENARIOS

MICHALIS PAPAKOSTAS, Ph.D.

The University of Texas at Arlington, 2019

Supervising Professor: Fillia Makedon

Artificial Intelligence has probably been the most rapidly evolving field of sci-

ence during the last decade. Its numerous real-life applications have radically altered

the way we experience daily-living with great impact in some of the most basic aspects

of human lives including but not limited to health and well-being, communication and

interaction, education, driving, daily, and entertainment.

Human-Computer Interaction (HCI) is the field of Computer Science lying in

the epicenter of this evolution and is responsible for transforming rudimentary re-

search findings and theoretical principles into intuitive tools, responsible for enhanc-

ing human performance, increasing productivity and ensuring safety. Two of the core

questions that HCI research tries to address relate to a) what does user want?

and b) what can the user do? [1]

Multi-modal user monitoring has shown great potential towards answering those

questions [2]. Modeling and tracking different parameters of user’s behavior has

provided groundbreaking solutions in several fields such as smart rehabilitation, smart

driving, and workplace-safety [3, 4, 5].
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Two of the dominant modalities that have been extensively deployed for such

systems are speech and vision-based approaches with a special focus on activity and

emotion recognition [6]. Despite the great amount of research that has been done in

these domains, there are numerous other implicit and explicit types of user-feedback

produced during an HCI scenario, that are very informative but have attracted very

limited research interest. This is usually due to the great levels of inherent noise that

such signals tend to carry, or due to the highly invasive equipment that is required

to capture this kind of information. These factors make most real-life applications

almost impossible to implement. [7]

This research aims to investigate the potentials of multi-modal user monitoring

towards designing personalized scenarios and interactive interfaces that focus on two

different research axis. Firstly we explore the advantages of reusing existing knowl-

edge across different information domains, application areas, and individual users in

an effort to create predictive models that can expand their functionalities between

distinct HCI scenarios. Secondly, we try to enhance multi-modal interaction by access-

ing information that stems from more sophisticated and less explored sources such as

Electroencephalogram (EEG) and Electromyogram (EMG) analysis using minimally

invasive sensors. We achieve this by designing a series of end-to-end experiments

(from data collection to analysis and application) and by performing an extensive

evaluation on various Machine Learning (ML) and Deep-Learning (DL) approaches

on their ability to model diverge signals of interaction. As an outcome of this in-depth

investigation and experimentation, we propose CogBeacon. A multi-modal dataset

and data-collection platform, to our knowledge the first of its kind, towards predicting

events of cognitive fatigue and understanding its impact on human performance.
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CHAPTER 1

TECHNOLOGY AS A TOOL TO UNDERSTAND HUMAN BEHAVIOR

1.1 Introduction

Several research communities around the world are focusing towards a deeper

understanding of how and why humans behave, act and make decisions the way

they do. From psychology to neuroscience and HCI research, there is an increased

need to decompose complex human behaviors in an effort to understand previously

unknown secrets of the human brain and mind. Human-Computer Interaction and

modern medicine are two fields that can be directly benefited by the design of novel

approaches towards tackling problems that seemed mysteries in the past [9, 10, 11].

Recent advances in sensory technology along with novel methods in multi-modal data

acquisition and analysis have lately revealed new horizons of how researchers perceive

and approach such vague and challenging questions [12, 13].

However, as very accurately highlighted by the authors in [14], the most critical

obstacle in understanding human behavior, lies in our inability to systematically

monitor and interpret the various disperse brain processes that support our reactions

and trigger our natural, active, and flexibly changing behavior and cognition.

As humans, we can consider ourselves as active agents that are con-

tinuously interacting with their environment, producing and perceiving

countless information at any given moment. A non-stop process that even-

tually affects drastically our bodily needs, our reactions and our mental

desires (Figure-1.1) [15]. The goal of AI-powered User Modeling and Monitoring is

to find ways to describe those complex processes in ways that can both capture uni-
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versal behavioral patterns but at the same time are able to create personalized and

adaptive system behaviors that match the specific skills of each individual, towards

achieving a certain goal.

Figure 1.1. Relation between Actions, Cognition, and Emotions in Human Behavior.
Actions can trigger emotions and thoughts, while at the same time they can be the
result of our feelings and cognition. Their highly dependent relation and interaction
are what make us able to perceive the world around us and respond to the different
stimuli of our surroundings. Figure inspired by [15].

1.2 Sensor-based Analysis of Human Behavior

Understanding any kind of human behavior in-the-wild remains a far-reaching

goal, despite the numerous technological advances of recent years. However, the sci-

entific community is undoubtedly closer today to that goal than it has ever been

before. Assuming a scenario with a semi-controlled environment and a clear set of

possible goals, the present technology can potentially provide astonishing results on

understanding human behavior, with respect to action recognition, action prediction,
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emotion detection, assessment of cognitive skills and many other behavioral charac-

teristics. The goal of such systems is to exploit this information in order to assist

the user/s towards achieving their short and long term goals more efficiently than

they used to do before [16]. Some example scenarios could be assisting workers in an

assembly line towards improving productivity and increasing safety, monitoring pa-

tients towards a safer and more effective physical rehabilitation scenario, advancing

well-being during Activities of Daily Living (ADLs), improving quality of training

and education and several other similar applications that we daily face in our lives.

In the following sub-sections, we make a brief discussion of how modern sensory

technology can be used as a tool to understand different aspects of human behavior

towards achieving the aforementioned goals.

1.2.1 Analyzing User Actions

Capturing and analyzing user actions is probably the most scenario-dependent

problem that behavioral researchers have to face, due to the vast number of possible

outcomes. Narrowing down the space of target actions to be analyzed is probably the

most important step of such systems. Despite the great complexity of the problem,

understanding physical activities and both verbal and non-verbal interaction behav-

iors are two aspects that play a central role in most Intelligent Interactive Systems

(IISs).

1.2.1.1 Understanding Physical Actions

Action and activity (a series of actions) recognition is probably the most pop-

ular area of behavioral modeling. Task-based action recognition [17] and activity-

recognition in-the-wild [18] are both two areas that have traditionally attracted great

research interest. The most dominant approaches towards recognizing human ac-
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tivities have been mainly based on camera and wearable sensors (ie. gyroscope,

accelerometers or EMG).

Image and video-based methods are traditionally preferred due to their non-

invasive nature and their ability to track multiple targets at once. Several ML and DL

approaches have been proposed over the years for camera-based activity recognition

or gaze detection with the most prominent being techniques based on Conditional

Random Fields (CRFs) [19, 20], SVM [21, 22] classifiers and CNN-LSTM [23, 24]

combinations. While a great amount of research has been traditionally focused on

action-oriented feature extractors and descriptors [25, 26, 27], lately deep learning

architectures have been used as end-to-end modeling mechanisms that can automate

the whole process of activity recognition and translate raw RGB or RGB-D frames

to a sequence of action or activity labels [28, 29].

On the other hand, activity recognition based on wearable sensors offers a richer,

more personalized and usually more accurate description about someone’s motion

variability, as data are captured by sensors, that are directly attached on the subject’s

body. However such systems ignore any kind of information that comes from the

surrounding environment (ie. objects, space characteristics or other people in the

room), which may eventually affect someone’s behavior in terms of how or what

physical actions are performed. Similarly to the case of camera-based monitoring,

SVM, GMM/HMM [30, 31] and more recently CNN-LSTM[32, 33] based approaches

have the lion’s share when it comes to modeling information coming from wearable

devices. Related research has offered over the years a great variety of different features

that can be potentially applied to describe actions and activities from wearables.

Despite the fact that feature extraction is a process that is usually highly dependent

on the nature of the signal (ie gyroscope or EMG or accelerometer), it is very often

that traditional statistical features coming from both the time and spectral domain,

4



are essential and in some cases enough to capture and distinguish different activities

[34, 35, 36].

1.2.1.2 Understanding Actions through Audio

Speech and soundscape analysis is also a core source of information towards un-

derstating human behavior [37, 38]. Analyzing user-speech and environmental-audio

patterns through microphones can provide a great variety of behavior-related infor-

mation able to depict different aspects of user’s intentions [39, 40]. Such intentions

may be expressed either explicitly, in the form of voice commands, or implicitly by

analyzing the context of the incoming audio signal for patterns that can be highly

correlated to specific events (ie. a snoring sound is very likely to imply that someone

is sleeping) [41, 42]. Speech and audio processing along with physical-action recog-

nition are the two areas that have dominated the field of computational behavioral

research and on many occasions they are highly correlated. Computationally wise,

physical and audio based action recognition have traditionally used similar modeling

and feature extraction methods, by tailoring them accordingly based on the special

characteristics of each modality. However, the question of how audio-extracted fea-

tures can be correlated to specific physical activities is still a highly unexplored and

very challenging topic [43, 44].

1.2.2 Analyzing User Emotion

Emotion detection and recognition have become lately one of the hottest topics

in the field of behavioral analytics. As discussed at the beginning of this chapter,

actions, emotions, and cognitions are the three different faces of human behavior and

are highly interconnected. Emotions can be responsible to trigger specific actions (ie.

I started crying because I was feeling sad) but in the same time can be the result of our
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own actions or actions made by others (ie. playing my guitar makes me feel happy).

However, recognizing emotion accurately remains an extremely challenging problem

due to the great variability that is observed across different subjects when expressing

the same emotions and the subjective ground that emotions are based on by defini-

tion. Several approaches have been proposed for emotion detection, with the most

popular ones stemming again from the fields of audio [45, 46, 47] and image/video

processing through facial expression and body-posture analysis [48, 49]. Other pro-

posed technologies for emotion recognition include facial electromyographic activity

(fEMG) [50], monitoring arousal using ECG [51], galvanic skin response (GSR) [52],

respiration sensors [53] or EEG based approaches [54]. Despite the great variability of

available methods that have shown promising results, the latter ones have attracted

less research attention due to their higher levels of uncertainty and because of the

invasive nature that is demanded by the required sensory technology.

1.2.3 Analyzing Cognitive Skills

Cognitions describe our mental ability to acquire, process and apply new or

pre-existing knowledge as well as our skill to learn through experience and senses. It

comprises several intellectual functionalities such as attention, engagement, long and

short-term memory, cognitive flexibility and task-switching ability, problem-solving

and decision making skills and many others. Interpreting cognitive functionalities

in-the-wild is probably the most challenging topic in the multidisciplinary field of

behavioral sciences [55]. In addition, cognitive development and plasticity heavily

depend on our bodies with which, we experience and interact with our surround-

ings; a term known as embodied-cognition [56]. Assessing and observing cognitive

behavior demands long-term assessment and monitoring of individuals and usually

takes place through the analysis of specific performance-related metrics in controlled
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task-based cognitive tests, similar to those offered by the NIH toolbox or the Psy-

Toolkit library. Some popular cognitive tests are the Wisconsin Card Sorting Test

that evaluates cognitive flexibility and reasoning, the Flanker Inhibitory Control and

Attention Test that examines executive function and attention, the Stroop Task that

evaluates cognitive performance with respect to the Stroop-effect [57], the N-Back

Task for working memory and working memory capacity and others. All such tests

are very popular in clinical and experimental psychology [58, 59].

Measuring and modeling the effect of cognitive functioning through sensory

technology has been usually addressed through EEG analysis and task-based per-

formance measures [60, 61]. Other technologies include vision-based systems for

embodied-cognition analytics [4, 62], GSR sensors [63] and camera or Electroocu-

lography (EOG) based eye-tracking technologies [64] . However due to the compli-

cated nature of the problem single based modality approaches usually are sub-optimal

to create generalized behavioral profiles and multi-modal monitoring has been ex-

tensively applied for a richer and more robust description of the different cognitive

phenomena that are monitored [65, 66].

1.3 Data Limitations & the Need to Learn from Others

As it is probably clear by now, the process of capturing, analyzing and even-

tually describing and explaining patterns of human behavior is nonetheless a compli-

cated and non-trivial procedure. Different behaviors can be captured using various

combinations of sensors and modalities, which in their turn come with their own set

of advantages and disadvantages. Hence, making any different scenario a problem

of deciding upon an optimal trade-off between sensor intrusiveness and information

quality towards achieving the preferred results. Moreover, different target groups

usually have different needs and express divergent behaviors under the same condi-

7



tions. In addition, most controlled experiments inevitably make assumptions that

limit the applicability and generalizability of the underlying theories under real-life

conditions. In-Lab data collections often tend to introduce biases that eventually

hinder the efforts towards creating universally accepted systems for human behavior

and biometrics monitoring [67, 68]. But even when the available data are sufficient

to robustly represent the targeted problem, the need for collecting and annotating

physiological and behavioral data is a very tedious, expensive and time-consuming

process. A process that in many cases demands the expertise and know-how of ex-

perts from fields out of the broader area of computer science, who may not always be

available.

Based on the aforementioned observations, there is an increased need towards

designing computational methods that can reuse information and knowledge and ap-

ply it across different tasks, users or modalities for the purposes of building more

robust and generative HCI designs. Learning behavioral patterns between different

actions, emotions, and cognitions and deciphering how these patterns are expressed

across individuals or target groups is a key problem of today’s research in computa-

tional behavioral sciences and HCI and a central issue that this thesis tries to address.

1.4 Motivation & Thesis Outline

In this chapter, we discussed the benefits, potentials, and obstacles of using

multi-sensing data to analyze and understand different aspects of human behavior.

We presented an elaborate and systematic literature review on what is considered to

be the most prominent technology towards capturing different behavioral patterns.

Additionally, we tried to address the various parameters that need to be taken into

account when designing HCI systems that depend on human behavior. Our guide-

lines on making such decisions are dictated by the fundamental relationship between
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actions, emotions and cognitive processes and the different application domains that

these technologies can be applied.

As wearable technology evolves so rapidly, sensors become less invasive and Ma-

chine Learning algorithms grow more powerful, it comes as a natural consequence to

drive computational behavioral research towards designing more universally accepted

designs. Architectures that can generalize, adapt and re-tailor their functionalities

more intuitively are becoming essential to serve the growing demands of modern HCI

systems. Methods able to be refined at a computational level to facilitate similar

goals under varying environmental parameters are gradually becoming the center of

attention [69, 70, 71]. Such technological advances could play a crucial role on en-

hancing the outcomes of interaction between humans and machines and would help

us tackle more complex questions such as the effects of cognitive and physical fatigue

on human performance [72].

Thus, the major research questions that rise, relate to what extent recent ad-

vances in Machine Learning and AI technology can support such generative applica-

tions. How feasible is to create robust system-behaviors that are capable of retaining

high levels of personalization and keep user’s active and engaged in the interaction-

loop by ensuring safety and high quality in terms of performance and accuracy? Also,

what are the data-demands in such systems and how possible it is to artificially gen-

erate the required information in order to meet the special needs of different machine

learning algorithms? All these concerns are taken into account and examined through-

out this Thesis by a set of different HCI, application-based evaluations of different

problems varying from physical activity recognition to EEG modeling and analysis

for Brain-Computer Interfaces (BCIs).

The rest of this Thesis is outlined as follows. In Chapter-2 we make an in-

depth discussion on the principles of designing multi-modal interaction systems and
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we evaluate different ML approaches on their ability to model various types of sen-

sory information. In Chapter-3 we evaluate the capabilities of Convolutional Neural

Networks to model and generalize across alternative types of modalities and tasks

by transferring knowledge between information domains and we discuss how data-

augmentation can potentially be the key to overcome data limitations and provide

better modeling solutions. In Chapter-5 we introduce the concept of Brain-Computer

Interfaces and we discuss a novel approach of how EEG signals can be exploited to-

wards predicting user performance through implicit feedback. Chapter-4 discusses

the concept of user fatigue, explains its implications in human behavior, health and

performance and presents a modern approach of how subjective and objective mea-

sures can be combined towards predicting physical fatigue and designing interactive

rehabilitation scenarios. In Chapter-6 we present CogBeacon; to our knowledge, the

first multi-modal dataset specifically designed to address cognitive fatigue and we

show an in-depth analysis of the collected data. Finally in Chapter-7 we summa-

rize our findings, highlight the takeaways of this research and provide suggestions for

future directions in the area of computational behavioral modeling.
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CHAPTER 2

MULTI-MODAL USER MONITORING

2.1 Introduction

In Chapter-1 we discussed the individual components that compose human

behavior, namely: actions, thoughts, and emotions. We highlighted the heavy depen-

dence that is observed between them and reviewed the most dominant technologies

in terms of sensors that are used to capture, monitor and analyze individual pat-

terns across those three components. However, an obvious remark that can be made

through this analysis, is that understanding more complex human behaviors demands

our ability to track simultaneously multiple interaction signals and monitor parame-

ters that do not always have an apparent correlation [73, 74].

Consequently, raises the need to design multi-modal interfaces that capture

and track multitudinous signals and use advanced machine learning and statistical

methods to extract interdependent patterns of behavior. The foundations of designing

multi-modal systems for human-behavior monitoring were set almost a decade ago

and are still drawing the guidelines of how to approach such problems [2, 75, 76].

Nonetheless, as a constantly evolving field of research, several novel ideas have been

proposed, that aim to refine aspects of the system design process, without though

deviating significantly from the traditional principles [77, 78, 79].

In the following sections, we go through the most popular theoretical models

of combining multi-sensing data and we show how these models can be applied in

two proof-of-concept scenarios for behavioral modeling. In the first experiment, we

discuss a multi-modal architecture designed for monitoring sleeping behavior and
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thereinafter we show a multi-sensing implementation for analyzing physical exercises,

for fitness monitoring purposes [17, 34]. The goal of these experiments is to investigate

how multi-modal monitoring can enhance the outcomes of the interaction and how

flexible are such methods towards describing universal patterns of behavior across

different users using minimally or non-invasive sensors.

2.2 Modeling Complex Behaviors and Fusing Multi-Modal Data

Multi-modal system design is not a trivial task, given the multiple alternative

combinations of input and output channels that a system can potentially support.

Depending on the nature of our application and the state on which the design process

stands, there are different decisions that need to be taken with respect to what inter-

action modalities must be considered and how they must be combined. Two of the

most popular proposals on how these decisions can be taken are given by Coutaz et

al. [80] and Nigay et al. [81] with the CARE and CASE multi-modal design frame-

works respectively. The CARE model aims to define how different modalities must be

potentially combined from a high-level perspective that aims to capture different user

behaviors as they appear on the physical world. On the other hand, CASE addresses

the different possibilities of fusing individual modalities from a low-level perspective,

when these modalities are seen as feature vector representations. In the following

subsections, we give a more in-depth description of the design principles described by

the two frameworks.

2.2.1 The CARE Model

The CARE model focuses on the user-machine interaction level. The frame-

work introduces four different properties, which are Complementarity, Assign-

ment, Redundancy and Equivalence. Complementarity addresses the need for

12



using multiple complementary modalities in order to grasp the desired meaning. For

example, understanding the meaning of the phrase ”put that there” would require

both pointing gestures and voice recognition technology in order to be resolved. As-

signment indicates that only one modality can lead to the desired meaning, ie. the

steering wheel of a car is the only way to direct the car. Redundancy implies mul-

tiple modalities which, even if used simultaneously, can be also used individually to

lead to the desired meaning. For example, a user utters a ”play” speech command

and pushes a button labeled ”play”. Eventually, only one ”play” command would be

taken into account and the two modalities can be considered redundant. In specific

HCI scenarios (ie. in applications related to assistive technologies), having redundant

modalities can potentially enhance interaction outcomes as it provides a wider spec-

trum of options to the user. Finally, Equivalence entails multiple modalities that can

all lead to the desired meaning, but only one would be used at a time, ie. speech or

keyboard can be used to write a text and they cannot co-exist simultaneously.

2.2.2 The CASE Model

The CASE model also introduces four design properties namely: Concurrent,

Alternate, Synergistic and Exclusive designs. Each of those four properties re-

flects a different way of scheming multi-modal systems based on two main factors:

a) how the modalities are fused and b) how the modalities are captured and acti-

vated. Synergistic Design represents architectures that capture in parallel multiple

modalities and those modalities are processed jointly using either early or late fu-

sion modeling approaches. Concurrent Design on the other hand, differs in the fact

that even though the different modalities are captured in parallel processing takes

place independently. This approach has the advantage that different modalities can

be potentially used to detect different actions or behaviors but usually increases the
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computational demands of the system. Exclusive Design, describes systems that use

different modalities in different parts of the interaction and process these modalities

independently. Exclusive design assumes that the various modalities function sequen-

tially and don’t coexist as in the case of Concurrent architectures. Lastly, Alternate

Design aims to describe systems that capture the multiple modalities sequentially as

in the previous case but processing happens jointly and takes place at the end of the

data collection. Figure-2.2.2, illustrates the four scenarios described above.

The CASE Models: The CASE Model. Figure by [2].

2.3 Applications based on Multi-Modal User Modeling & Monitoring

Inspired by the aforementioned analysis and design principles we proposed two

AI-driven systems that take advantage of multi-modal interaction and target different

application areas in the domains of health and well-being. The two frameworks
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follow the Synergistic and Concurrent designs as described by the CASE model in the

previous section. Our evaluation aims to explore, to what extent traditional machine

learning approaches can be used towards capturing more complex interaction patterns

using multiple sensors. In addition, we focus on testing the ability of such methods

to maintain high levels of performance across different users when the available data

are limited and how different combinations of modalities can alter the quality of the

final results. Both experiments were performed in an end-to-end fashion (ie. from

data collection, to analysis and application design) using the facilities offered by the

Heracleia- Human-Centered Computing Lab at UTA and National Center of Scientific

Research, ”Demokritos”.

2.3.1 Monitoring Breathing Activity and Sleep Patterns Using Multi-Modal Non-

Invasive Technologies

The proposed system uses a combination of non-invasive sensors to assess and

report sleep patterns and breathing activity. A contact-based pressure mattress and a

non-contact regular RGB camera. To evaluate our system, we used real data collected

in Heracleia Labs assistive living apartment. Our system uses Machine Learning and

Computer Vision techniques to automatically analyze the collected data, recognize

sleep patterns and track breathing behavior. It is non-invasive, as it does not disrupt

the users usual sleeping behavior and it can be at the clinic and at home with minimal

cost. Going one step beyond, we developed a mobile application for visualizing the

analyzed data and monitor the patients sleep status remotely

2.3.1.1 Experimental Setup

For applying our experiments we used two different types of sensory input: a)

a mattress that measures pressure and b) a regular webcam.
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The FSA bed mat system produced by Vista Medical Ltd provides a 1920mm×762mm

sensing area which contains an array of 64×27 pressure sensors. Each of the sensors

provides a measurement in the range 0 to 100 mmHg with a scan frequency up to

5 Hz. The measurements can be recorded and manually annotated over a period of

time and can be exported as a set of time-stamped vectors containing the values of

each of the 1728 pressure sensors for each time stamp.

The webcam resolution was 1080x720 and it was placed on the side of the bed

and a few inches above its surface.

The two sensors were capturing data in parallel but processing took place in-

dependently using different computational mechanisms.

2.3.1.2 Sleep Posture Recognition

We implemented the a sleep posture recognition method using the data stream

provided by the pressure mat. The output of the pressure mat is a vector with 1728

features. Each feature represents the output value of each pressure sensor. Thus, each

feature has a value between 0 and 100. Since the nature of the raw data (range of

values) is similar to a gray-scale image we handle this problem as an image-processing

problem. Each of the sensors can be considered as a pixel of a gray-scale image with

an intensity ranging from 1 to 100. Thus each frame can be considered as a 64 x 27

pixel image.

For experimentation purposes, we collected data from 5 different individuals.

All individuals were of average weight and height. Each subject lied on the mat for

about 5 minutes , simulating different sleep patterns. In total five different sleeping

patterns were simulated. In particular, we recognized if subjects are (i) lying on

their back, (ii) on their stomach, (iii) left side or (iv) right side and (v) if they were
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just sitting on the bed. In Figure-2.2 we show a visualization of the pressure values

captured in one data-frame for each different posture.

For classification, we separated the data into 5 equal subsets, where each subset

was related to a specific subject. Each subset contained 100 feature vectors (pressure

mat scans) to represent each class (5 classes in total, each related to a different

posture). Thus each subset had 500 training samples, which represented all the

classes. We used 4 out of the 5 subsets to train our model (ie. 400 samples per class

and 400*5=2000 training samples in total) and the 5th subset (500 test samples in

total - 100 samples from each class) was used to evaluate our system. For a more

efficient evaluation we performed 5-fold cross-validation. We used PCA to reduce the

data dimensions from 1728 to 20 features and we tested two classification approaches

using KNN-1 and 1vsAll SVM using a linear kernel. Table- 2.3.1.2 illustrates the

classification accuracy percentages for each class, while Table-2.3.1.2 displays the

average accuracy for each different classifier.

Back Stomach Right Side Let Side Sitting
SVM 66.4 100 60 80 100
KNN-1 63.2 82.6 60 74.8 80

Table 2.1. Classification Accuracy per Class (%)

Average Accuracy
SVM 81.28
KNN-1 72.12

Table 2.2. Average Classification Accuracy (%)
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Figure 2.2. Images on the top display the actual posture while bottom images illus-
trate the visualization of the output from the pressure mat.

The classification results come to validate previous findings, which also claim

that SVM based classification can lead to more accurate results. However, during

the experimentation, we realized that efficiency is highly depended on the body pro-

portions of each subject. Moreover, as the subject change postures, the pressure mat

produces inevitably noisy measures, which complicate our problem. Thus, the use of

additional sensors as proposed in [82] may lead to higher and more robust accuracy

[82, 83].

2.3.1.3 Monitoring Breathing Patterns

To monitor the breathing patterns during sleep we developed a system that

combines the data taken from a regular webcam and the output stream of the pressure

mattress. We applied standard computer-vision techniques to monitor in real-time
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the movement of the chest as the subject breaths combined with a simple offline

analysis of the pressure mat data to eventually characterize breathing activity.

2.3.1.3.1 Monitoring Chest Movement

To monitor the chest movement we developed a motion tracking algorithm using the

frame difference technique (equation-2.1).


Diffi = Ik+2 − Ik

Diffi+1 = Ik+4 − Ik+2

(2.1)

A webcam was placed on the left side of the bed and a few inches above its

surface. The camera was placed properly to capture only the region of the subjects

chest. Using this simple approach we were able to detect quite accurately the motion

in the area of the chest while the subject was breathing.

Any other motion except, the movement of the chest, was considered as noise

and thus, was not taken into account. To prevent our system from getting affected by

such noise we applied a hysteresis threshold to cut off any other transient movement

(such as a change of posture, an unexpected hand movement, etc.)(Figure-2.5). The

camera captures about 15 frames per second, however, for better motion detection,

only every second frame is being processed (6 to 7 FPS). Under regular breathing

conditions, movement was detected every 0.3 seconds. If motion occurs constantly

in 15 sequential processed frames (around 2.5 seconds), in the certain region of the

frame, the system locks in this area and the motion tracking begins. Since breathing

can be considered as an almost periodic event, the system apparently locks and tracks

only the area of the chest where consistent movement occurs. If no motion is detected

for a certain amount of time, which was set to 20 processed frames (about 4 seconds)

the systems forgets the locked area, which was tracking and unlocks from the target.
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In such a case we have to consider the possibility that our subject had a breathing

failure.

Figure 2.3. (a) Motion has been detected - system has not lock to a target yet, (b)
System locked to the target after detecting movement in 15 sequential frames, (c)
Unexpected motion occurred due to change of posture - motion detected but not
tracked, (d) System re-locked to the chest area when breathing pattern detected.

2.3.1.4 Measuring Motion Level

Additionally to the vision-based breathing monitoring technique, we used the

pressure mattress device to monitor the levels of motion over time. Our assumption

was, that as the subject breathes, greater fluctuations to the output stream of the

sensors that lie under the chest could be observed. The subjects were asked to lie

on their back, remain still and just breath. They were also encouraged to take both

regular and deeper breaths. We collected data for 4 minutes.
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The pressure pad provides 1 data-frame every 0.25 seconds. Hence, we could

collect 4 different measures from each pressure sensor every second. To analyze the

output stream and measure the levels of motion over time, we subtracted from each

data-frame the average of the 10 previous frames (equation-2.2). Then for each data-

frame, we summed all the pressure values. Thus, every data-frame was represented

by a single value (equation-2.3). For the 4 minutes of experimentation, we collected

in total 803 such values. Each of these values can be considered as an indicator of the

pressure applied to the pressure mat at each moment. Before visualizing the data we

applied a Gaussian filter to smooth the curve.

F ′i+10 = Fi+10 −mean{Fi, Fi+1, ..., Fi+9} (2.2)

F ′′ =
K=1∑
1728

vk (2.3)

In the graph of Figure-2.5 we can observe periodic-like peaks of different am-

plitude, which refer to different amounts of pressure applied to the pressure mat over

time. Since the subjects remained motionless it is safe to assume that these variations

on the pressure, indicate the motion caused by the breathing activity. Higher am-

plitude can be translated as deep breathing while low amplitude combined with low

frequency may be an indicator for respiratory problems or even breathing inactivity.

2.3.1.5 Mobile Application

In order to relay the information that is collected by the sleep monitoring sys-

tem, the data must be aggregated and then displayed to the person who is responsible

for monitoring the sleep patterns. This task was achieved through a mobile applica-

tion interface on the Android and iOS operating systems using various visualization
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Figure 2.4. Motion level over time.

techniques such as two dimensional area charts, line charts, and pie charts in order to

enhance the quick retrieval and comprehension of the patterns throughout the entire

sleep cycle [84]. A donut chart was used to represent the breathing averages for each

hour during sleep and then display the smallest average in the center of the donut to

highlight the problem.

Alerts are known to be a useful feature for monitoring technologies in order to

prevent injuries and avoid high-risk situations. Therefore, we implemented an ”Alert”

feature that allows the app to display any alerts provided by the system with respect

to abnormal sleeping behaviors throughout the sleep cycle.

There are three main fragments inside the application: a) A dashboard including

all of the data visualizations, b) an ”Alerts” page showing all of the alerts sent from

the monitoring system and c) a settings page to toggle the network data collection.

The data is populated dynamically from a middle-ware web server that aggregates
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the data and then makes it available to the mobile application through a RESTful

API. The middle-ware server collects the data from the monitoring application and

stores it in a database. The data aggregation is performed on the web server and

it includes the following: Taking the breathing patterns and averaging them over an

hour, day, and month, averaging the pressure on the mattress, and averaging the

pressure averages over an hour, day, and month.

Figure 2.5. (i) Android Version, (ii) iOS Version.

2.3.1.6 Takeaways

We proposed an approach for a robust, non-invasive, multi-modal sleep moni-

toring system using low-cost technology. Our work comes to extend previous findings

and techniques in sleep posture recognition by providing an additional functionality

for breath monitoring and a user-friendly way for data visualization [82]. Our findings

prove that breathing patterns can be monitored and identified using simple modeling

methods and possible respiratory failures can be immediately prevented.
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2.3.2 A Fitness Monitoring System based on Fusion of Visual and Sensorial Infor-

mation

In this work, we present a method to recognize physical exercises in a real home

environment. Towards this end, we combine sensorial information using a smart-

phone accelerometer, with visual information captured from a simple web camera.

Low-level features inspired by the audio analysis domain are used to represent the

accelerometer data, while simple frame-wise features are used in the visual channel.

Extensive experiments prove that the fusion approach achieves 95% of overall perfor-

mance when user calibration is adopted, which is a 4% performance boost compared

to the best individual modality which is with the accelerometer sensor. The final

dataset, compiled explicitly for the purposes of this project can be found online for

free 1 .

2.3.2.1 Proposed Methodology

2.3.2.1.1 General

Figure-2.6 illustrates the conceptual architecture of the proposed methodology. A

smartphone attached to the user’s arm (using an armband) is used for accelerome-

ter data acquisition in a high sampling rate (around 1KHz). In total, almost 3000

samples per second are acquired through the accelerometer sensor (1000 for each

axis). These three temporal sequences of data are then analyzed in a short-term ba-

sis and long-term statistics are extracted on the resulting short-term feature vectors,

following a rationale that is similar to feature extraction for audio classification and

segmentation tasks. This process results in a feature vector of Na elements (features)

that characterizes the whole recording (exercising session).

1https://sites.google.com/view/michalis-papakostas/datasets
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Figure 2.6. Conceptual architecture of the proposed methodology. Accelerometer
data are gathered through a smartphone device attached to the user’s arm. Tempo-
ral features are then computed and long-term statistics are also extracted for each
recording session. This leads to a feature vector that represents the whole recording.
Similarly, a feature vector of visual features computed over an aggregated image that
stems from a video sequence is used to represent the visual domain. An SVM clas-
sifier is used to discriminate between the different activity classes, either based on a
single-modality or on both modalities. .

In parallel, a web camera is recording the exercising session, as an alternative

(or complementary) way to recognize the respective fitness activity. In that case, the

raw information is a sequence of color images (video), while the feature extraction

stage results in a 2D representation that visualizes the aggregated movements along

the whole recording session. Again, this process leads to a feature vector of Nv values

that characterizes the whole recording. A supervised classifier is then used to classify

the feature vectors, either individually, or in a fusion mode, in order to extract the

final classification decision.

In the following paragraphs, we describe the signal representation techniques,

for both modalities, along with the respective classification approaches. Finally, the

dataset adopted to evaluate the method is described, along with the experimental
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results. Focus is given on the proposed feature extraction approach with regards to

the accelerometer signal.

2.3.2.1.2 Signal representation

2.3.2.1.2 Accelerometer signal representation

Raw accelerometer signals are recorded using a standard Android smartphone

with a sampling rate of 100 Hz. In order to extract features that achieve high discrim-

ination ability in the particular activity recognition task, we propose the following

rationale: at a first stage, the signal is split to non-overlapping short-term windows

(frames) of 250 mseconds long. For each short-term frame, the following features are

calculated:

1. Maximum Sample Value

maxx ← maximum value in signal x (2.4)

2. Minimum Sample Value

minx ← minimum value in signal x (2.5)

3. Maximum Absolute Value

absmax = |maxx| (2.6)

4. Minimum Absolute Value

absmin = |minx| (2.7)

5. Average Value

µ =
1

N

N∑
i=1

xi (2.8)

, where xi is the value of sample i given a signal x and N is the signal length
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6. Standard Deviation

σ =

√
1

N

∑
i=1

N(xi − µ)2 (2.9)

, where xi is the value of sample i given a signal x, N is signal length and µ is

the average sample value of the signal

7. Median Value

median =
1

2
(xN

2
+ xN

2
+1) (2.10)

, where x is the set of values in the signal in ascending order and N is the signal

length

8. Zero Crossing Rate

ZCR =
1

N − 1

N−1∑
t=1

(sig(xt)− sig(xt−1)) (2.11)

,where sig(x) =


1 if x > 0

0 if x = 0

−1 otherwise

and N is the length of the signal. ZCR

indicates the rate of sign-changes of the signal during the duration of a particular

frame.

9. Entropy of the Energy

H(E) = −
N∑
i=1

p(E)log10p(E) (2.12)

,where E =
∑
x2i

Total E
are the normalised sub-frame energies, Total E =

∑
x2
i

is the total signal energy and xi is the value of a sample within a frame or a

sub-frame. This feature can be interpreted as a measure of abrupt changes.

10. Spectral Centroid

C =
N−1∑
i=0

Xip(Xi) (2.13)
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,where N is the size of the spectrum, X are the observed frequencies and p(X)

is the probability to observe a value in X. C represents the center of gravity of

the spectrum.

11. Spectral Spread

S =

√√√√N−1∑
n=0

(X − C)2p(X) (2.14)

,where N is the size of the spectrum, X are the observed frequencies, p(X) are

the probability to observe value X and C is the spectral centroid. S represents

second central moment of the spectrum.

12. Spectral Entropy

H(X) = −
N∑
i=1

p(PSD)log10p(PSD) (2.15)

,where PSD = 1
N
|X|2 is the Power Spectral Density (PSD) of of spectrum X,

p(PS) = PSi∑
i PSi

is the Probability Density Function of the PSD, N is the size

of the spectrum and X are the observed frequencies. H(X) is the normalized

spectral energies for a set of sub-frames.

13. Spectral Flux

FLi,i−1 =
∑

(ENi − ENi−1)2 (2.16)

, where ENi = Xi∑
Xi

is the normalized Discrete Fourier Coefficient at the ith

frame and X is the spectral of the signal. Thus, spectral flux is the squared

difference between the normalized magnitudes of the spectra of two successive

frames.

14. Spectral Rolloff

R = 0.9
N−1∑
i=0

|Xi| (2.17)

, where X is the spectrum of the signal and N is the size of the positive spectrum.

Spectral rollof corresponds to the frequency below which 90% of the magnitude
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distribution of the spectrum is concentrated.

Some of the aforementioned features are simple statistics, while others stem

from the domain of audio signal analysis (e.g. the spectral features). More details

on these particular features and their use on audio representation can be found at

[85]. Figure-2.7 shows an example of five short-term feature sequences, that are

extracted for each of the three raw accelerometer features. Different colors correspond

to different accelerometer axes.

2.3.2.1.2 Video representation

Visual modeling of an action is performed by representing a sample video with

a single binary image. To extract the binary image, we apply the well established

frame-difference algorithm [86] and the final aggregated image corresponds to the

summation of the intermediate difference-images. At each step, every difference image

is being thresholded and smoothed using a median filter of size N , where N was set

to 5 in our case. A second median-smoothing filter of the same size is applied to the

resulted image after every summation. In Figure-2.9 we show three indicative images

as extracted from three sample-videos.

When the video-representation image has been computed, it is segmented in

a grid of size 2 × 2 and visual features are extracted from each segment. The final

feature vector that represents the image and thus, the whole video sample, is the

concatenation of all the feature vectors from each grid-segment. Grid size was decided

after experimentation on several dimensions as 2 × 2 seemed to outperform higher-

resolution grids. In this work, we chose three very well established and fast to compute

visual features to work with, namely:
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Figure 2.7. Raw accelerometer signals example along with 5 corresponding short-term
feature sequences, namely the standard deviation, the median value, the zero crossing
rate, the spectral centroid and the spectral entropy.

• Normalized histogram of the grayscale values

• Histogram of Oriented Gradients (HOGs)

• Local binary patterns (LPBs)

HOGs represent an object using the local distributions of intensity gradients

and edge directions. They have been widely used in object and human tracking

[87]. In this work, we have adopted HOGs, since they provide an efficient way to

discriminate between visual objects when used in a supervised context [88]. LBPs
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Figure 2.8. Examples of video-representation images for ”crunches”, ”fron-plank”
and ”push-ups” exercises respectively.

[89] form a widely used feature in modern image analysis methods. In general, LBPs

encode local pixel neighborhoods using binary representations, hence their name.

We have selected to adopt LBPs for their ability to represent differences in texture

characteristics between images

2.3.2.2 Exercise recognition

2.3.2.2.1 Adopted classes and dataset

We have selected to adopt 8 widely-used workout exercises that can be completed in

the context of a home environment. In particular, the adopted exercises are: crunches,

jumping squats, lunges, plank, push-ups, romanian squats, squats, and toe-touches.

They cover a relatively all basic body areas such as legs, abs, and chest. There are

obvious confusions that are expected to occur by an automatic exercise recognition

system: for example, one may expect that squats may be confused with romanian

squats and/or lunges, while toe-touch is quite similar to crunches.
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Figure 2.9. Adopted classes (row-wise): crunches, jumping squats, lunges, plank,
push-ups, romanian squats, squats and toe-touches. .

The aforementioned eight exercises have been performed by six individuals.

Each individual executed all 8 exercises from one to five times. Several recording

conditions have been adopted during the data compilation. In particular:

• three different web cameras have been used and with different sampling prop-

erties (frames per second and frame resolutions).

• recordings have been carried out at five different places

• times of the recordings also varied

The above recording differentiations lead to a diversity of recording conditions,

in terms of context, lighting conditions and raw signal noise. In addition, we need

to emphasize on the fact that the six individuals were not provided with particular

instructions on how to perform the eight exercises, leading to an additional factor of

diversity with regards to the exercise execution. The total number of recordings is

equal to 130. The final dataset can be found online for purposes of further experi-

mentation 2.

2https://sites.google.com/view/michalis-papakostas/datasets
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2.3.2.2.2 Classification

As described in Section 2.3.2.1.2, the feature extraction process leads to a multi-

dimensional feature vector for each session recordings. Each unknown recording is

therefore represented by a feature vector of either (a) sensorial information (b) vi-

sual information or (c) fused information. Each of these samples is classified using a

Support Vector Machine with a probabilistic output. We have selected to use proba-

bilistic SVMs [90] due to their ability to generalize well especially in high dimensional

classification problems [91]. The model is trained using a cross-validation procedure

to select the optimal SVM parameter, namely the soft margin parameter C.

2.3.2.3 Experiments

2.3.2.3.1 Performance Measures

Let CM be the confusion matrix, i.e. a Nc × Nc matrix (Nc is the total number

of exercise classes), whose rows and columns refer to the true (ground truth) and

predicted class labels of the dataset, respectively. Each element, CM(i, j), of the

confusion matrix stands for the number of samples of class i that were automatically

assigned to class j. The diagonal of the confusion matrix captures the correct classifi-

cation decisions (i = j). Then, the class recall Re(i), precision Pr(i) and F1-measure

are computed. As an overall performance measure, the average (among all classes)

F1 measure is computed. Bellow follows the detailed explanation of the adopted

evaluation metrics:

• Recall: The proportion of data with true class label i that were correctly

assigned to class i

Re(i) =
CM(i, i)∑Nc

m=1CM(i,m)
(2.18)
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, where
∑Nc

m=1CM(i,m) is the total number of samples that are known to belong

to class i

• Precision: The fraction of samples that were correctly classified to class i if we

take into account the total number of samples that were classified to that class

Pr(i) =
CM(i, i)∑Nc

m=1 CM(m, i)
(2.19)

• F1: The harmonic mean of the precision and recall values

F1(i) =
2Re(i)Pr(i)

Pr(i) +Re(i)
(2.20)

2.3.2.3.2 Results

As explained in Section 3.5.1.1 a dataset has been compiled and manually annotated,

consisting of 130 recordings of 8 exercising classes performed by 6 individuals, so on

average, each exercise was performed 2.7 times by each individual to achieve high

diversity in term of recording conditions. Our goal in this experimentation is to

estimate the performance of each modality (sensorial and visual-based), using the

performance measures described above.

In order to evaluate our method, two experimental approaches have been fol-

lowed:

• With user calibration: the user provides a set of calibration recording sessions

that are used to re-train the supervised models so that they are better applied

on his/her moving patterns and to particular room differentiations.

• Without user calibration: no information related to the user is provided to the

supervised task. The evaluation is performed using training data that contain

no recording from the test user.

In both cases, repeated subsampling validation is used, i.e. in each iteration,

the data is randomly split to testing and training. However, in the second scenario,
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no recordings from the test user are used in the training data at all. The overall

results for the two experimental scenarios are shown in Table 2.3.2.3.2. It can be

seen that the accelerometer-based estimation significantly outperforms the visual-

based approach, while the early fusion of both modalities leads to a performance

boosting of 4% for the user calibration scenario. However, the visual domain achieves

much lower performance when no user calibration is adopted, which also leads to the

inability of the fused data to outperform the best individual classifier in that scenario.

Modality With User Calibration Without User Calibration
Accelerometer-All 91% 81%

Visual 72% 43%
Fusion 95% 80%

Table 2.3. Overall performance results for the two experimental scenarios (with and
without user calibration).

2.3.2.4 Takeaways

In this work, we presented a method that combines accelerometer data and

visual information in order to recognize exercising activities performed by single hu-

mans. Low-level temporal features similar to those used in audio analysis applications

were implemented and applied on the accelerometer data, while simple frame-level

visual features have been used to represent the visual channel. A real-world dataset of

6 humans, performing 8 different exercises has been recorded and manually annotated

to train and evaluate the proposed approach. Extensive experimentation has proven

that the fusion approach achieves 95% of overall performance, which means that it

boosts the performance of the best individual modality (the accelerometer) by 4%.

However, in the case that user calibration is missing, fusion fails to boost the per-
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formance and the best F1 measure is presented by the single accelerometer modality

(81%). The compiled dataset is available to the public for further experimentation 3.

2.4 Advantages, Limitations & General Observations

The applications and concepts discussed in Chapter-2 are proof that accessing

multiple information sources at the same time can enhance the outcomes of most

interactive scenarios. However, there are many considerations and decisions that

need to be made during the design process, which eventually can affect positively

or negatively the final outcome. These decisions mainly relate to, which interaction

signals need to be monitored, what technology fits best to track those signals given

the application scenario and how these different sources must be combined in a com-

putational level in order to maximize system’s performance. All these parameters, of

course, come to complement a key requirement of any HCI design that is to minimize

hardware intrusiveness.

Considering all the aforementioned observations, the two application discussed

in this chapter highlighted the potentials of traditional machine learning approaches

towards implementing efficient multi-modal architectures. Both evaluations showed

that common classifiers such as SVMs or Random-Forests are quite capable of distin-

guishing between different behavioral patterns when efficient feature representations

are available. Moreover, the same features and modeling techniques are able to ad-

dress problems across different domains and sensors if the available data are formatted

in an appropriate form. For example in Section-2.3.1 we exploited algorithms inspired

from the domain of computer-vision to model data coming from a pressure-mat sensor,

while in Section-2.3.2 we showed that features initially designed for audio processing

were extremely efficient for modeling accelerometer data. These observations are of

3https://sites.google.com/view/michalis-papakostas/datasets
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great importance when designing multi-modal interfaces, as they can decrease signif-

icantly the required engineering time towards building effective prototypes, able to

run in real-time, especially when the data are limited.

However, it seems that working with such techniques comes with two major

limitations. Firstly there is a threshold in the performance of such methods as the

conditions become more ambiguous. In both scenarios, evaluation showed that out-

liers where very hard to identified and in most cases lead to miss-classified decisions.

Secondly, as an extension to the first observation comes the fact that such methods

are very hard to generalize their decisions. They are extremely dependent the feature

representations and thus, in many scenarios they fail to address behaviors across new,

unknown users. This effect can be smoothed out using calibration and active learn-

ing [92] techniques (ie. learning through interaction), but still limits significantly the

applicability of such methods.

Towards addressing these problems, in Chapter-3 we evaluate the abilities of

Deep Learning algorithms and specifically Convolutional Neural Networks (CNNs) on

modeling different aspects of human behavior, in terms of performance and generaliz-

ability. We compare CNNs with the traditional ML methods presented in Chapter-2

and we discuss how data-augmentation and transfer learning can be used towards

leveraging the common issue of limited data availability.

37



CHAPTER 3

DEEP LEARNING FOR BEHAVIORAL ANALYTICS

3.1 Introduction

Deep Learning has undoubtedly dominated the area of machine learning during

recent years across almost every application domain. In particular, in vision and audio

based applications, deep classifiers have offered groundbreaking results especially in

problems related to object detection and speech recognition [93]. As a result, such

methodologies meant to have a major impact on analyzing human and behavioral

characteristics with face recognition, pose estimation and dialogue management being

some of the most popular applications tackled by the technology [94, 95, 96]. CNNs

and their alterations have been traditionally the most powerful tool of deep learning

methods, especially in the field of computer vision [97, 98]. The most significant

advantage of deep classifiers and specifically CNNs is their ability to create invariant

feature representations, which are able to capture more generic patterns across the

training samples and thus, produce more solid and robust classification models.

However, despite their popularity, deep learning models suffer by their demand

for using tons of training data in order to build effective classifiers and avoid over-

fitting. A fact that comes in contrast to the more traditional modeling techniques

discussed in the previous chapter.

In the following sections, we investigate the ability of CNN classifiers to tackle

three diverse applications that relate to human behavioral analytics, namely: a) ac-

tivity recognition [23], b) speech-music discrimination [39] and c) emotion recognition

from speech [45]. We compare their performance with more traditional ML methods
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and we discuss how we can exploit the concept of transfer learning in order to address

the problem of limited data availability. Moreover, we explore ways of reusing pre-

trained models to tackle classification scenarios stemming from different information

domains and we evaluate the ability of such classifiers in terms of robustness and

computational demands. Lastly, we explore ways of augmenting the available data

towards meeting the training demands of deep classifiers. Our evaluation indicates

that deep classifiers can significantly dominate traditional methods in terms of perfor-

mance under specific scenarios. However, their architectural design and their choice

of use must be very carefully orchestrated and is mainly dictated by the nature of the

training data and the application domain.

3.2 CNNs & Transfer Learning

Transfer Learning is the process of modifying the parameters of a pre-trained

ML model to match the feature representations that appear on a new (target) dataset

and is mostly applied in cases when data are limited to train a statistical model from

scratch.

The concept of transferring knowledge across domains is not new in the ML soci-

ety [99]. However, before the DL era, such methods were not that popular since they

usually provided results inferior compared to traditional training techniques given

the existing modeling approaches. The authors in [8] were the first to demonstrate

and evaluate in depth the process of transfer-learning in CNNs (Figure-3.1). Since

then, transfer learning and CNNs have been extensively combined to approach similar

problems - most frequently related to object segmentation [100, 101].

In this chapter, our major concern with respect to transfer learning and be-

havioral modeling is to discuss how such methods can be used to target problems

of different nature between the original and the target datasets and how CNNs can
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generalize across tasks, users and information domains when the available data are

relatively limited.

Figure 3.1. The concept of transfer-learning in CNNs as proposed initially by Oquab
et al. [8].

3.3 From Spatial Analysis to Temporal Modeling

In the following sections, we discuss how to exploit CNN architectures, that are

pre-trained on vast datasets, towards designing new models able to make decisions

on new classification tasks. In particular, we use a CNN architecture trained on the

Imagenet dataset [102], which is a dataset compiled for spacial image analysis for

the tasks of object detection and recognition and we propose a new classifier, for

recognizing activities in the temporal domain.

3.3.1 Recognizing Activities of Daily Living (ADLs)

In this work we show a deep learning classification method for short-term recog-

nition of human activities, using raw color (RGB) information. In particular, we

present a CNN classification approach for recognizing three basic motion activity
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classes, that cover the vast majority of human activities in the context of a home

monitoring environment, namely: sitting, walking and standing up. A real-world

fully annotated dataset has been compiled, in the context of an assisted living home

environment that is available online for further experimentation 1. Our extensive

analysis aims to highlight the benefits of deep learning architectures against tradi-

tional shallow classifiers functioning on hand-crafted features. Our experiments focus

on evaluating the ability of such models to learn highly invariant representations that

are robust to noisy inputs. Moreover, we emphasize the powerful potentials of trans-

ferring knowledge across tasks, using Deep Convolutional Neural Networks towards

tackling problems on different information domains.

3.3.1.1 Methodology

As recent literature has shown, deep hierarchical visual feature extractors can

significantly outperform shallow classifiers trained on hand-crafted features, when the

amount of the available training data allows it. Deep models tend to be more robust

and generalizable when countering problems that include significant levels of inherent

noise. The architecture of our deep CNN was initially proposed in [24]. The model is

mainly based on the Caffenet [103] reference model, which is similar to the original

AlexNet [97]) and the network proposed in [104]. For our experiments, we used the

BVLC Caffe deep-learning framework.

The network architecture consists of two convolution layers with a stride of 2

and kernel sizes equal to 7 and 5 respectively, followed by max-pooling layers. As a

next step, a convolution layer with three filters of kernel size equal to 3 is applied,

followed again by a max pooling layer. The next two layers of the network are fully

connected layers with dropout, followed by a fully connected layer and a softmax

1https://sites.google.com/view/michalis-papakostas/datasets
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classifier, that shapes the final probability distribution. All max-pooling layers have

kernel size equal to 3 and stride equal to 2. For all the layers we used the ReLu as our

activation function. The output of the network is a distribution on our three target

classes, while the output vector of the semifinal fully connected layer has a size equal

to 4096. We have adopted a 1000-iterations fine-tuning procedure, with an initial

learning rate of 0.001, which decreases after 700 iterations by a factor of 10.

Since training a new CNN from scratch would require big loads of data and high

computational demands, we used transfer learning to fine-tune the parameters of a

pre-trained architecture. The original CNN was trained on the 1.2M images of the

ILSVRC-2012 [105] classification training subset of the ImageNet [102] dataset. Fol-

lowing this approach, we manage to decrease the required training time and to avoid

overfitting our classifier by ensuring a good weight initialization, given the relatively

small amount of available data. Finally, the data are preprocessed by augmenting

the frame dimensionality to 240x320. The input to the network corresponds to the

227x227 center crops and their mirror images.

3.3.1.2 Dataset

In order to train and evaluate our system, a dataset that consists of real-world

recording sessions of RGBD data has been created. For data acquisition, an XTion

sensor 2 has been used as part of the robotic sensoring infrastructure of the Radio

platform. In total, 12 humans have participated in different 8 scenarios. Each record-

ing session has been repeated on 1 to 3 different days (random number of repeats for

each user). This has been done in order to ensure a certain diversity of lighting con-

ditions. 272 recordings have been recorded and annotation in total. In each scenario

the recording starts with the user sitting on a chair, after a while, he/she stands up

2https://www.asus.com/3D-Sensor/Xtion PRO LIVE/
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and starts walking to the exit of the room. Figure-3.2 illustrates sample frames from

the compiled dataset. The dataset can be found online and downloaded for free 3.

Figure 3.2. Examples of the compiled and annotated dataset’s frames. Different rows
correspond to separate users (humans). The first column corresponds to the ”sitting”
class, the second to the ”sit to stand” class, while the third and fourth columns show
walking examples. It can be seen that different walking directions, lighting conditions
and obstacles have been used to increase diversity in conditions.

3https://sites.google.com/view/michalis-papakostas/datasets
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3.3.1.3 Experiments

We have adopted the following types of experimentation based on the dataset

described at Section 3.3.1.2:

1. Evaluation of the frame-wise classification method using a cross-validation pro-

cedure that splits training and testing data based on individual recordings. In

other words, according to that approach, all frames of each recording are either

used for training or testing. Three random subsampling cross-validation repeti-

tions have been conducted, each repetition corresponding to a different random

permutation of the videos in the dataset.

2. Evaluation using a cross-validation procedure that splits training and testing

data based on subject IDs. According to that setup, the frames of all videos that

belong to the same person are either used for training or testing. This has been

conducted in order to evaluate the method in terms of subject-independence.

Again, three random subsampling cross-validation repetitions have been con-

ducted, each repetition corresponding to a different random permutation of the

subjects (humans).

3. Evaluation against different noise ratios and comparison to a Support Vector

Machine classifier using hand-crafted features. Towards this end, we have added

Gaussian noise of several SNR ratios to the images before testing. In addition,

an SVM classifier using typical visual features (HOGs, LBPs, color histograms)

has been adopted for comparison reasons. The SVM classifier has been fine-

tuned in terms of the C parameter, while a linear kernel has been adopted.

Tables 3.1, 3.2 and 3.3 present the initial confusion matrix, the row-normalized

confusion matrix and the performance measures (Recall, Precision, F1, Accuracy) re-

spectively, for the first experimental setup. Similarly, tables 3.4, 3.5 and 3.6 present
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Sitting Standing Walking
Sitting 18.84 0.58 0

Standing 2.89 11.2 0.98
Walking 0.2 1.17 64.54

Table 3.1. Experimental setup 1: Average Initial Confusion Matrix (normalized to
sum up to 100%)

Sitting Standing Walking
Sitting 97.01 2.99 0

Standing 19.18 74.32 6.50
Walking 0.3 1.78 97.92

Table 3.2. Experimental setup 1: Row-Normalized Confusion Matrix. Diagonal ele-
ments represent the respective recall rates. Note that these recall rates are not exactly
equal to the recall rates presented in 3.3: this is due to the fact that these recall -
precision rates are averaged per video recording, not per frame.

Sitting Standing Walking Average
Precision 0.86 0.86 0.99 0.91

Recall 0.97 0.76 0.98 0.90
F1 0.91 0.81 0.99 0.90

Average Accuracy 0.95

Table 3.3. Experimental setup 1: Per class and average Recall, Precision and F1 and
overall Accuracy, computed over all frames of the testing dataset.

Sitting Standing Walking
Sitting 21.2 0.79 0

Standing 2.37 11.75 0.72
Walking 0.02 0.65 62.5

Table 3.4. Experimental Setup 2: Average Initial Confusion Matrix (normalized to
sum up to 100%)

the confusion matrix, the row-normalized confusion matrix and the performance mea-

sures, for the second experimental setup. These results prove that the CNN classifier
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Sitting Standing Walking
Sitting 96.41 3.59 0

Standing 15.97 79.18 4.85
Walking 0.03 1.03 98.94

Table 3.5. Experimental setup 2: Row-Normalized Confusion Matrix. Diagonal ele-
ments represent the respective recall rates. Note that these recall rates are not exactly
equal to the recall rates presented in 3.6: this is due to the fact that these recall -
precision rates are averaged per video recording, not per frame.

Sitting Standing Walking Average
Precision 0.9 0.89 0.99 0.93

Recall 0.96 0.79 0.99 0.92
F1 0.93 0.84 0.99 0.92

Average Accuracy 0.95

Table 3.6. Experimental setup 2: Per class and average Recall, Precision and F1 and
overall Accuracy

is robust and independent to subject-specific characteristics, since the performance

in the two first experimental setups is similar.

Finally, Figures-3.3 (top) and 3.3 (bottom) present respectively the mean F1

and accuracy measures for the two methods (CNN and SVM) and for different levels

of signal-to-noise ratio (SNR, in dB). The CNN models illustrated in those figures

are the ones trained on the first experimental scenario. We can easily infer similar

behavior on the models trained on the second experimental scenario. The robustness

of the CNN approach is obvious: both F1 and accuracy fall dramatically for the SVM

model as the SNR ratio is reduced. On the other hand, CNN is much more robust

to noise: even for 0dB SNR, the F1 measure is kept above 80%, while the respective

measure for the SVM case is below 50%. In particular, the SVM classifier with

hand-crafted features seems totally unstable in terms of both overall accuracy and F1

measure, for all levels of noise below 20dB SNR. Finally, we have also experimented
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Figure 3.3. CNN and SVM comparison against different noise levels. Both CNN
and SVM models are trained based on the first experimental scenario. Similar be-
haviours were observed in the models trained on the second experimental scenario.
The robustness and consistency of the CNN classifier is obvious against traditional
SVM-based methods trained on hand-crafted features..

using a temporal median filter to smooth the outputs of the frame-wise classifier using

various kernel sizes. However, this did not lead to any worth noticing improvements.

3.3.1.4 Takeaways

In the previous sections showed a way of using pre-trained CNN models towards

addressing the most traditional problem of behavioral modeling, that of activity recog-

nition and specifically in the concept of ADLs, when the available data are limited.
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We highlighted the advantages of using deep models against traditional classifiers and

we showed how vigorous such models are against ambiguous input. Finally, a real-

world dataset with varying conditions was compiled, annotated and made available

to the public for the purposes of ADL recognition in a smart home environment 4.

3.4 From Computer Vision to Audio Classification

In the upcoming sections, we show a way of using transfer learning and CNNs

towards training models that operate on different input modalities. Exploiting the

findings of our previous analysis, we train a classifier for the traditional task of Speech-

Music discrimination that expands its initial classification abilities not only in the time

domain but also in a completely different information area. Moreover, we propose

a way of augmenting audio data and we show the great potentials of such methods.

Our implementation has been made available to the public 5 and at the time of the

publication our results are considered as state-of-the-art in the task.

3.4.1 The task of Speech-Music Discrimination

Speech music discrimination is a traditional task in audio analytics, useful for a

wide range of applications, such as automatic speech recognition and radio broadcast

monitoring, that focuses on segmenting audio streams and classifying each segment

as either speech or music. In this work, we investigate the capabilities of Convolu-

tional Neural Networks (CNNs) with regards to the speech - music discrimination

task. Instead of representing the audio content using handcrafted audio features, as

traditional methods do, we use deep structures to learn visual feature dependencies

as they appear on the spectrogram domain (i.e. train a CNN using audio spectro-

4https://sites.google.com/view/michalis-papakostas/datasets
5https://github.com/MikeMpapa/CNNs-Speech-Music-Discrimination
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grams as input images). The main contribution of our work focuses on the potentials

of using pre-trained deep architectures along with transfer-learning to train robust

audio classifiers for the particular task of speech music discrimination.

We highlight the supremacy of the proposed methods, compared both to the

typical audio-based and deep-learning methods that adopt handcrafted features, and

we evaluate our system in terms of classification success and run-time execution. To

our knowledge, this is the first work that investigates CNNs for the task of speech

music discrimination and the first that exploits transfer learning across very different

domains for audio modeling using deep-learning in general.

In particular, we fine-tune a deep architecture originally trained for the Im-

agenet classification task, using a relatively small amount of data (almost 80 mins

of training audio samples) along with data augmentation. We evaluate our system

through extensive experimentation against three different datasets. Firstly we exper-

iment on a real-world dataset of more than 10h of uninterrupted radio broadcasts

and secondly, for comparison purposes, we evaluate our best method on two pub-

licly available datasets that were designed specifically for the task of speech-music

discrimination. Our results indicate that CNNs can significantly outperform current

state-of-the-art in terms of performance especially when transfer learning is applied,

in all three test-datasets.

All the discussed methods, along with the whole experimental setup and the

respective datasets, are openly provided for reproduction and further experimenta-

tion6.

6https://github.com/MikeMpapa/CNNs-Speech-Music-Discrimination
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3.4.1.1 CNNs for Audio Classification

Convolutional Neural Networks are probably the most popular modeling tech-

nique in computer vision related problems nowadays. Their ability to capture and

represent robust and invariant features across millions of images has provided break-

through results in some of the most traditional computer-vision problems such as

activity or facial-expression recognition( [106] and [107]). Despite their proven value

in capturing features from multi-dimensional spaces, research that exploits CNN clas-

sifiers for non-vision problems and especially audio, has been very recently introduced

and in a very limited amount of applications - mainly related to music classification

or emotion recognition from speech ([108] and [45]). The aforementioned results

highlight the great potentials of CNNs in modeling audio signals and indicate their

potential superiority against traditional audio classifiers in several non-trivial tasks.

In our case, we use CNNs as a classification method to classify raw spectrograms,

with minimum data pre-processing into Speech or Music samples. Our approach is

shown below in the form of pseudo-code. In the rest of the section we discuss in

depth implementation details and we show how CNNs can be designed and exploited

to capture audio related features for the problem of Speech-Music discrimination. In

Algorithm-1 we show the proposed computational pipeline.

3.4.1.2 Training Dataset and Augmentation

All the evaluated methods have been trained using a set of pre-segmented audio

samples each one belonging to any of the two classes (speech or music). In partic-

ular, the training data consists of 750 samples containing speech and 731 samples

containing music. The average duration of a music sample equals 3.2 secs while the

total duration of all 750 music samples is 2428 secs (40.5 mins). On the other hand,
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Algorithm 1 CNNs for Speech-Music Discrimination

1: target height, target width← CNN input-image height & width

2: m win, m step← length & step of mid-term window

3: s win, s step← length & step of short-term window

4: median win← size of median filter for post-processing

5: for i = 0; i < length(audio file); step i = s step do

6: audio segment← audio file[i : m win]

7: spectrogram← ABS{ FFT{audio segment, s win, s step} }

8: resized spec← LINEAR INTERPOLATION{spectrogram, target height, target width}

9: raw prediction← CNN Classifier(resized spec)

10: filtered prediction← median filter(raw prediction , median win)

the average duration of a speech sample in our training set is 3.1 secs and in to-

tal the duration of all 731 speech samples is 2237 sec (37.3 mins). All the samples

from both classes were processed in a sampling frequency of 16000 Hz and where

mono-channel audio samples. These speech and music segments have been gathered

from several sources such as movies, youtube videos or radio-shows and have been

manually annotated for the purposes of the work presented in [109].

Deep learning techniques, in most cases, require huge amounts of training data,

in order to achieve satisfactory classification performance rates and avoid overfit-

ting. In cases that the original data size is limited, data augmentation is required to

overcome this data scarcity problem. Data augmentation is defined as a series of de-

formations applied on the annotated training samples which result in new additional

training data [110]. In most computer vision applications that utilize deep learning

for classification, data augmentation is achieved through image deformations such as

horizontally flipping, random crops and color jittering. In our case, before extracting
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the spectrogram of each training sample we add a random background sound (playing

the role of noise) in three different Signal-To-Noise ratios (5, 4 and 3) and for three

different crops of the original audio sample. If we also include the original (no noise)

training sample, this means that this data augmentation procedure achieves a 3x3 =

9 dataset increase.

After the data augmentation, we end up with 7500 music samples (750 original

samples and 6750 new samples created after data augmentation) and 7262 speech

samples (731 original samples and 6531 samples created after data augmentation). In

total the duration of the augmented music class equals 12587 secs (210 mins) while

the average duration of a music sample is 1.7 secs. Similarly, the total duration of

the augmented speech class is 11161 secs (186 mins) while the average duration of a

speech sample equals 1.5 secs. Figure 3.4 presents an example of two original signals

after the augmentation process.

3.4.1.3 Audio Segment Representation

Each audio stream is broken to overlapping mid-term segments of 2.4 seconds

length, while a 1-second step is used (i.e. almost 60% overlap). For each segment, the

spectrogram is extracted, using 20 ms short-term window size and 15 ms step (25%

overlap). This spectrogram is first interpolated, using linear-mapping, to match the

target input of the CNN classifier and then is fed into the network for classification.

In the rest of this research, we show two different ways of how CNNs can be adopted

for the task of speech-music discrimination and we thoroughly discuss the pros and

cons of each different approach.

52



Figure 3.4. Examples of part of the augmentation process for a music (upper row) and
a speech (lower row) sample. The augmentation process generates 9 new spectrograms
by adding background noise at three different levels and by applying 3 different crops
(9 augmentation results in overall). The first image of each row represents a spectro-
gram of the original audio samples while the other two are spectrograms extracted
from the same wav files after augmentation..

3.4.1.4 Using CNNs to classify audio segments

As recent literature has shown, deep hierarchical visual feature extractors can

significantly outperform shallow classifiers trained on hand-crafted features and are

more robust and generalizable when facing problems that include significant levels of

inherent noise. To classify an unknown audio segment to either speech or music, we

utilize two different CNN classifiers that differ primarily in their size.

Big CNN: The first one performs upon RGB-pseudo-colored frequency images,

corresponding to the spectrograms of each audio segment, as described above. The

color-map matches frequency values with a different color according to their intensity.

Higher frequency values are mapped with brighter colors while lower frequencies with

darker ones. The reason to do so was to be able to exploit the pre-trained CNN
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architecture for fine-tuning, which was originally designed to accept input images of

three channels. The architecture of this deep CNN (Figure-3.5) was initially proposed

in [24]. The model is mainly based on the Caffenet [103] reference model, which is

similar to the original AlexNet [97]) and the network proposed in [104]. The network

architecture consists of two convolution layers with a stride of 2 and kernel sizes7

equal to 7 and 5 respectively, followed by max-pooling layers. Then a convolution

layer with three filters of kernel size equal to 3 is applied, followed again by a max

pooling layer. The next two layers of the network are fully connected layers with

dropout, followed by a fully connected layer and a softmax classifier, that shapes the

final probability distribution. All max-pooling layers have kernel size equal to 3 and

stride equal to 2. For all the layers we use the ReLu as our activation function.

The output of the network is a probability distribution on our target classes,

while the output vector of the semifinal fully connected layer has a size equal to 4096.

The initial learning rate is set to 0.001 and decreases after 700 iterations by a factor

of 10. Since training from scratch such a big CNN structure as the one proposed

by [24], requires millions of images thus, having very high computational demands,

we used transfer learning to fine-tune the parameters of a pre-trained model. The

original CNN was trained on the 1.2M images of the ILSVRC-2012 [105] classification

training subset of the ImageNet [102] dataset. Following this approach, we manage to

decrease the required training time and to avoid over-fitting our classifier by ensuring

a good weight initialization, given the relatively small amount of available training

data. It is important to note that the network used for weight initialization was pre-

trained on a dataset (ImageNet) completely irrelevant to our target data, proving

the high invariance of CNN features and the importance of having a robust weight

initialization. Finally, the input to the network corresponds to 227x227 RGB-pseudo-

7By kernel size we refer to the size of each dimension of the kernel. All kernels are square matrices.
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colored spectrogram images and their mirrors. Table-3.7, illustrates the effect of

transfer-learning on the original kernels.

Small CNN: The second CNN structure (Figure-3.6) is a smaller architec-

ture that has been designed for the needs of the discussed problem. Despite the

very good results provided by the first method, Caffenet was originally designed to

tackle the Imagenet recognition task which is a problem significantly more complex

than Speech-Music discrimination. In contrast to our target domain, Imagenet is a

1000-class image recognition task where many thousands of different features must be

observed and captured by the classifier. However in our scenario, in all possible cases,

the displayed patterns are much more simplistic compared to the Imagenet problem

(Figure-??). Traditional computer-vision issues such as background and lighting vari-

ations do not apply in our domain thus simplifying significantly our classification task.

In our scenario noise mainly occurs by background sounds -which can be considered

as a visual occlusion in our case-, which in most cases (since they are in the back-

ground) do not affect much the dominant signal in the frequency-domain (mostly low

frequencies are impacted). Moreover, the original Caffenet was designed to function

on raw RGB images; a source of information which is redundant for any audio-based

classification problem. Spectrograms have by default two information channels and

thus in order to make them fit in the original Caffenet, we had to augment a third

dimension using the pseudo-coloring approach described in the previous paragraph.

Thus, in an effort to avoid unwanted computations and inspired by the proven value

of Caffenet’s architecture we decomposed the initial model to a smaller one in order

to evaluate the ability of Deep Convolutional Classifiers to model the problem in gen-

eral. Taking into account all the aforementioned observations and through extensive

experimentation, we ended up with a smaller architecture with a reduced number

of convolutional layers. In total, the new network consists of two convolution layers
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less than the previous model with three consecutive pairs of convolution and pooling

layers. The first convolution layer has a kernel size equal to 5 and the following two

convolution layers have kernels with size equal to 3. All intermediate max-pooling

layers have kernels equal to 3. Kernel stride in all layers is equal to 2. As activa-

tion, the ReLu function is deployed once again. All fully-connected layers remain also

untouched as well as learning rate and learning decay rate.

We evaluated two versions of this smaller CNN; one that operates again on

227x227 pseudo-colored RGB Images and one that operates on the default gray-scale

spectrogram representation with smaller size equal to 200x200. For convenience rea-

sons, we will refer to this model for now on as CN SM. The grayscale version of

CNN SM is designed in an effort to reduce the computational complexity of the net-

work by getting rid of some redundant computations including the extra information

channel of the input but also some of the layers included in the original Caffenet. We

reduce the image in an effort to investigate if the input size affects the final outcome.

In both cases, CNN SM is trained from scratch in an end-to-end fashion. CNN SM

exploits, on the one hand, the core components of Caffenet while on the other hand

has a reduced total number of parameters by a factor equal to 25% (almost 550.000

parameters less) compared to the total number of parameters that were on the initial

Caffenet. As our findings indicate in Section-3.4.1.8 CNN SM can provide results that

are slightly worse compared to the first method in a significantly shorter amount of

time without the need of data augmentation. However, using transfer-learning based

on the pretrained architecture of Caffenet still remains the most accurate and robust

method. In both scenarios though, it is obvious that CNNs can depict significant

differences between the two classes even when the available data are limited showing

state-of-the-art results on the task.
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The input data-layer in both cases are in a batch form of 128 spectrogram

images. At the end of each epoch 8 (about 16 iterations without data augmentation

and 156 iterations when augmenting the initial training-set) we reshuffle the training

data aiming to capture more robust feature representations.

Figure 3.5. Caffenet: CNN Architecture proposed in [24].

Figure 3.6. CNN SM: Architecture proposed in this work.

8A single epoch consists of a forward pass and a backward pass of all the training samples. The

number of iterations is the number of passes, each pass using [batch size] number of examples. A

pass consists of both the forward and back-word propagation.

57



Coloromap

Layer Initial Fine-tuned Difference Initial Fine-tuned Difference

1st
Conv
Layer

max=0.0529, min=-0.0386, mean diff=0.0155 max=0.0553, min=-0.1039, mean diff=0.0074

max=0.3058, min=-0.3580, mean diff=0.0046 max=0.2088, min=-0.3622, mean diff=0.0042

2nd
Conv
Layer

max=0.0727, min=-0.06132, mean diff=0.0013 max=0.0534, min=-0.0457, mean diff=0.0011

max=0.0534, min=-0.0870, mean diff=0.0010 max=-0.0068, min=-0.0465, mean diff=0.0009

3rd
Conv
Layer

max=0.0100, min=-0.0053, mean diff=0.0014 max=0.0663, min=-0132.0457, mean diff=0.0007

max=0.0962, min=-0.0161, mean diff=0.0016 max=0.0579, min=-0.0238, mean diff=0.0008

Table 3.7. Convolution filters randomly picked from the first 3 layers. The first
column illustrates the weights of the pre-trained Caffenet network before transfer-
learning takes place. The second column displays the updated weights after fine-
tuning. Lastly, third column displays how the values of each kernel have been shifted
during the retraining process. max and min refer to the maximum and minimum
weight values occurred in the two kernels, while min diff refers to the mean shift
value across all weights of each kernel.

58



3.4.1.5 Evaluation Datasets

In order to evaluate the performance of the proposed methodology against the

traditional machine-learning methods shown in Table-3.13 a dataset (D1 ) of real

recordings from several BBC radio broadcasts has been used. 33 separate uninter-

rupted radio streams of 10 minutes to 1-hour length each have been manually anno-

tated originally for the purposes of the research presented in [109]. The total duration

of the dataset is more than 10 hours (almost 620 minutes).

In addition, we have evaluated our method on two additional open-access datasets

for comparison purposes with the work done by [111], which also used deep-learning,

and specifically RBMs, on traditional audio features (MFCCs and DFT coefficients).

Dataset D2 originally appeared in [112] and was subsequently refined in [113].

This corpus is a relatively small collection of 240 randomly chosen extracts from

radio recordings. Each resulting file is 15 s long and stored in WAVE format. The

original sampling frequency is 22050Hz and all samples are single channel wavs. For

the purposes of this study, we reduce the sampling frequency to 16000Hz in order to

match our current implementation. The dataset is partitioned by its creators into a

training subset and a test subset. However, in order to have a fair comparison against

the methods proposed by [111] we ignored the initial data partitioning scheme. Our

final D1 test dataset consists of two classes pure music (101 files) and pure speech

(80 files with male, female and conversational speech).

Dataset D3 is available via the Marsyas website [114]. It consists of a total of

120 tracks, evenly distributed among the classes of music and speech. Each track is

30 seconds long and also stored in WAVE format. As in D2, we reduced the original

sampling frequency from 22050Hz to 16000Hz. All audio samples are single channel

wav files. The music class covers a wide variety of music genres and as in D2 some of
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the music samples are purely instrumental. The speech class contains both male and

female speakers and in some cases dialogue.

3.4.1.6 Performance Measures

Let CM be the confusion matrix, i.e. a 2 × 2 matrix, since 2 is the number

of classes in our case. The rows and columns refer to the true (ground truth) and

predicted class labels of the dataset, respectively. In other words, each element,

CM(i, j), stands for the number of samples of class i that were assigned to class j. The

diagonal of the confusion matrix captures the correct classification decisions (i = j).

As in Section-2.3.2 we evaluate our method using Precision (equation-2.19), Recall

(equation-2.18) and F1 (equation-2.20) metrics. Note that, the confusion matrix,

and therefore all adopted performance measures, have been extracted on a 1-second

segment basis.

3.4.1.7 Results

The results of the proposed method, along with the compared methodologies on

the D1 test dataset, are presented in Table 3.8. In general, two types of classifiers have

been evaluated: (a) audio classifiers based on low-level audio features (b) classifiers

applied on the spectrogram images. In particular, the following methods are evaluated

(we also present the abbreviations in the following list):

1. Audio-based classifiers:

(a) RF: Random Forests

(b) GB: Gradient Boosting

(c) ET: Extra Trees

(d) SVM: Support vector machines

(e) GMM+HMM: Gaussian Mixture Models + Hidden Markov Models
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In order to extract hand crafted audio features he have used the pyAudioAnaly-

sis library [85] which computes several time, spectral and cepstral domain audio

features such as zero crossing rate (equation-4.1), spectral centroid and spread

(equations-2.13 & 2.14), spectral flux (equation-2.16) and MFCCs. Towards

this end, a short-term windowing is applied, and for each short-term window

(frame) 34 features are computed. Then for each segment two feature statistics

are extracted, namely the mean and standard deviation, leading to a 34 * 2 =

68 feature statistic representation for each audio segment. This final represen-

tation is used as a feature vector to classify unknown audio segments to either

speech or music. More details can be found at [85].

2. Image-based classifiers. The following image classifiers have been directly

applied to the spectrogram images for comparison reasons:

(a) SVM: for comparison reasons we have also evaluated an image classifier

applied on the spectrograms using typical visual features: Histograms of

Oriented Gradients, Local Binary Patterns, Grayscale and color histograms

(similarly to what we did in the multimodal method for fitness monitoring

in Section-2.3.2). To train the SVM classifier each image was decomposed

to a 4x4 grid and from each block (4x4=16 blocks in total) a feature vector

was extracted. The final feature vector describing the whole image was the

concatenation of each individual feature vector extracted from each of the

16 blocks.

(b) Caffenet-S: this CNN uses the structure of the Imagenet CNN proposed

by [24], but it is trained directly on the training samples of the speech -

music discrimination task

61



(c) Caffenet-S,I: this is the same network, however, the weights of the Imagenet

CNN are also used for initialization in the training phase of the speech-

music classifier

(d) Caffenet-S,I,A: this is the same network (with weight initialization), but

training is performed using the augmented data of speech - music

(e) CNN SM: this is the smaller CNN proposed in Section 3.4.1.4 to discrim-

inate speech and music segments, which is trained from scratch. For

fair comparison against our Caffenet implementation, the results shown

in Table-3.13 are with CNN SM functioning on 227x227 pseudo-colored

RGB images. It has to be noted that no significant differences in perfor-

mance were observed when altering the type and shape of input to 200x200

grayscale (see Section-3.4.1.8).

(f) CNN SM-A: this is the CNN of (e) trained using augmented data.

Additionally, the evaluation has been conducted with and without post-processing

of the single classification decisions. We have selected a simple but effective median

filtering on the extracted classification labels as a post-processing method. We have

also conducted experiments with supervised smoothing approaches (e.g. HMM), but

no further improvement was observed. The presented results have been produced

after the application of a median filter of an 11-second window.

In Figure-3.7 we show the ROC curves of the two best methods (Caffenet -S,I,A

and CNN SM) when evaluated on D1. Judging from the presented results we argue

that in general CNNs can significantly outperform traditional methods on the task.

However, when transfer-learning is applied we observe a boost in performance equal

to 3% when we compare the areas under the ROC curves of the two classifiers from

almost 96% to 99%.
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No Post-Processing

Audio-based
Classifiers

Image-based
Classifiers

GMM RF GB ET SVM SVM
Caffenet

S
Caffenet

S,I
Caffenet

S,I,A CNN SM
CNN SM

A
Sp Rec 92.4 90.7 90.4 92.3 92.6 85.7 89.3 88.7 93.7 90.9 91.5
Sp Pre 79.5 82.7 82 80.9 77.4 83.6 89.4 96.6 93.3 91.1 90.8
Mu Rec 90.1 92.5 92.1 91.3 89.3 93.2 95.7 98.8 97.2 95.3 95.2
Mu Pre 95.7 96.2 96 96.8 96.8 94.2 95.7 95.7 97.6 96.2 95.8
Sp F1 85.5 86.5 86 86.2 84.3 84.6 89.3 92.5 93.5 91 91.1
Mu F1 92.8 94.3 94 94 92.9 93.7 95.7 97.2 97.4 95.7 95.5
Av F1 89.2 90.4 90 90.1 88.6 89.1 92.5 94.8 95.4 93.4 93.3

Post-Processing Segmentation

Audio-based
Classifiers

Image-based
Classifiers

GMM RF GB ET SVM SVM
Caffenet

S
Caffenet

S,I
Caffenet

S,I,A CNN SM
CNN SM

A
Sp Rec 92.4 90.3 90.3 92.3 92.8 85.8 89.7 88.9 93.9 92 92
Sp Pre 81.2 83.6 83.7 82 79.2 87.7 92.2 97.3 94.9 95.2 95.5
Mu Rec 90.8 93 93 92 90.7 95 97 99 98.1 98.2 98.4
Mu Pre 96.1 96 96 96.8 96.9 94.3 95.9 95.8 97.6 96.5 96.8
Sp F1 86.4 86.8 86.9 86.9 85.4 86.7 90.9 92.9 94.4 93.6 93.7
Mu F1 93.4 94.5 94.5 94.3 93.7 94.6 96.4 97.4 97.8 97.3 97.6
Av F1 89.9 90.7 90.7 90.6 89.6 90.7 93.7 95.1 96.1 95.5 95.6

Table 3.8. Experimental results of the proposed method and comparisons to other
methodologies, with and without post-processing on D1. We mainly focus on the av-
erage F1 measure as the final evaluation metric, due to its ability to be robust against
unbalanced datasets, however, we report that the overall classification accuracy for
the best two methods was: 96.6% for CNN SM and 96.8% for the Caffenet-S,I,A
method. For abbreviation purposes we define the following notations; Sp: Speech,
Mu: Music, Rec: Recall, Prec: Precision, Av: Average

3.4.1.8 Comparison to other methods

One of the first efforts on speech - music discrimination is reported in [115]

were the authors achieved a classification accuracy of 96%, by adopting simple time

domain features, evaluated on a real-time monitoring application of a specific radio

station for 2 hours of recording data. In [116], almost 20 min of audio data was

used for training and testing purposes. The authors reported that on a short-term

basis the overall accuracy was around 80%. When a mid-term window was used (1 s

63



Figure 3.7. ROC curves of the two best methods (Caffenet-S,I,A and CNN SM) when
evaluated on D1.

long), the accuracy rose to approximately 95.9%. In [117], for training and testing the

classifier almost 4,500 segments (10 s long each) of speech and 3,000 for music (10 s

length again) were. The reported experiments showed that the error rate ranges from

1.2 to 6%, however, the assumption of homogeneous audio segments of quite a long

duration (i.e., 10 s) is a simplified version of the problem. In later approaches such

as [109, 118] the authors deployed more sophisticated techniques such as dynamic

programming and Bayesian networks. Those two works were evaluated on the same

data (D1 test dataset) as the proposed method. They report an accuracy of around

95.5%, which is comparable to current state-of-the-art approaches on such a large

and diverse amount of the test data. In more detail, Table-3.9 presents the exact

comparisons between the method proposed in [109] and the two dominant methods

presented here, in terms of all the performance measures (speech and music recall

and precision). In this case, to demonstrate the robustness of CNNs on the task the

results associated with CNN SM in Table-3.9 were estimated on the simplified image

64



inputs (gray-scale 200x200). As it is easily observable by comparing results in both

Table-3.13 and Table-3.9, CNNs almost in all cases outperform the method presented

by [109], with Caffenet-S,I,A showing again superior performance

DP [109] Caffenet-S,I,A CNN SM
Sp Rec 89.2 93.9 92.1
Sp Pre 95.8 94.9 95.4
Mu Rec 98.3 98.1 98.4
Mu Pre 95.6 97.6 96.9
Sp F1 92.4 94.4 94.3
Mu F1 96.9 97.8 97.6
Av F1 94.7 96.1 96

Table 3.9. Comparison between the two proposed CNN methods (Caffenet-S,I,A and
CNN SM both with postprocessing) and the work presented by [109] on audio-based
features, where a Dynamic Programming (DP) approach on a Bayesian Network
was deployed. Evaluation is being done on the D1 dataset. As in Table-3.13 the
following notations are used; Sp: Speech, Mu: Music, Rec: Recall, Prec: Precission,
Av: Average

For further experimentation we compared our dominant method (Caffenet-

S,I,A) against the deep learning methods proposed by [111] when evaluated on datasets

D2 and D3 (Figure-3.8). In order to have a fair comparison between the different

methods, we show results in a similar manner as it was done by [111]. We present

performance measurements using a confidence threshold, Th . The goal of the thresh-

old is to reject any classification decision if the estimated posterior probability of the

winning class fails to exceed Th. As complementary information, we also provide the

percentage of patterns that have been left unclassified. [111] have experimented using

different deep-learning methods based on MFCCs and DFT coefficients. The results

shown on the graphs below were directly derived by that publication. It has to be
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noted, that the evaluation procedure has been carried out on a segment basis, i.e.

each segment of every file in the dataset has been classified separately.

As our results indicate CNNs with transfer learning significantly outperformed

all methods described by [111] showing a reduction in classification error of 5% and

9% on D2 and D3 respectively compared to the best deep-learning methods with

RBMs that operate in handcrafted audio features. In addition, the proposed method

shows a significant improvement in the confidence levels of each decision by reducing

the number of unclassified patterns by almost 5% and 9% respectively on D2 and D3.

Figure 3.8. Evaluation of Caffenet-S,I,A against the RBM-based deep-learning meth-
ods proposed by [111]. Graphs on the left show evaluation on D2 test-dataset while
graphs on the right refer on D3..
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3.4.1.9 Computational Demands

Time in mins
Method Total Feature

Ext.
CNN
test

Caffenet - S, I,
A

35.2 9.3 26

CNN SM 23.5 9.3 14.3

Table 3.10. Execution Time (in minutes) on a GPU Tesla K40c of the two best
methods for the whole testing dataset. Note that the size of this dataset is 620
minutes.

We have evaluated the required computational demands for the two proposed

speech music classification schemes, namely the CNN SM and the Caffenet network.

As discussed above, the CNN SM model is able to offer directly comparable results

to its deeper counterpart when both methods were trained from scratch. At the same

time, as Table 3.10 indicates, it requires less computational time to complete the whole

evaluation process. In particular, with regards to the overall execution time required

by the two models, the CNN SM model achieves a relative computational reduction

almost equal to 33%. If, however, we focus on the classification step alone, i.e. if we

exclude the fixed feature extraction demand and the post-processing procedures (9.3

minutes for the whole dataset), the relative computational decrease is 45%. Note that,

given the overall duration of the testing dataset (620 minutes), the CNN Caffenet-I

method requires 4.2% of the true audio duration, while the CNN SM method only

2.3% of the real audio time. This means, for example, that it takes almost a minute

to classify one hour of audio data.
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That is due to the decrease in the number of parameters that need to be learned

and to the reduction of input’s dimensionality. Based on the performance results

presented in the previous subsection, it turns out that, given the simplistic visual

fluctuations that spectrogram-images consist of, in terms of visual-shapes and colors,

fewer parameters can be sufficient to model an audio problem with a relatively small

amount of target classes, even if the available data are significantly few (around 750

samples per class).

3.4.1.10 Takeaways

To summarize, our experimentation has proven that CNNs are a very efficient

method to better discriminate between speech and music, compared to typical meth-

ods that operate on the audio domain through handcrafted audio features. Utilizing

transfer learning in CNNs boosts the classification performance (from 93.7% to 95.1%)

on our primary evaluation dataset, and reduces the classification error on our addi-

tional evaluation datasets D2 and D3 by 5% and 9% respectively. In addition, using

CNNs and transfer learning lead to higher levels of confidence in the final decision

against previously published deep-learning methods on D2 and D3 that were based

on traditional audio features. Moreover, data augmentation improved the results in

the proposed task and proved that if performed carefully it can significantly advance

the quality of our classifiers by providing the available resources towards training DL

models.

Overall the experiment indicated the robustness of CNN classifiers on training

behavioral patterns of variant nature but also outlines the high demands of such

methods in terms of training data.
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3.5 Learning Robust Representations Across Varying Input Domains

In our last evaluation, we propose a DL method towards recognizing emotion

from speech by omitting any linguistic information. Goal of our approach is to ad-

dress emotion, a core component of human behavior as discussed in Chapter-1, in

a language-independent manner. The method aims to explore and highlight the ro-

bustness of deep classifiers against common ML methods in one of the most difficult

problems of affect recognition. The final results are directly comparable to other

state-of-the-art techniques and highlight the significant effect that deep models have

towards building invariant feature representations even under extreme levels of ambi-

guity. A phenomenon that is very common in several tasks related to human behavior

modeling.

3.5.1 Language-Independent Emotion Recognition from Speech

Emotion recognition from speech may play a crucial role in many applications

related to human-computer interaction or understanding the affective state of users in

certain tasks, where other modalities such as video or physiological parameters are un-

available. In general, a human’s emotions may be recognized using several modalities

such as analyzing facial expressions, speech, physiological parameters (e.g., electroen-

cephalograms, electrocardiograms), etc. However, measuring of these modalities may

be difficult, obtrusive or require expensive hardware (see Section-1.2.2). In that con-

text, speech may be the best alternative modality in many practical applications. In

this work, we present an approach that uses a CNN functioning as a visual feature ex-

tractor and trained using raw speech information. In contrast to traditional machine

learning approaches, CNNs are responsible for identifying the important features of

the input thus, making the need for hand-crafted feature engineering optional in many
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tasks. The proposed method requires no extra features other than the spectrogram

representations. Hand-crafted features were only extracted for validation purposes.

Moreover, it does not require any linguistic model and is not specific to any particu-

lar language. We compare the proposed approach using cross-language datasets and

demonstrate that it is able to provide superior results vs. traditional ones that use

hand-crafted features.

3.5.1.1 Training Dataset and Augmentation

For our experiments, we used four different audio datasets. Three of the datasets

are publicly available (Emovo [119], Savee [120], German [121]) and the last one is a

custom made dataset, which includes audio samples gathered from movies. For the

custom made dataset the samples were annotated manually by several researchers

in NCSR Demokritos. All the movies used for the creation of our Movies-Dataset

were in English except one that was in Portuguese. Statistics of the aforementioned

datasets are reported in Table 3.11.

Anger Disgust Fear Happiness Neutral Sadness Surprise Boredom

Emovo 84 84 84 84 84 84 84 -
Savee 60 60 60 60 120 60 60 -

German 127 46 69 71 79 62 - 81
Movies 367 - 80 63 413 117 - -

Table 3.11. Number of Audio of the Original Audio Databases for each class.

Since not all the datasets included samples for all the classes that are shown in

Table 3.11, we decided to work only on their union. Thus, our final dataset consists

only of the five common classes, namely anger, fear, happiness, neutral and sadness.
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Our CNN architecture, described in Section-3.5.1.2, has been trained using a

set of pre-segmented audio samples, randomly cropped from the original audio signal,

each one belonging to any of the 5 classes (happiness, fear, sadness, anger, neutral)

and with a fixed duration equal to 2s.

More specifically, we trained four different models, each time using samples from

a single dataset. Each model was trained using 80% of the samples from each class

of the dataset. For evaluation purposes, we performed four different experiments for

each trained model (i.e., 16 experiments in total). We tested each trained model on

the remaining 20% of samples from each class of the training dataset (note that those

samples were used only for testing). Then we performed three additional experiments

using each time all samples of each one of the other datasets.

As discussed at the beginning of this chapter, deep learning techniques require

huge amounts of training data, in order to achieve satisfactory classification perfor-

mance rates and avoid over-fitting. In cases that the original data size is limited, as in

our scenario, data augmentation is required to overcome this data scarcity problem.

Data augmentation is defined as a series of deformations applied on the annotated

training samples which result in new additional training data [110]. In most computer

vision applications that utilize deep learning for classification, data augmentation is

achieved through image reformations such as horizontally flipping, random crops and

color jittering. In our case, before extracting the spectrogram of each training sample

we add a background sound (playing the role of noise) in three different Signal-To-

Noise ratios (5, 4 and 3) for the crop of the original audio sample. If we also include

the original (no noise) training sample, this means that this data augmentation pro-

cedure achieves a 3× dataset increase. Figure 3.9 presents some examples of the

resulted spectrograms from each class after augmentation .
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Figure 3.9. Spectrogram samples after the augmentation process for anger (first row),
fear (second row), happiness (third row), sadness (fourth row) and a neutral (fifth
row) classes. Augmentation the data generated 3 new spectrorams from each original
sample (images in first column) by adding background noise at three different levels.
Figure is best viewed in color..

From each audio stream, a single randomly cropped segment of 2 s length is

extracted. For each segment, its spectrogram is extracted, using 40 ms short-term

window size and 20 ms step. This spectrogram is the adopted representation for each

2-second segment of the audio stream, which is fed as input to the CNN, described

in the next section.

3.5.1.2 Method

For recognizing the five-target emotion labels, we utilized a CNN classifier

(CNN EM ) that operates upon the pseudocolored spectrogram images. As recent

literature has shown, deep hierarchical visual feature extractors can significantly out-
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perform shallow classifiers trained on hand-crafted features and are more robust and

generalizable when countering problems that include significant levels of inherent

noise. The architecture of our deep CNN structure was finalized after a very exten-

sive experimentation process on different layer combinations and parameter tuning.

Our goal was to build a model, that could depict robust feature representations for

recognizing speech-emotion across all the datasets, in a language-independent man-

ner. For our experiments, we used the BVLC Caffe deep-learning framework [103].

All Caffe trained models and necessary code to reproduce our experiments is available

online 9.

The network architecture consists of four convolution layers in total, all of

them with a stride of 2. The kernel sizes of the convolutional layers are of size 7,

5, 5 and 3 respectively. After every convolution and before the application of the

non-linearity function we normalize the input batch using the Batch-Normalization

transformation. In addition, in-between the initial three convolutional layers and

after the last one, a pooling layer followed by a normalization layer is interposed.

In this work, normalization layers adopt the LRN (Local Response Normalization)

normalization method and all max-pooling layers have a kernel with size equal to 3

and a stride of 2. The last two layers of the network are fully connected layers with

dropout, followed by a softmax classifier, that shapes the final probability distribution.

For all the layers we used the ReLu as our activation function and weights are always

initialized using the xavier [122] initialization. For the learning algorithm, we decided

to use the standard SGD, as it led to superior results compared to other learning

algorithms. The output of the network is a distribution on the five target classes,

while the output vector of the final fully connected layer has a size equal to 4096. We

have adopted a 5000-iterations fine-tuning procedure, with an initial learning rate of

9https://github.com/MikeMpapa/CNNs-Audio-Emotion-Recognition
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0.001, which decreases after 600 iterations by a factor of 10. The input to the network

corresponds to images of size 250× 250 and organized in batches of 64 samples.

Given the very limited amount of available data, Batch-Normalization and the

application of the xavier weight initialization boosted significantly the performance

of the network by avoiding the learning process to get stuck in local minimums. In

Figure 3.10 we illustrate the overall network architecture.

Figure 3.10. Proposed Convolutional Neural Network CNN EM for recognising emo-
tion..

3.5.1.3 Results

For comparison purposes we have evaluated the following two methods:

• audio-based classification: The pyAudioAnalysis [85] has been used to extract

mid-term audio feature statistics. Classification has been achieved using the

same library and through the SVM classifier. This method is used to demon-

strate the ability of the SVM classifier to discriminate between emotional states

directly on the audio domain. The audio features used to train the aforemen-

tioned SVM classifier are shown in Table 3.12.
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Feature ID Feature Name Description

1 Zero Crossing Rate
The rate of sign-changes of the signal
during the duration of a particular frame.

2 Energy
The sum of squares of the signal values,
normalized by the respective frame length.

3 Entropy of Energy
The entropy of sub-frames’ normalized energies.
It can be interpreted as a measure of abrupt changes.

4 Spectral Centroid The center of gravity of the spectrum.

5 Spectral Spread The second central moment of the spectrum.

6 Spectral Entropy Entropy of the normalized spectral energies for a set of sub-frames.

7 Spectral Flux
The squared difference between the normalized
magnitudes of the spectra of the two successive frames.

8 Spectral Rolloff
The frequency below which 90% of the magnitude
distribution of the spectrum is concentrated.

9–21 MFCCs
Mel Frequency Cepstral Coefficients form a cepstral representation
where the frequency bands are not linear but distributed
according to the mel-scale.

22–33 Chroma Vector
A 12-element representation of the spectral energy where the bins,
represent the 12 equal-tempered pitch classes of western-type
music (semitone spacing).

34 Chroma Deviation The standard deviation of the 12 chroma coefficients.

Table 3.12. Audio-based handcrafted features used to train an SVM classifier with
pyAudioAnalysis.

• image-based SVM : an SVM classifier applied on hand-crafted image features has

also been evaluated. In particular, the following visual features have been used

to represent the spectrogram images: histograms of oriented gradients, local

binary patterns and color histograms. The training images used to build the

SVM model were exactly the same as the ones used to for our CNN approach.

The goal and the major contribution of this work with regards to its experimen-

tal evaluation is to estimate the performance of the proposed approach in the task of

emotion recognition when training and testing datasets come from different domains

and/or languages. Towards this end, the average F1 measure is used as an evaluation
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metric, due to its ability to be unbiased to unbalanced datasets. Table 3.13 presents

the experimental results in terms of the achieved F1 score within the testing data

of the proposed emotion classification approach, compared to the audio-based clas-

sification and the image-based classification with hand-crafted features as explained

above. The conclusions directly drawn from these results are the following:

• CNN EM is the best method with respect to the average cross-dataset F1 mea-

sure. Audio-based classification is 1% lower, while the SVM classifier on hand-

crafted visual features achieves almost 5% average F1 measure.

• CNN EM is the best method for 9 out of 16 in total classification tasks, while

audio-based classification is the best method in 5 of the classification tasks.

• CNN EM, which operates directly in the raw data, is more robust across dif-

ferent domains and languages and can be used as an initialization point and/or

knowledge transferring mechanism to train more sophisticated models.

In Figures 3.11 and 3.12 we illustrate how the filters of the first convolutional

layer were shaped after the learning process. Feature extraction is then based on the

final weight values of those filters. Darker regions correspond to the most important

learned weights while brighter ones have a lower impact on the convolution outcome.
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Figure 3.11. All learned filters of the first convolutional layer..

Figure 3.12. Randomly selected filters from the first convolutional layer as configured
after the learning process. Darker regions correspond to the most important learned
weights while brighter ones have a lower impact on the convolution outcome..
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Audio-Based SVM Image-Based SVM CNN EM

Test Dataset

Emovo Savee German Movies Emovo Savee German Movies Emovo Savee German Movies

Training
Dataset

Emovo 0.48 0.22 0.49 0.28 0.42 0.14 0.42 0.20 0.57 0.16 0.42 0.27
Savee 0.29 0.57 0.34 0.26 0.21 0.32 0.28 0.26 0.30 0.60 0.33 0.31

German 0.41 0.26 0.64 0.32 0.43 0.25 0.68 0.29 0.41 0.24 0.67 0.35
Movies 0.26 0.22 0.33 0.29 0.27 0.23 0.33 0.30 0.29 0.24 0.42 0.23

Average F1 0.35 0.31 0.36

Table 3.13. Experimental results indicating the testing error of the proposed method
and comparisons to other methodologies. Each row indicates the training and each
column the testing set used. We mainly focus on the average F1 measure as the final
evaluation metric, due to its ability to be robust against unbalanced datasets. Num-
bers in bold indicate which method achieved highest performance in each experiment.

To highlight the superiority of the proposed CNN architecture against other

deep-learning-based approaches we conducted two additional experiments where we

compare our method against current state-of-the-art methods.

In Table 3.14 we show how CNN EM compares against the work in [123] when

RAW spectrograms are used without performing semi-supervised feature selection or

any other kind of post or pre-possessing. As in [123] we performed 3 different experi-

mental setups.

1. Single-Speaker : where training and testing sets correspond to a single speaker

2. Speaker-Dependent : where samples from multiple speakers are used for training

and testing takes place on different samples which belong to the same set of

speakers

3. Speaker-Independent : where samples from multiple speakers are used for train-

ing and testing takes place on samples which belong to a different set of speakers
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We evaluate on the two datasets that are common ground between the two

works, namely the Savee and German (Emo-DB as referenced in [123]). For com-

parison purposes, we evaluate our method on the original versions of the respective

datasets, i.e., without data augmentation. As the results indicate, CNN EM signifi-

cantly outperforms their approach in all cases when RAW spectrograms are used as

an input to the structure.

Savee German

Huang et al. CNN EM Huang et al. CNN EM

Single Speaker 0.31 0.45 0.41 0.58
Speaker-dep 0.29 0.55 0.37 0.67
Speaker-ind 0.27 0.44 0.36 0.69

Table 3.14. Comparison of our scores against the results reported in [123], when eval-
uated on the RAW spectrograms. Numbers in bold indicate which method achieved
highest performance in each experiment.

In Table 3.15 we compare CNN EM’s scores against the results reported in

[124], on the IEMOCAP Database [125]. We evaluated CNN EM on the same set

of target classes as in [124] (excitement, happiness, frustration, neutral and surprise)

and by splitting the data into training and testing sets in a 80% to 20% ratio per

class respectively, as reported in their work. CNN EM outperforms their best results

by 2% without any kind of additional pre-processing in contrast to [124].
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Approach Test Accuracy

Zheng et al. 0.40
CNN EM 0.42

Table 3.15. Comparison of our scores against the results reported in [124], when
evaluated on the IEMOCAP Database [125]. For comparison purposes we evaluated
our method on the same set of target classes as in [124], which are : excitement,
happiness, frustration, neutral and surprise. We follow a similar evaluation process
as reported by Zheng et al, by choosing randomly 80% utterances of each emotion
classification to construct the training dataset, the other 20% utterances for test.

3.5.1.4 Takeaways

In this work, we presented an approach that does not require any low-level

features. Instead, it uses a Convolutional Neural Network, trained using raw speech

information encoded as a spectrogram image. We compare the proposed approach

using cross-language datasets and demonstrate that it is able to provide superior

results vs. traditional methods that use either audio-based or image-based hand-

crafted features.

Our evaluation showed that modern deep learning approaches and especially

CNNs, which have been traditionally used for image retrieval problems, have the

potential to produce breakthrough results in cross-modality problems. A viewing that

can have a massive impact in behavioral modeling applications, given the complexity

of the observed patterns across the various interaction signal. Language-Independent

emotion recognition is an extremely complex problem even for humans. The final

results highlight the great potentials of deep classifiers towards modeling ambiguous

problems related to human behavior but also indicate once again their great need of

vast amounts of training data.
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3.6 Advantages, Limitations & General Observations

As confirmed by all the experiments discussed in Chapter-3, CNNs have an

apriori advantage against traditional ML methods and that is due to their compu-

tational structure. Moreover, the produced models proved to be very robust across

environmental and inherent channel noise but also across fundamental differences in

the nature of the input data.

However it was made clear in all cases that the availability of training data

played a central role towards using deep models and when this requirement is not

satisfied, exploiting the potentials of such architectures might be unattainable or

worthless. We showed that transfer-learning and data augmentation are two solutions

that can potentially smoothen that effect. Although applying those techniques and

especially the process of data augmentation, is not a trivial task. The nature and

the native characteristics of the data must be taken into account and very carefully

examined under a specific experimentation scenario in order to create accurate and

useful simulations.

As discussed in Chapter-1 and presented through experimentation in Chapter-

2, collecting such amounts of data in most real-life scenarios that relate to behavioral

modeling using sensors and wearables, is many cases is not feasible. Lack of sufficient

resources and the time required to design an experiment and eventually collect and

annotate the data turns out to be a very demanding and costly process. Especially

as the experimental conditions become less controlled. Hence, the design of systems

that can combine diverse resources and computational algorithms remains the best

solution towards designing efficient HCI systems and no end-to-end architecture can

provide universal solutions to any such problem yet.
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This observation becomes even more clear in the next three chapters where we

address the problem of modeling cognitive and physical fatigue and their effects on

user performance. As it will become clear, representing very open-ended problems

restricts our ability to collect vast amounts of data that can be modeled by a single

classifier and more flexible solutions like the ones presented in Chapter-2 need to be

deployed.
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CHAPTER 4

FATIGUE DETECTION FOR SMART REHABILITATION AND SAFER

INTERACTION

4.1 Introduction

In all past chapters, we investigated how technology and ML, in particular, can

be used to understand various aspects of human behavior, primarily related to action

detection and emotion recognition. An important observation that can be made is

that a common characteristic of all the applications discussed so far was the fact that

they were targeting a clearly defined and intuitive goal, that would be very hard to

get miss-interpreted by a human observer. However, ML technology can potentially

provide insights for problems that we haven’t completely comprehend and decipher

yet. Such a problem is the concept of fatigue and how its effect on the human body

can influence our performance.

Fatigue can have several consequences and may be expressed both in a physical

level, in the form of muscle exhaustion or body pain, and in a mental level, as the

inability to perform well in specific cognitive functions [126]. Despite the fact that is

probably the most popular symptom across a variety of chronic diseases and a very

common phenomenon in our daily living, science is still unable to quantify fatigue

[127]. Moreover, it is very difficult to distinguish between effects caused by physical

or cognitive fatigue in real-life scenarios and also to understand at which point a user

under-performs due to the presence of fatigue [128].

Addressing these questions can help us design smarter interaction systems, able

to prevent accidents caused by fatigue under high-risk situations [129]. Moreover un-
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derstanding user fatigue is a parameter of major priority towards implementing more

effective and user-centric smart-rehabilitation scenarios that can tailor their parame-

ters based on user’s physiological state [130]. In the rest of this dissertation, we will

focus on ML methods designed to detect human fatigue and predict user performance.

Starting from the following sections, and inspired by the findings presented during

the previous chapters, we discuss how modern technology can be used to detect signs

of both physical and cognitive fatigue and how such systems can be applied in smart

rehabilitation and cognitive assessment scenarios.

4.2 Recognizing Fatigue - Collection & Analysis of Multi-Sensing Data

In the rest of Chapter-4 we present a framework for predicting physical and

cognitive fatigue trough task-based evaluations [131] and we show how we can exploit

machine learning towards detecting signs on physical fatigue [132]. In particular, we

evaluate an upper-limb rehabilitation scenario using a robotic arm aiming to assess

muscle fatigue. Our implementation takes into account both subjective user reports

and objective physical measurements captured through wearable technology. Our

initial experimentation, which is based on the principles discussed in the framework

presented in Section-4.2.1, shows that despite the vague and subjective nature of

fatigue, ML can be potentially used as a tool towards identifying universal patterns

of fatigue across users long before the participants reach their endurance limits.

4.2.1 Towards a task-driven framework for multi-modal fatigue analysis during phys-

ical and cognitive tasks

We present a multi-modal framework for data collection towards assessing and

analyzing fatigue (Figure-4.1). Our goal is to combine both objective and subjective
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reporting mechanisms, emphasizing on implicit self-reporting mechanisms through

the use of sensors. In particular, we propose a task-driven approach that aims to

extract both cognitive and physical behavioral patterns that may signal physical

and/or mental fatigue, while the user is involved in a set of different tasks. Goal

of the framework is to combine different measures extracted through non-invasive

sensors and associating these data with various types of self-reporting mechanisms,

such as post-task questionnaires or real-time feedback.

The main goal is to propose methods and models for multi-modal fatigue analy-

sis, detection and prediction during physical and cognitive tasks. For the development

of the framework, we follow a task-driven approach; data will be collected during both

physical and cognitive tasks, specifically designed to extract behavioral patterns re-

lated to fatigue, as well as its effects on human performance. Task-related metrics

(e.g. difficulty level and task duration) will be combined with behavioral, physio-

logical and performance related data. This integration will lead to a multi-modal

dataset/s that can be eventually used to better understand correlations between user

behavior, performance, and fatigue.

4.2.2 Predicting Physical Fatigue Using EMG wearables and Subjective User Re-

ports - A Machine Learning Approach Towards Adaptive Rehabilitation

In this work, we propose a novel method towards predicting physical fatigue.

We design our approach based on objective EMG measurements and we aim to iden-

tify the presence of physical fatigue based on subjective user-reports. Based on our

analysis we highlight the significance of our findings and we discuss how machine

learning based modeling can become useful towards understanding fatigue and de-

signing adaptive rehabilitation scenarios.
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Figure 4.1. The proposed framework for multi-modal data collection during cognitive
and physical tasks for fatigue analysis. Below, an example of possible data captured in
the context of our proposed framework. The framework combines data related to (a)
Task parameters, (b) User behavior, (c) Physiological measures, and (d) Subjective
measures, for multi-modal fatigue analysis..

Physical fatigue is one of the most common symptoms across a great variety of

medical conditions, ranging from stroke and multiple sclerosis to chronic insomnia and

myoskeletal injuries [133]. However, understanding, quantifying and predicting events

of fatigue is a topic that remains vastly unexplored, primarily due to the subjective

nature of the term. Each individual experiences fatigue in a very personal way that

varies on its intensity and is affected not only by someone’s physiological state but also

by subjective factors such as emotion, which are very difficult to detect with certainty

[134]. Our inability to capture and predict such events efficiently can lead to negative

outcomes when it comes to physical rehabilitation since it increases the chance of

causing unwanted injuries and muscular exhaustion. This realization becomes even

more important when it comes to autonomous rehabilitation systems and the need
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to design adaptive systems that match user’s skills. Under that scope, understanding

physical fatigue has become an area that attracts great research interest due to its

importance towards achieving effective rehabilitation [135]. During the last twenty

years, numerous works have been published that proposed modeling-methods and

features to capture meaningful information from EMG[136, 36]. However, there is

still no general truth on what is the most efficient way to model such signals [137].

In the following sections, we present an extensive analysis and evaluation of dif-

ferent machine learning algorithms towards predicting physical fatigue, on a human-

robot rehabilitation scenario. We exploit statistical features that have been tradition-

ally used in EMG and/or audio analysis and we propose a post-processing method

that significantly improves the results provided by the original models. We use Del-

sys, a non-intrusive wearable EMG sensor and we build ML models targeting user-

reported labels on physical fatigue. Our analysis focuses on evaluating the robustness

and generalizability of such models across different users and exercises. Due to its

computational simplicity, our method is ideal for running in real-time scenarios. The

code and the data used for this work can be downloaded for free for purposes of

reproducibility and further experimentation1.

4.2.2.1 Data Collection & Experimental Setup

A study was conducted that involved 10 male and female subjects with a mean

age of 26.3 years old. The subjects were asked to perform 3 exercises; shoulder flexion

(SF), shoulder abduction (SA) and elbow extension (EE) Figure-4.2. These exercises

were performed using the Barrett WAM arm, which is capable of applying feedback

forces to the subject. The subjects were asked to hold the end-effector of the arm

while performing each exercise. Two positions were important in each exercise; start

1https://github.com/MikeMpapa/EMG Fatigue Monitoring
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position and the end position. For each exercise, the subjects would start from the

start position and move the end-effector to the end position. The subjects were

asked to hold the end-effector at that location so as to induce isometric contraction

in the muscle. During this process, the robotic arm would provide resistive forces to

the subject. EMG data were collected from the major muscles responsible for the

movement. In SF and SA, EMG data were recorded from the deltoid and in EE

from the triceps. The subjects were asked to hold the end-effector until they start to

feel fatigued. When that occurred, they would inform the researcher conducting the

experiment who would mark the time point. After the pass of almost 10 sec of the time

the subject reported fatigue, the researcher would ask them to go back to the start

position to complete the exercise. Subjects were asked to perform 3 repetitions of each

exercise. A short period of rest was provided between each exercise to mitigate the

cascading effect of fatigue. In total we collected 10 users × 3 exercises × 3 repetitions

= 90 EMG recordings.

Figure 4.2. A- Shoulder Flexion B- Shoulder Abduction C- Elbow Extension. The
green circles indicate the start positions and the red circles indicate the end positions.
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4.2.2.2 Methodology

The Delsys EMG wearable sensors provided a sampling frequency of 1926HZ.

As a first step and in order to reduce the inherent noise of the EMG recordings we

filtered the signal using the median filtering technique with a window size of 11 sam-

ples. Using those filtered signals as input to our algorithm, short-term features were

extracted from the time and spectral domain, which are then re-modeled in a mid-

term fashion. The final feature vectors extracted from the mid-term windows were

used as input samples to the classification algorithms. Targeted labels were the user-

reported, binary indications of fatigue (0 meaning no-fatigue and 1 meaning fatigue).

Thus, a valid set of labels as provided by the user would have the following form:

[0,0,0,0,0,0,...,1,1,1,1,1,1,1,1], where each label corresponds in a sample captured by

the EMG sensors (ie. 1926 labels per second).

4.2.2.2.1 Signal-Prepossessing

For splitting the EMG signals into short and mid-term windows, empirical window

sizes were used, based on the fact that muscle fatigue changes are observed relatively

slow. Short-term non-overlapping windows were extracted with a length of 0.25 sec,

while overlapping mid-term windows were extracted capturing 2 sec of EMG infor-

mation with a window step of 1s.

4.2.2.2.2 Feature Extraction

As explained in Section-3.5.1.2, a two-step feature extraction process was held in order

to model the raw EMG information. Firstly a descriptive set of short-term features

was extracted from each short-term window and then based on those features a set of

statistical mid-term features was extracted to create the final feature vectors (FVs).
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Based on extensive literature review on handcrafted feature extraction for ef-

fective EMG signal representation [136, 137], for every 0.25 sec short-term window

we extracted the following list of features:

1. Spectral Entropy: Entropy of the normalized spectral energies for a set of

sub-frames (equation-2.15)

2. Spectral Flux: The squared difference between the normalized magnitudes of

the spectra of the two successive frames (equation-2.16)

3. Spectral Minimum, Maximum, Standard Deviation & Mean

4. Minimum, Maximum, Standard Deviation & Mean values of the time

domain in a specific frame

5. Zero Crossing Rate : The rate of sign-changes of the signal during the dura-

tion of a particular frame. (equation-4.1)

6. Energy Entropy: The entropy of sub-frames normalized energies. It can be

interpreted as a measure of abrupt changes (equation-2.12)

7. Willson Amplitude (WAMP): The number of times that the difference be-

tween two consecutive amplitudes in a time segment becomes more than a

threshold. WAMP can be seen as an indication of muscle contraction levels.

WAMP =
N−1∑
t=1

f(xi − xi+1) (4.1)

, where f(x) =


1 if x > threshold

0 otherwise

and N is the length of the signal. This

feature is an indicator of firing motor unit action potentials (MUAP) and there-

fore an indicator of the muscle contraction level.

These features are in general known for their ability to describe core character-

istics of 1-D signals such as Accelerometer axis-based analysis or audio modeling and
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have been proven quite informative in the past for the specific purposes of EMG clas-

sification. Especially features stemming from the time domain such as Zero-Crossing

Rate, Energy Entropy and WAMP amplitude have shown great potentials for captur-

ing EMG based patterns. However, an in-depth analysis of EMG feature selection is

out of the scope of this work and feature selection was mainly inspired based on the

related literature and our experimental analysis.

At every step, in addition to the features extracted from the current short-

term window, we compute the deltas between the present set of features and the set

of features extracted from its preceding window. Thus, describing each short-term

frame with a set of 26 values (13 features from the current window plus 13 deltas).

For the mid-term window extraction, each set of 8 successive short-term FVs is

described using the minimum, maximum, standard deviation and mean information

extracted for each short-term feature. Hence, producing a final feature vector of 4*26

= 104 values.

During our experimentation, other features were also evaluated like signal en-

ergy, spectral spread (ie. the second central moment of the spectrum), spectral rolloff

(ie. the frequency below which 90% of the magnitude distribution of the spectrum

is concentrated) and spectral centroid (the center of gravity of the spectrum). How-

ever, they were omitted from our final evaluation since they didn’t seem to have a

significant effect on the final outcome.

4.2.2.2.3 Classification

For classification purposes, we experimented with a set of five traditional ML algo-

rithms that have been extensively used for signal processing and EMG modeling in

particular [136, 36, 138]. More specifically we evaluated the performance of the fol-
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lowing methods: Linear SVM, SVM with an RBF Kernel, Gradient-Boosting (GB),

Extra-Trees (ET) and Random Forests (RF).

4.2.2.2.4 Post-Processing

Our initial experimentation indicated that the original methods were usually failing

to correlate the EMG information to the actual labels provided by the users, as

they were often achieving an Average F1 lower than 70% and in many cases just

slightly higher than 50% (ie. very close to random choice). Keeping in mind that

classification takes place in a mid-term window basis, this made it impossible to

consistently track fatigue in a long-term sequence as the algorithm would produce

labels that were very hard to interpret. For example assuming again that 0 indicates

’NO-FATIGUE’ and 1 indicates ’Fatigue’ a possible output sequence would look like

[’0,1,1,0,0,1,0,...,0,1,1,1,0,1,0]. Thus, we developed our own post-processing method

that builds upon the decisions of the initial classifiers and re-evaluates their decisions

by keeping track of the N past mid-term labels assigned by the model.

In particular, as a first step, we apply a median-filter of size K to the original

predictions made by the classifier. Then the method gathers the successively assigned

labels into groups of M. If in the N past groups, the total number of samples that

have been identified as ’FATIGUE’ exceeds a specific threshold, then and only then

the method decides that the subject has shown signs of fatigue. Otherwise, it assumes

that the classification algorithm found a set of false positives and the process contin-

ues as if the subject has not been fatigued. Using this kind of post-processing the

final output of our method has the following form [’0,0,0,0,0,0,0,...,1,1,1,1,1,1,1’] and

provides significantly higher classification performance in all cases, as we will discuss

in Section-4.2.2.3.
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In Algorithm-2 we show the pseudo-code of the proposed post-processing tech-

nique and in Algorithm-3 we show the whole fatigue detection framework again in

the form of pseudo-code. Figure-4.3 illustrates the overall system architecture.

Figure 4.3. The overall system architecture. Blue and red EMG values correspond to
NO-FATIGUE and FATIGUE ground truth labels respectively..

In our implementation, hyper-parameters were set to K1 = 3, M = 3, STEP =

1, N = 2, THRESH V AL = 0.6 and K2 = 11. For reproducibility and reusability

purposes our code along with the data that used for the purposes of this study can

be found and downloaded for free at github2. The hyper-parameters of each classifier

were tuned using an exhaustive grid-search approach. It has to be noted that in terms

of time delay’s the algorithm makes a decision equal to the step-size of the mid-term

frame (1s in our implementation), with only exception its first decision that takes

place 2 sec after the recording has started.

2https://github.com/MikeMpapa/EMG Fatigue Monitoring
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Algorithm 2 EMG Post-Processing Algorithm

1: filtered labels = median filter(original predictions,K1)

2: group size = M

3: group step = STEP

4: thresh = THRESH V AL

5: prev window 1, ..., prev window N = None

6: x1 = 0

7: x2 = group size

8: while true do

9: current window = filtered labels[x1 : x2]

10: t1← (current window=′FATIGUE′)
group size

>= thresh

11: ...

12: tn← (prev window N=′FATIGUE′)
group size

>= thresh

13: if (t1 & ... & tn) == TRUE then

14: state =′ FATIGUE ′

15: return state

16: prev window 1 = current window

17: ...

18: prev window N = prev window (N − 1)

19: x1 = x1 + group step

20: x2 = x2 + group step
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Algorithm 3 Fatigue Detection Framework

1: filtered signal = median filter(original signal,K2)

2: st features← st feature extraction(RAW EMG)

3: mt FV ← mt feature extraction(st features)

4: Prediction← Classifier(mt FV )

5: Fatigue Prediction← Algortithm1(Prediction)

4.2.2.3 Experimental Results

To examine the the robustness of the proposed method in capturing subjective-

fatigue, we perform 4 different types experiments. In all our experiments we evaluate

our method in terms of Precision (Pr), Recall (Rec) and F1 measures (equations-

2.19, 2.18, 2.20). In all the following results ’NF’ indicates the ’NO-FATIGUE’ label

and’ F’ corresponds to ’FATIGUE’.

4.2.2.3.1 Cross-User Evaluation

In the first experimentation, we perform a Cross-User Evaluation. A leave-one-out

cross-validation technique was applied with respect to different users. At each step,

all recordings from 9 users were used for training and all recordings of the remaining

user were used for testing. We performed this process 10 times, each time using a

different user for testing (Table-4.1). Using the proposed post-processing method,

significantly improved the final results in terms of Average F1 in all cases. Original

Classification results in terms of Average F1 were: SVM = 60.6, SVM RBF=55.4,

GB=57.5, ET=54 and RF=53.7. GB provides the best results in this evaluation,

which are however directly comparable to the results provided by the SVM classifier.
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SVM SVM-RBF GB ET RF

Pr NF 70.2 75.6 64.4 62.3 58.4
Pr F 70.8 66.1 76.6 66 62.8
Rec NF 56.8 40.7 73 48.7 40.8
Rec F 81.3 89.8 68.7 77.1 77.5
F1 NF 62.8 52.9 68.4 54.6 48
F1 F 75.7 76.2 72.4 71.1 69.3
AVG F1 69.2 64.5 70.4 62.9 58.7

Table 4.1. Average Performance Results on Cross-User Evaluation

4.2.2.3.2 Cross-Exercise Evaluation

In the second experimentation, we aimed to evaluate the robustness of the proposed

method across different exercises. Similarly as before a leave-one-out cross-validation

was performed, but now in terms of different exercises. Thus, all samples, from

all users that belong to single exercise were used for testing and all the rest were

used for training. We repeated this process 3 times and we averaged the final re-

sults (Table-4.2). As in the case of cross-user evaluation, post-processing signifi-

cantly improved initial classification results, where the Average F1 was: SVM = 58.6,

SVM RBF=54.2, GB=54.4, ET=53 and RF=53.7. In this scenario, SVM provides

by far the best classification results.

4.2.2.3.3 Single User Evaluation

In this scenario we perform 10 different evaluations, each time using only the record-

ings that belong to a single user (ie. 3 exercises × 3 repetitions = 9 recordings). For

each user, the evaluation process was the same as before, where we ran the classifi-

cation algorithm 9 times, each time using 8 recordings as training and the remaining

as testing. Table-4.3 shows the averaged results across all 10, user-based evalua-
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SVM SVM-RBF GB ET RF
59.1

Pr NF 63.4 56.9 63.4 60.5 59.1
Pr F 74.3 67 69.4 68.2 67.4
Rec NF 65.5 58.3 57.8 57.4 56.5
Rec F 77.6 65.8 74.1 71 69.7
F1 NF 67.4 57.6 60.5 58.9 57.8
F1 F 75.4 66.4 71.6 69.6 68.5
AVG F1 71.7 62 66.1 64.2 63.1

Table 4.2. Average Performance Results on Cross-Exercise Evaluation

tions. Again after post-processing the initial prediction, results were significantly

improved in terms of Average F1. Initial classification performance was: SVM =

65.2, SVM RBF=68.5, GB=70.1, ET=72.4 and RF=71.5.. Here in contrast to pre-

vious evaluations ET and SVM RBF provide slightly better results than the other

three classification methods.

SVM SVM-RBF GB ET RF

Pr NF 75.4 77.5 72.3 73.5 71.2
Pr F 76.2 78.5 77.9 82 79.6
Rec NF 66.6 70.3 71.1 77.8 74.7
Rec F 83.2 84.2 78.9 78.2 76.7
F1 NF 70.7 73.7 71.7 75.6 72.9
F1 F 79.6 82.3 78.4 80 78.1
AVG F1 75.1 77.5 75.1 77.8 75.5

Table 4.3. Average Performance Results on Single-User Evaluation
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4.2.2.3.4 Single Exercise Evaluation

Our final evaluation targets to recognize fatigue based only on samples that belong

to a single exercise. Similarly, as in the previous case, we performed 3 different

evaluations, one for each exercise. In each evaluation we used all recordings from

all users that belong to the specific exercise (ie. 10 users × 3 repetitions = 30

recordings). For each evaluation, we followed again a leave-one-out approach where

we used 29 recordings as training and 1 as testing and we repeated the process 30

different times for each exercise (each time using a different recording for testing).

Table-4.4 shows the averaged results across all 3 exercise-based evaluations. Post-

processing results are again superior compared to the initial classifications in terms

of Average F1. Original classifier outputs without post-processing where: SVM =

61.5, SVM RBF=65, GB=67.2, ET=68.5 and RF=66.8.. Here all methods provide

comparable results, but GB slightly outperforms the rest.

SVM SVM-RBF GB ET RF

Pr NF 86.2 76.1 78.4 75.3 76.6
Pr F 71.2 76.3 76.2 74.7 76.3
Rec NF 56.5 66.5 68.2 63.4 66.1
Rec F 92.3 83.8 85.7 83.9 84.3
F1 NF 68.3 71 72.2 68.9 71
F1 F 80.4 79.9 81.1 79 80.1
AVG F1 74.3 75.4 76.6 74 75.5

Table 4.4. Average Performance Results on Single-Exercise Evaluation
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4.2.3 Overall Classification Improvement

In Figure-4.4 we show the % improvement of the classification results for each

evaluation scenario after applying the post-processing temporal modeling method de-

scribed by Algorithm-2. As the results indicate after the application of Algorithm-2,

classification results showed significant improvements for all tested classifiers. Maxi-

mum improvement with a magnitude of 13.1% is shown for the SVM classifier for the

E2 evaluation scenario while minimum improvement was 4% for the RF classifier for

the E3 evaluation.

Figure 4.4. % Classification Improvement in terms of Average F1 after applying the
temporal post-processing method described in Algorithm-2.

4.2.3.0.1 Temporal Evaluation

To evaluate the efficiency of the proposed method in terms of temporal accuracy we

performed a Paired Two One-Sided (TOST) equivalence test. Equivalence statistical
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tests aim to validate the fact that a difference between two sets lies within a given

interval. TOST is based on the classical t-test used to test the hypothesis of equality

between two means. In particular, TOST performs two types of t-tests; one to verify

if the difference is below a higher threshold and a second one that evaluates if the

difference is higher than a lower threshold. In this work, the difference was calculated

as Treported fatigue−Tdetected fatigue . The threshold, which was calculated through trial

and error, signifies the maximum time difference between the subject feeling fatigued

and the system recognizing the event. There were two thresholds considered; the

lower threshold indicates delayed detection while the higher signifies early detection.

Table-4.5 illustrates the TOST results.

Despite the fact that temporal evaluation for each exercise has been reported

individually, it has to be noted that no safe results can be drawn due to the lim-

ited number of samples available. Only the last column (Avg Performance) can be

considered for reliable evaluation purposes. The rest of the results are mainly re-

ported for informational purposes since they can help draw useful insights. For the

temporal evaluation of the method, we used only the models that provided the best

performance in terms of average F1 for each of the four evaluations (E1-4).

According to the results of Table-4.5 building models based on multiple users

(E1) or on samples related to a single exercise (E4) were the most effective ones

both in terms of Success Rate (ie. percentage of exercise sessions that the system

successfully detected fatigue) but also in terms of temporal accuracy. In other words,

these models were able to generalize their results better compared to the rest.

In the case of E1, the algorithm must have been able to depict the most generic

of patterns that can eventually apply in the majority of users. However, judging from

the classification results provided in Section-4.2.2.3.1 in most cases the model must

have been making the wrong predictions almost 30% of the times, which indicates
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that in most scenarios the algorithm was at the limits of its temporal boundaries (ie.

predictions where usually ±5 sec off).

On the other hand, in the case of E4, the model must have been able to capture

similar behaviors across different users, when performing the same exercise. Along

with the good performance reported in Section-4.2.2.3.4, such exercise-based models

seem to be the best choices towards modeling physical fatigue using subjective reports,

especially on users with similar physical characteristics.

In the other two training scenarios (E2 and E3) even-though temporal bound-

aries were relatively low (±6 sec), Success Rate was comparably low in both cases.

For models based on E2, this comes along with the findings of Section-4.2.2.3.2 and

indicates that such methods are in general unable to generalize across different exer-

cises. According to these findings integrating exercise characteristics is very critical

towards designing robust models since they remain constant and must be followed by

all users in the same way. For models designed based on E3, the low Success Rate is

an observation that comes to our surprise and further analysis needs to be done in the

future. A possible reason for the contradictory findings between the high average F1

reported in Section-4.2.2.3.3 and the low Success Rate observed in Table-4.5 might

be due to the fact that evaluation of Section-4.2.2.3.3 is averaged firstly across all

the sessions performed by the same user and secondly across all the users in order to

get the final aggregated results. Moreover, performance is reported as a total metric

across all exercises. Hence, it is very possible that in most cases of E3 the algorithm

provided high performance for some users and relatively low for others. Those kinds

of differences cannot be sufficiently represented by the aggregated results, but are

easily observable through the analysis provided by Table-4.5. Hence models built

based on E3 cannot be considered trustworthy by default since they seem to be very

depended by within user variations.
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EXERCISE
MODEL SF SA EE Avg Per.

Multi-User

#Failure Samples 6 4 13 23
#Valid Samples 24 26 17 67

Success Rate 80% 87% 57% 74%
p upper .019 .024 <.001 .015
p lower <.001 <.001 .018 <.001

bounds (sec) +-10 +-7 +-6 +-5

Multi-Exercise

#Failure Samples 7 9 16 32
#Valid Samples 23 21 14 58

Success Rate 77% 70% 47% 64%
p upper .031 .034 .025 .038
p lower .019 <.001 <.001 <.001

bounds (sec) +-4 +-13 +-8 +- 6

Single User

#Failure Samples 15 11 9 35
#Valid Samples 15 19 21 55

Success Rate 50% 63% 70% 61%
p upper .013 .037 .026 .013
p lower <.001 .025 <.001 <.001

bounds (sec) +-7 +-7 +-8 +-6
#Failure Samples 11 7 6 24
#Valid Samples 19 23 24 66

Success Rate 63% 77% 80% 73%
Single Exercise p upper .029 .019 .029 .014

p lower <.001 <.001 <.001 <.001
bounds (sec) +-9 +-5 +-6 +-5

Table 4.5. Temporal Evaluation of the computed models. Multi-User model cor-
responds to the models built for E1, Multi-Exercise to E2, Single-User to E3 and
Single Exercise to E4. Ex#1-3 correspond to the exercise SF, SA and EE respec-
tively.#Failure Samples indicates cases (exercise sessions) where the proposed method
failed to detect fatigue even though it was present according to user reports. #Valid
Samples corresponds to the total number of exercise sessions that fatigue was suc-
cessfully detected by the system. TOST was performed on the amount of samples
indicated by #Valid Samples. Success Rate indicates the percentage of #Valid Sam-
ples over the total number of available sessions (30 sessions per exercise and 90 sessions
in total); p upper and p lower correspond to the values of statistical significance that
the system would detect fatigue within ±bounds sec from the time user reported fa-
tigue. Even-though per-exercise evaluation is also reported for each model, only useful
insights can be drawn but no safe and generalizable results due to the limited number
of samples used for statistical analysis. Only Average Performance evaluation (bold)
can provide representative and trustworthy evaluation for the temporal performance
of the proposed methodology.
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4.2.3.1 Takeaways

In this work, we tried to tackle the very complex problem of recognizing physical

fatigue based on subjective user reports and EMG information. We proposed a post-

processing method that can be applied in real-time and seems to significantly improve

classification results of traditional ML-based techniques in terms of fatigue-detection.

Modeling subjective fatigue can be an extremely challenging problem due to the

great variability between self-reports and actual EMG measurements across different

users and scenarios. In addition, creating an objective measure of fatigue is still

very premature as it is a factor that depends highly on each individual and his/her

mental and physical state. Despite the aforementioned challenges, it seems that a

combination of carefully selected features and classifiers can provide promising results

towards targeting self-reported fatigue and can be very useful towards understanding

shared behaviors across users. Such observations are crucial to unraveling the effects

of physical fatigue in human performance and can help us draw valuable assumptions

between the vague correlation of physical and cognitive fatigue [60].

4.3 Advantages, Limitations & General Observations

In this chapter, we introduced the concept of fatigue and we highlighted its

subjective nature and how it can be affected by individual differences. Towards un-

derstanding patterns of fatigue across different subjects but also within the same

persons we proposed a general, task-based framework that aims to capture correla-

tions between performance and different types of fatigue (ie. physical and cognitive).

In our initial experimentation, we showed that traditional machine learning methods

can be used to extract and describe physiological patterns that can be used to detect

physical fatigue. Our evaluation showed that these patterns, despite their simplicity
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were in many cases highly correlated with user-reports about their personal percep-

tion of physical fatigue during physical exercising. In the next two chapters, we try to

build upon those findings and extend our methods and experimentation by targeting

factors and behaviors related to cognitive fatigue.
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CHAPTER 5

BRAIN-COMPUTER INTERFACES & COGNITIVE ASSESSMENT

5.1 Introduction

Brain-Computer Interfaces (BCI) are interactive systems that can provide com-

munication and environmental control between a person and an external device. With

the rapid growth of AI and the ground-braking improvements provided in terms of

hardware during the last decades, researchers have focused their efforts on advanc-

ing those systems into intelligent architectures able to assist populations suffering

from various physical or mental impairments [139]. Figure-5.1 illustrates the general

computational architecture of a BCI system. Despite the fact that BCI research has

traditionally targeted the augmentation of mobility-related functionalities (Figure-

5.2) [140, 141], latest efforts aim to expand the advantages of BCI systems in the area

of behavioral and cognitive assessment [142, 143]. This latter domain has its roots in

the context of neuro-feedback therapy and addresses patients with neurological devel-

opmental disorders such as autism spectrum disorder, attention-deficit/hyperactivity

disorder, stroke patients or elderly subjects [144]. However, such systems do not limit

their capabilities on disabled populations as they can act as cognitive state indica-

tors for fully-functional subjects as well. Neuro-feedback signals can provide unique

information for the purposes of adaptive interaction scenarios and can be exploited

towards enhancing human performance and user engagement [61]. In this chapter,

we present a ML method able to predict user performance in a cognitive task. As-

sessing cognitive performance and user skills through BCI and ML is a completely

new research domain with great potential across a large spectrum of applications that
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involve high-risk decision making or training and learning and are characterized by

increased cognitive demands [145].

Figure 5.1. The general architecture of any BCI interface. Initially proposed by
Wolpaw et al. in 2002 [139].

5.2 Predicting Cognitive Performance

As explained in the previous section, BCI-based prediction and analysis of cog-

nitive performance powered by AI methods is still a very unexplored field of research

with massive potentials. Cognitive performance assessment in real-time can have a

tremendous impact on numerous application including but not limited to driver and

machine operator assessment, medical doctor monitoring or cognitive rehabilitation

for brain injuries such as stroke or Traumatic Brain Injury (TBI). [146, 147, 148].
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Figure 5.2. Applications focused on augmenting human mobility skills. In a one of
the most pioneering works in the domain proposed by Hochberg et al. in 2012 [140]
shows a tetraplegic woman controlling a robotic arm through a BCI. In b [141] a man
controls a wheelchair through hand gestures, recognised by a BCI system.

Moreover, such technologies may have a drastic effect on the way that current train-

ing and educational methods are performed, as they can provide unique fingerprints

of user’s cognitive-state as feedback towards designing adaptive environments that

can better fit user skills and abilities [149]. Despite the fact that several methods

have been proposed to asses cognitive aspects that can have an immediate effect on

user performance, such as cognitive load or attention [150, 151], very few have tried to

directly tackle the problem of performance prediction using wearables. That is partly

because performance is by definition highly dependent on the evaluated task but also

because the trade-off between signal-quality and invasiveness introduced by wearable

sensors wouldn’t allow application of such methods in real-life systems. However, in

recent years off-the-shelf technology has drastically narrowed the gap between sensor-

size and data-quality thus, allowing novel HCI methods to emerge.
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5.2.1 Towards predicting task performance from EEG signals

Under the context discussed above, we propose a passive BCI system, that uses

a wireless non-intrusive EEG sensor under a robot-assisted training task designed for

cognitive assessment. As part of this work, we demonstrate our results on predicting

user’s task performance, from the EEG signals, before task completion. Our findings

highlight the potentials of our hypotheses as we achieve a maximum accuracy rate

equal to 74% when evaluated on 69 real subjects.

In particular, we test our system in a cognitive task designed to asses working

memory. The task was initially proposed by Tsiakas et al. and was designed as a

method to asses user engagement in an HRI training-scenario with a social robot

[152]. The task selection was made to evaluate one of the most common cognitive

skills of the human brain (working memory) which, is present in the vast majority

of tasks someone would perform during a daily routine. Our experiments focus on

predicting the user’s task performance from the EEG data before the user completes

the task. According to our knowledge, this is the first effort that aims to directly

predict the user’s performance from EEG in such a task. Initial results indicate that

there is a clear correlation between the EEG measurements and the final outcome

of the memory game and that there are potential patterns able to capture certain

cognitive behaviors across different users.

5.2.1.1 The Sequence Learning Task

Sequencing is the ability to arrange language, thoughts, information, and ac-

tions in an effective order [153]. Extended research on the field of cognitive sciences

has shown that sequence-learning tasks can be applied to evaluate human behaviors

related to learning ability, short term memory, and attention [154, 155].
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Towards this direction, we developed the Sequence Learning (SL) task; a work-

ing memory task that evaluates the ability of a human to remember and repeat a

sequence of items (e.g., letters, numbers, actions) [152]. For our experimental setup,

we deploy the NAO1 robot as a socially assistive robot that instructs, monitors and

evaluates user’s performance during the task. While performing the SL task, users

have three buttons in front of them (”A”, ”B”, ”C”) and the robot asks the user to

repeat a given sequence of these letters by pressing the corresponding buttons. The

game consists of four difficulty levels where each level corresponds to a combination

of 3,5,7 and 9 letters respectively. A complete session (human-robot interaction) con-

sists of 25 turns/sequences. The level of each turn/sequence is decided randomly and

all levels are equally distributed within a session. For the purposes of this research

we considered a binary score at each turn, success or fail

5.2.1.2 Data Collection

For the data collection, 69 CSE undergraduate and graduate students from the

University of Texas at Arlington were recruited. Each user completed a single session

of the SL task (25 turns/sequences). During the task, EEG signals were recorded using

the Muse EEG headset2, a low-cost and non-invasive EEG wearable device which,

has been used previously for similar research purposes [156]. The Muse provides

4 channels of data; two coming from the forehead and two from behind the ears.

The EEG signals were generated at a sampling rate of 220Hz. The device provides

direct access to raw EEG signals as well as to a set of specific EEG wavelengths that

are known to describe specific information regarding brains activity. The frequency

bands provided by the device are δ (1-4 Hz), θ (5-8 Hz), α (9-13 Hz), β (12-30 Hz)

1https://www.ald.softbankrobotics.com/en/cool-robots/nao
2http://www.choosemuse.com/
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and γ (30-50 Hz). Extensive details regarding the available data can be found at

[152, 157]. According to related literature δ waves provide information related to

deep dreamless sleep when there is a lack of body awareness, θ waves are useful to

describe deep mental states such as dreaming or deep meditation where subjects have

reduced consciousness, α waves describe physically and mentally relaxed states of

mind while β and γ can be used to describe awake and alert states of consciousness

with heightened perception and are related to active thinking, excitement, learning,

and increased cognitive processing[158].

At each turn of every session, we store separately user’s EEG captured during

the listening process (robot pronounces a new sequence) from the EEG collected

during the acting-process (user repeats the sequence by pressing the buttons). In the

following Paragraph, we describe our classification results on the task of predicting

the user’s final performance (fail/success) at a single turn, using only the EEG from

the listening process. In Figure-5.3, we illustrate the experimental setup.

Figure 5.3. The Sequence Learning setup.
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The original data and details of the SL task along with the processed data and

the code for the proposed work are available online34.

5.2.1.3 Results & Analysis

As explained in the previous Section, we exploit the EEG signals captured

during the listening process, to predict the final outcome of a single turn of the SL

task. For validation purposes, we perform a 10-fold cross-validation across all users.

At each fold, 80% of the users (55 subjects) were randomly picked for training, and

the rest were used for testing. From each user, 25 interaction results were available,

equal to the total number of turns/sequences played within a session. In total, we had

1375 training samples and 350 testing samples available at each fold. The distribution

of the samples across the two classes always depended on the personal performance

of the users picked each time for training. Across the 10 folds, the average prior-

probabilities for success and failure in a single turn/sequence were 60% and 40%

respectively.

5.2.1.3.1 Feature Extraction

As discussed in Section-5.2.1.2, the Muse provides a set of frequency bands, extracted

from the raw EEG in real-time through a digital signal processing component em-

bedded in the device. For every frequency band, Muse estimates the absolute and

relative band powers along with a band-power session score. According to Muse’s

documentation, the band session score is computed by comparing the current value

of a band power to its history. Detailed information regarding the exact metrics and

how they are estimated can be found at [157] and at Section-6.4.2.1. In total, for

3https://github.com/TsiakasK/sequence-learning
4https://github.com/MikeMpapa/EEG-Sequence-Learning
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our experiments we exploited 15 different data streams, each coming from 4 differ-

ent channels thus, ending up with an initial feature representation of size equal to

4 × 15 = 60. More specifically, from every channel the following data streams were

analyzed; δ, θ, α, β and γ relative band powers, their respected absolute band powers

and their session-score signals. From each of the 60 EEG feature-streams captured

during the listening process, we extract the following statistical features:

• Standard Deviation

• Mean Value

• Maximum Value

• Minimum Value

• Spectral Centroid (equation-2.13)

The center of gravity of the spectrum after applying FFT on the original signals.

• Spectral Rolloff (equation-2.17)

The frequency below which 90% of the magnitude distribution of the spectrum

is concentrated after applying FFT on the original signals.

The final feature vector representation consists of 60∗6 = 360 features, extracted

from the EEG signals of a single subject and captured during the listening process,

of a single turn/sequence of the SL task.

5.2.1.3.2 Classification

For classification, we experimented with 5 different classification methods; SVMs,

SVMS with an RBF kernel, Random Forests (RF), Extra Trees (ET) and Gradient

Boosting (GB). For tuning, the c parameter of each classifier and for training each

classification method the implementation described at [85] was applied. Before feeding

the training data into the classifier, features are normalized to have mean = 0 and

std = 1. In Table-5.1, we show the classification results. Since the two versions of

112



SVM provided very similar results, we show only the linear-SVM evaluation as it was

slightly superior. In all the cases, the estimated time required for a single prediction

was on the scale of milliseconds.

SVM GB RF ET

S F S F S F S F
Prec 0.75 0.48 0.81 0.56 0.89 0.24 0.91 0.2
Rec 0.69 0.55 0.78 0.6 0.69 0.54 0.69 0.54
F1 0.72 0.51 0.79 0.58 0.78 0.33 0.78 0.29
Acc 0.65 0.74 0.67 0.67

AVG F1 0.62 0.69 0.56 0.54

Table 5.1. EEG Classification Results

It is clear from the results that there is a significant statistical correlation be-

tween the EEG features and user’s final performance. Despite the simplicity of the

final features, the amount of captured information seems sufficient to provide a rough

estimate with an average accuracy of 74% for the outcome of the task, when using a

Gradient Boosting classifier.

5.2.1.4 Takeaways

We proposed a passive Brain-Computer Interface (BCI), using the Muse, a

wireless non-intrusive EEG sensor under the scenario of the Sequence-learning task;

a robot-assisted training task designed for cognitive assessment. Our preliminary re-

sults highlight a clear correlation between the user’s brain activation and the actual

outcome of the task, significantly before task completion. We evaluated our system

on 69 real subjects following a user-independent modeling approach, ie. each user

was considered either for training or for testing. Each interaction between the user
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and the system was represented by a feature vector of 360 statistical features ex-

tracted from the 60 available data streams captured at each timestamp by the Muse.

Gradient Boosting classification provided the best classification results achieving a

maximum accuracy of 74with an average F1 of 69%. Our experiments highlight the

great potentials of ML methods to model human performance in cognitive tasks.

5.3 Advantages, Limitations & General Observations

It is well known that cognitive performance is highly affected by fatigue. Even

though the relationship between cognitive and physical fatigue is not clear yet, several

research efforts have concluded through experimentation that intense physical activity

can have a major impact on cognitive performance. In Chapter-4 we showed that

machine learning based approaches are able to effectively incorporate and correlate

objective and subjective information towards depicting robust signs of physical fatigue

across users. Moreover in Chapter-5 our experiments indicated that similar modeling,

when applied on EEG signals, are able not only to detect but also to predict behaviors

of cognitive performance. Hence, it comes as a natural consequence our interest to

explore the potentials of machine learning towards identifying patterns of relation

between human’s fatigue and cognitive performance.

During our experimentation on the aforementioned topics, it came to our at-

tention that a major problem for targeting such problems was the lack of available

data for research purposes. Thus, a direct problem that surfaced was our inability

to effectively reproduce the conditions described by other research teams for data

collection and analysis of such behavioral and physiological data for the purposes

of prediction and recognition of fatigue and performance. Taking this very crucial

fact into account in Chapter-6 we propose CogBeacon. The first multi-modal dataset

specifically designed to address aspects of cognitive fatigue. In contrast to most pub-
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lic datasets, CogBeacon comes along with an easy to install software that enables

other researchers to reproduce the data collection process using minimal hardware

equipment. Moreover, CogBeacon’s software aims to enable researchers to expand

the available data offered by the current version of the dataset hence, creating a more

robust and complete collection. Finally, as an open-access software CogBeacon allows

researchers to incorporate their own sensors towards investigating additional behav-

ioral and physiological sources for cognitive fatigue analysis. This is very important

as it eventually creates a data collection framework that is independent of specific

hardware dependencies. A fact that is pivotal in a field such as behavioral monitoring

using wearables, where technology evolves so rapidly and hardware devices are being

updated and replaced by new ones in an extremely intense rate.
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CHAPTER 6

COGBEACON: A MULTI-MODAL DATASET & DATA COLLECTION

PLATFORM FOR MODELING COGNITIVE FATIGUE

6.1 Introduction

Cognitive fatigue (CF), which is different from but related to physical fatigue,

is an ubiquitous symptom found in numerous real-world applications such as, health-

care, transportation safety, and in the industrial workplace. It is considered an ”invis-

ible” safety risk [159], often going undetected and untreated, and can cause impaired

judgment and other symptoms. For example, consider a school bus driver who is so

fatigued that he misses a stop sign; or an airport security officer who fails to rec-

ognize a gun inside a passing bag; or a nurse or doctor who administers the wrong

medication; or a lecturer who makes mistakes, impacting the quality of education.

In medicine, physical and CF are the most common symptoms across many physical

and mental diseases such as Multiple-Sclerosis (MS), Lupus [160], Parkinson [161],

Chronic Insomnia or bad sleep quality [162], Traumatic Brain Injury (TBI) [163], and

others.

There are a variety of reasons why CF is important; it affects many clinical

populations who have sustained brain injury or disease as well as individuals who

have undergone chemotherapy intervention for cancer, individuals with Chronic Fa-

tigue Syndrome, Veterans with Gulf War Illness, and even otherwise healthy aged

individuals. That is, CF is pervasive. It is frequently rated as the worst, or among

the worst, consequences following brain injury or disease. It degrades the quality of

life because affected individuals refrain from doing activities that lead to CF, with the
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result that they leave the workforce, limit social interactions, and cease to perform

mental work that we know is essential for the maintenance of cognitive abilities. CF

can have a direct impact on the quality of life, it can impact productivity and the ef-

ficiency of completing every-day tasks, and it can significantly increase the possibility

of unwanted accidents with critical effects. CF, rather than muscular work-associated

fatigue, has a greater impact on individuals with TBI than any other factor and is

rated as one of the most distressing symptoms in at least half of TBI patients. CF

occurs in 45-73% of the TBI population (both civilian and military)[164], with 73%

of participants reporting significant levels of fatigue even five years post-injury [165].

In MS populations, fatigue is the single most commonly reported symptom [166],

and one of the ”most troubling symptoms” [167] because of its negative impact on

the quality of life. CF, specifically, is cited as being a significant barrier to employ-

ment, educational attainment, and everyday functioning, [168, 169]. According to the

Occupational Safety and Health Administration (OSHA) [170], employees suffering

from fatigue are 2.9 times more likely to be involved in job-related accidents such as

slips, falls, and even death. Though human error cannot be eliminated completely,

accidents can be reduced and prevented by applying intelligence to identifying the

root causes of fatigue, based on analysis of longitudinal behavioral data.

Motivated by the aforementioned observations, we propose CogBeacon; a dataset

designed to identify signs of CF across individuals while performing a cognitive task.

CogBeacon, offers access to multi-sensing data along with user-reports and task-based

performance metrics towards identifying events of CF. Thus, allowing researchers

to investigate complex correlations across these three diverse but highly correlated

groups of behavioral characteristics. Moreover, along with the collected dataset,

CogBeacon comes with an open-access software that provides the required back-end
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computational framework needed for data collection 1. Our goal is to motivate other

researchers to extend the functionalities of the system by integrating their own cog-

nitive tasks and sensors and enrich the available dataset by conducting their own

experiments using the CogBeacon Platform.

The rest of the Chapter is structured as follows. In Section-6.2 we discuss

computational methods that have been proposed in the past for CF analysis. In

Section-6.3 we explain the WCST cognitive task and we present our implementation

which follows the same principles and which we used for our data collection. Section-

6.4.3 describes the experimental setup and provides an in-depth description of the

compiled dataset. Section-6.5 and Section-6.6 show our initial findings after con-

ducting the user study and a preliminary machine-learning analysis on the collected

multi-modal data. Finally Section-6.7 summarises our findings and highlights future

directions.

6.2 Background - Computational Modeling of Cognitive Fatigue

Detecting and predicting CF is not a new problem in the area of behavioral

modeling. Several research efforts have tried to tackle the problem in the past by

adopting various approaches under different experimental assumptions. However, it

remains a wide-open problem due to its high levels of ambiguity and despite its im-

portance in many applications, there are very few (if any) available datasets designed

to tackle the problem. In 2004 Hursh et al. [171] was one of the first research groups

that tried to predict CF using methods of computational modeling. In particular,

they proposed FAST a tool for fatigue forecasting designed to assist operators in the

transportation sector. FAST functioned based on the SAFTE model; a computational

1https://github.com/MikeMpapa/CogBeacon-WCST interface
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architecture for modeling fatigue based on signal analysis related to sleep activity and

task effectiveness of the operator. In 2007 Donovan et al. [172] highlighted once again

the potentials of using cognitive-modeling methods to predict fatigue by conducting a

user study on 256 women that were under treatment for early-stage breast cancer. A

few years later, Gonzalez et al. [173] used the ACT-R [174] cognitive architecture to

predict user fatigue in a data entry task. Their method takes advantage of the prin-

ciples described by the ACT-R architecture and estimates how specific performance

parameters such as task accuracy and response time are being affected by fatigue

using a rule-based decision-making approach. ACT-R has motivated other recent

approaches as well, related to fatigue and performance monitoring with applications

in smart driving and vocational safety [175, 176]. In 2018 Golan et al. [177] focused

on the major importance of subjective reporting with respect to CF and its impact

on cognitive functioning on patients suffering from MS.

Taking all the aforementioned findings into account, CogBeacon aims to pro-

vide a robust dataset and a computational platform able to serve multiple modeling

approaches and research purposes. CogBeacon is designed based on the principles

described by Tsiakas et al. [131] on how to design multi-sensing interaction scenarios

towards assessing cognitive and physical fatigue. In contrast to most of the refer-

enced works, we discuss a machine learning based analysis of EEG signals towards

identifying CF. Our method comes as an extension of our previous findings, originally

presented in [60, 178], where similar modeling solutions were deployed to predict cog-

nitive performance on a short-term memory cognitive task. Long term scope of this

work is to develop advanced computational methods for fatigue prediction and mod-

eling able to enhance the efficiency of current approaches in assistive technologies

related to medical conditions such as MS [130] or workplace training [179].
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6.3 The Wisconsin Card Sorting Test

WCST is a neuropsychological test of ”set-shifting”, i.e. displaying flexibility

in the face of changing schedules of reinforcement [180]. A number of stimulus cards

are presented to the user. The user is told to match the cards, but not how to match

them; instead, the system provides feedback on whether a particular match is right

or wrong. There are 3 different rules that a subject can adopt (based on the color,

shape or number of the symbols), and the only feedback is whether the classification

is correct or not. At each turn, only one of the three rules applies and based on that

rule the user has to make a choice (out of 4 possible choices). The user’s goal is to

derive the rule based on the feedback provided by the system. Once the user correctly

identifies the rule (operationalized as several consecutive correct responses [e.g., six]),

the rule changes and the user must identify the new rule. The task generates a number

of psychometric scores, including categories achieved, trials, errors, and perseverative

errors (i.e., when the user is unable to switch rules, despite repeated errors). WCST

has been extensively used to assess dysfunction of the prefrontal cortex of the human

brain. Previous brain imaging studies have focused on identifying activity related to

the set-shifting requirement of the WCST [181]. Figure-6.1 shows a screenshot of the

original WCST provided by the PsyToolkit Library [59].

Figure 6.1. The computerized version of the WCST as offered by PshyToolkit [59].

120



Inspired by the principles of the original WCST we developed our own comput-

erized cognitive game. Our task shares a relatively similar graphical environment as

the game offered by [59] and provides access to the same metrics offered by the tradi-

tional WCST task. Our goal was to create a cognitive game that challenges the same

cognitive functionalities as the original WCST but in the form of a computer game

that has different difficulty modes and variations so it can become more engaging

for the users through the introduction of alternative scenarios. As we explain in the

upcoming paragraph our implementation has a mode that simulates the exact rules

followed by the original task but also provides two variation modes where the number

of available choices varieties throughout the game. Thus, creating an additional level

of difficulty for the users.

6.3.1 Inducing Cognitive Fatigue by Increasing Complexity

To induce fatigue to the users we developed two alternative versions of the

original task that aimed to increase the overall complexity and game demands with

respect to user engagement and attention. In the first version (V1), the game started

offering just two possible choices to the subject (against the standard four choices

offered by the original task). As the game progressed the number of possible choices

was increasing gradually by one until a total number of five possible choices was

reached. In the second version (V2) the number of possible choices was randomly

changing when the decision rule changed. As in V1, for V2 the minimum number of

choices was two and the maximum five. In both modified versions the total number of

rounds was almost doubled compared to the original WCST (from 60 rounds to 128),

the decision rule was changing more often (every 4 rounds in V1 and V2 compared

to every 6 rounds in the original WCST) and the maximum available response time

was decreased by 2 seconds (from 6 sec in the original WCST to 4 sec in V1 and V2).
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In Figure-6.2 we show four possible states of the V1 and V2 modified versions of the

original WCST.

Figure 6.2. Our implementation of WCST. During a complete game the user has
to play all the different cases (ie. figures a,b,c and d). In V1 the game starts with
two possible choices (figure a) and the choices increase gradually by one until a total
number of 5 choices (figure d) has been reached. In V2 options a,b,c,d are changing
randomly after every 4 rounds under the same decision rule. At the end of V1 and
V2 each user has played around 32 rounds of each a,b,c and d cases. .

To validate the hypothesis that our modified versions of the WCST were able

to induce some CF to the participants, we asked them to fill out a questionnaire

after the completion of the session. According to their responses, out of the 38 data

collection sessions (see Section-6.4.1) that were conducted, in 28 of them (˜74% of

the times) users reported being more tired at the end of the process compared to how

they were feeling right before starting the experiment. Moreover, most participants

suggested that they had to put more effort to adapt to the varying number of choices

offered by the modified versions of the game. Based on the same post-completion

questionnaires, from a scale between 1 (No Fatigue) to 5 (Very Fatigued) an average
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increase in fatigue of 1.05 points was recorded with a standard deviation of 3.54 across

all 38 data collection sessions.

The aforementioned analysis indicates that our modifications in the original

task were indeed able to create a demanding environment in terms of cognitive effort

for the participants that could potentially introduce signs of CF. These findings are

in line with the subjective reports provided by the users in real-time while taking

the task (see Section-6.5). In the following paragraphs, we describe in detail the

experimental setup and we present a more in-depth analysis of the data captured

during the data collection.

6.4 The CogBeacon Dataset

The CogBeacon Dataset consists of 76 WCST tasks performed by 19 individuals.

During each task, we collected a great range of diverse data capturing, physiological,

behavioral and performance characteristics. In addition, we recorded user-reports

provided in real-time with respect to the levels of CF experienced by each participant.

In Figure-6.3 we illustrate the experimental setup. The dataset along with the code for

the preliminary analysis provided in Section-6.6 can be found online and are available

for further experimentation 2.

6.4.1 Data Collection Process

We have collected data from 19 participants between the ages of 19 and 33 years

old. All participants were either faculty or students (undergraduates and graduates)

of the CSE Department at UTA. Data collection took place at the ”Heracleia- Human-

Centered Computing” Lab. We divided our data collection process into two sessions.

Each participant had to participate in both sessions and each session took place on

2https://github.com/MikeMpapa/CogBeacon-MultiModal Dataset for Cognitive Fatigue

123



Figure 6.3. The Data Collection Experimental Setup.

a different day. Both sessions consisted of two main parts. In the first part, which

was the same in both sessions, participants were asked to play the cognitive game

designed by our team which follows the same rules as described by the original WCST.

Our implementation follows similar guidelines as the ones provided by the PshyToolkit

with 60 turns in total, 4 stimulus cards on each turn, with the matching rule changing

every 6 turns. The second part, which took place right after the completion of the first

test, was to play one of the modified versions, V1 or V2, with an increased number

of rounds. The main difference between the two sessions was in the second part of

the task. During the second part of the first session, users were asked to play the V1

version of the WCST while in the second session they had to play V2.

Our goal with the introduction of V1 and V2 as a second part was a) to expose

the user to something similar to what s/he had already experienced but not the same,

so that s/he must pay attention in order to adapt to the changes, b) to induce CF

in the users and c) to create a rich dataset of similar but not identical tasks towards

understanding CF. Table-6.1 summarises the details of the data collection process.
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Game Type #Participants Times Played #Total
Simulation of Original WCST 19 2 38

V1-WCST 19 1 19
V2-WCST 19 1 19

#Total Tests in Dataset 76

Table 6.1. Total number of WCST tasks included in the CogBeacon dataset

6.4.2 Sensors and Data Stored

6.4.2.1 Physiological & Behavioral Data:

We recorded the user’s EEG data during task performance, using the Muse EEG

headset, a non-invasive wearable device, widely used for BCI systems [182]. Muse has

4 electrodes, 2 over the prefrontal lobe and 2 behind the ears. We recorded raw

EEG activation in a sampling rate of 220 Hz and using the digital signal processing

unit embedded in the device we also stored information and features extracted from

the individual EEG frequency bands namely: gamma 32-100 Hz (γ), beta 13-32 Hz

(β), alpha 8-13 Hz (α), theta 4-8 Hz (θ) and delta 0.5-4 Hz (δ) in a sampling rate

of 10 Hz. As explained in Section:5.2.1.2 delta waves provide information related

to deep dreamless sleep when there is a lack of body awareness, theta waves are

useful to describe deep mental states such as dreaming or deep meditation where

subjects have reduced consciousness, alpha waves describe physically and mentally

relaxed states of mind while beta and gamma can be used to describe awake and alert

states of consciousness with heightened perception and are related to active thinking,

excitement, learning, and increased cognitive processing [158]. Thus, for each of the

four MUSE sensors the following EEG data-streams have been logged:

• Raw EEG :, in a sampling frequency of 220 Hz
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• Absolute Frequency Bands (A): γ, β, α, θ and δ in sampling frequency of

10 Hz. The absolute band power for a given frequency range is the logarithm

of the sum of the Power Spectral Density of the EEG data over that frequency

range.

xA = log

f high∑
i=f low

|G(fi)|2 (6.1)

,where f low and f high are the minimum and maximum frequencies of frequency

band x and G is the FFT of the EEG signal g

• Relative Frequency Bands (R): γ, β, α, θ and δ in sampling frequency of

10 Hz. The relative band powers are calculated by dividing the absolute linear-

scale power in one band over the sum of the absolute linear-scale powers in all

bands.

xR =
10xA

10αA + 10βA + 10δA + 10γA + 10θA
(6.2)

, where x is one of the five frequency bands.

• Session Score for each Frequency Band (s): A value computed by com-

paring the current value of a band power to its history in sampling frequency of

10 Hz. This value is mapped to a score between 0 and 1 using a linear function

that returns 0 if the current value is equal to or below the 10th percentile of

the distribution of band powers, and returns 1 if it’s equal to or above the 90th

percentile. Linear scoring between 0 and 1 is done for any value between these

two percentiles.

• Signal Quality Indicator: An integer value from 1 (optimal quality) to 3

(very bad quality).

To capture behavioral changes during the task, we also recorded variations in

the movement of the face, capturing a set of 68 facial keypoints with a webcam placed

on top of the screen. To identify facial keypoints, we deployed the method presented
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by [183] that uses a Regression Tree approach and can be applied in a real-time

manner. Figure-6.4 illustrates the output of the algorithm from two different users in

two random frames.

Figure 6.4. Facial-Keypoints Detection and Tracking based on [183].

6.4.2.2 Real-Time User Reports on Cognitive Fatigue:

During each test, participants were told to report when they were having trouble

to keep up with the task by pressing a button that was placed in front of them. The

button could be pressed at any time during a game as many times as the participants

felt appropriate. Thus, a button press would act as an indicator that the user is

feeling overwhelmed by the game and could be the result of someone’s inability to

pay attention, boredom, difficulty to remember or resolve the correct decision rule or

any other reason/condition that could potentially affect task performance according

to the subjective opinion of the participant. For the purposes of this data collection

all the aforementioned reasons/conditions were considered as indicators of cognitive

fatigue.
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6.4.2.3 Task-based Performance Metrics:

For every round of every test, the system logs a set of metrics and scores related

to user performance with respect to the task. These metrics are:

• A binary flag that indicates if user response was correct in a given round

• The cumulative number of perseverative errors until the current round. Perse-

verative errors are when the user continues to apply the wrong rule despite the

informative feedback provided by the system

• The cumulative number of non-perseverative errors until the current round.

Non-perseverative errors are the errors recorded when the user tries to figure

out the new rule after a rule change. Given that there are 3 possible decision

rules in total (base on color or shape or number), a user is supposed to figure

out the correct rule no later than the third round after a rule change. Any error

occurred before the third round is considered as non-perseverative error. All

other errors are considered as perseverative errors.

• The total number of correct answers

• User’s response time at every round

• An indicative round-based user score computed as:

score =
#available choices

response time×#round under same rule
(6.3)

Score was computed only if user’s answer was correct. Otherwise score = 0

In addition for every round the system logs the following task characteristics:

• The number of possible choices offered by the system: 2,3,4 or 5

• The type of the correct stimuli: color, shape or number

• The value of the correct stimuli:

– If color: green, yellow, blue, red or magenta
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– If shape: triangle, star, cross, circle or heart

– if number one, two, three, four or five

6.4.3 The CogBeacon Data Collection Platform

As mentioned before the CogBeacon data collection software can be found on-

line and downloaded for free 3. The software is easy to install and execute and can

be used to extend the current dataset and the analysis provided here. Moreover, the

software can be easily modified to run across different platforms as it is mainly writ-

ten in Kivy; a Python-based API that can run on Windows, Linux, iOS and Android

operating systems [184]. The CogBeacon data-collection platform aims to support the

integration of additional and more advanced sensors for monitoring human behavior.

In addition, our future goal is to extend the functionalities of the library by incor-

porating more cognitive and problem-solving tasks such as a version of the SL task

described in Section-5.2.1.1 towards modeling different aspects of CF and understand-

ing its effects on human behavior and performance [3]. The current implementation

provided online offers extensive functionalities compared to the ones used for the pur-

poses of this analysis. In particular, textual and auditory-based stimuli are available

online as extra features/options of our cognitive task. These functionalities are in

contrast to the traditional design of the WCST which is based specifically on visual

stimuli. In the case of textual stimuli, the card that is given to the user is described

through text (ie. one red circle) while in its auditory version the system describes the

card through audio. These functionalities are designed to evaluate user’s ability to

adapt to different types of stimuli, however, this kind of analysis is out of our current

scope and thus, no related analysis is presented here. In Figure-6.5 we visualize the

textual and auditory-based versions of our cognitive task and in Figure-6.6 we show

3https://github.com/MikeMpapa/CogBeacon-WCST interface
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two screenshots of the audiovisual feedback provided at each round to the user by the

interface.

Figure 6.5. Textual Stimuli Version shown in (a) and Auditory Stimuli in (b).

Figure 6.6. Feedback provided by the system after each user choice (Left: Negative -
Right: Positive). Visual feedback is accompanied by an appropriate sound that makes
the overall interaction richer and more appealing to the user, while at the same time
eliminates the possibility of miss-understanding the outcome of his/her choice.

6.5 User Study - Preliminary Analysis

Figures 6.7, 6.8 and 6.9 show a cumulative analysis of CF and task-performance

from versions V1 and V2 of the WCST task. Figure-6.7 illustrates the levels of CF as

indicated by the users when pressing the ”FATIGUE” button during the task. The

X-axis shows the rounds of the game (128 total rounds) and the Y-axis shows the
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levels of CF (total number of button presses). The thicker and denser the line is, the

larger the group of users that it represents. At the beginning of the game, no CF

was reported. As the game progressed, more and more users reported experiencing

CF. By the end of the game, the vast majority of users had pressed the ”FATIGUE”

button at least once, while the maximum number of times the button was pressed by

a user was 6.

Figure 6.7. Self reported levels of cognitive fatigue during the game. The thicker and
denser the line is, the larger the group of users that it represents..

The first two graphs of Figure-6.8 (top 2 graphs) illustrate how the total number

of non-fatigued users decreased in comparison to the total number of fatigued users

as the game progressed, while the graph of the third row shows how the percentage of

fatigued users increased during the game. According to our data analysis, in 35 out

of the 38 different tests of V1 and V2 combined, users reported experiencing at least

some levels of CF by the end of the game. This percentage corresponds to almost
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93% of the sessions, while the average number of times a user reported fatigue was

2.2 as shown in the last graph of Figure-6.8).

Figure 6.8. Analysis of Self-Reported Cognitive Fatigue during V1 and V2 versions
of WCST..

Figure-6.9 shows how the average number of perseverative errors increased dur-

ing a session across all users. On average, each user made 9.3 perseverative errors

(with a standard deviation of 2.65). Perseverative errors in WCST can be considered

as the ”unwanted” kind of errors. While errors are unavoidable in the game since

the users are supposed to learn the correct rule through the feedback, perseverative

errors indicate that the user has failed to adjust to the change and keeps making

decisions based on the wrong stimuli despite the negative responses provided by the

system. An increasing number of perseverative errors in a healthy individual can be

considered as a clear indicator of cognitive fatigue.
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Figure 6.9. Average number of perseverative errors when playing V1 and V2 versions
of WCST..

The user-study indicates that the experiment was successful in introducing CF

in this group of healthy subjects which could potentially have an effect on user perfor-

mance. Our initial findings showed that response time did not play an important role

in the quality of decision making. Our future analysis will focus on how user responses

on CF are correlated with the actual performance in the task. However, based on the

small number of subjects provided by the current version of the CogBeacon dataset

no safe generalizations can be drawn for this relation.

6.6 Predicting Cognitive Fatigue based on Subjective Reports and EEG signals

Our initial experimentation towards predicting cognitive fatigue was performed

based on the EEG signals and the subjective user reports provided during the data

collection (by pressing the button). Specifically, we used an approach similar to the
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one presented in [60] and we focused on identifying the presence of fatigue in a single

round of our implementation of the WCST game.

For the purposes of this experimentation, all rounds from all three variations

(original WCST, V1, and V2) were combined to form a single dataset for our anal-

ysis. All the rounds that were not associated with a ”button press” were considered

as NO-FATIGUE samples while all the rest were used to represent the FATIGUE

class. No temporal relation across consecutive rounds was considered for these initial

experiments.

For modeling the EEG signals we chose to do an exhaustive grid search anal-

ysis across all the available feature streams that we were capturing during the data

collection in order to choose the best signal representation (see Subsection-6.4.2.1).

According to our analysis, the most promising indicators were the feature streams

related to the beta 13-32 Hz (b) and gamma 32-100 Hz (g) wavelengths and in partic-

ular their absolute (A) and relative (r) values. This finding is in line with the related

literature that suggests that beta and gamma waves are highly related to mental

states such as alert, normal alert consciousness, active thinking, and problem-solving

[158]. More specifically beta waves can be good indicators when someone is active in a

conversation or when decision making and problem-solving takes place while gamma

waves can be used as identifiers of heightened perception, or a ’peak mental state’

when there is simultaneous processing of information from different parts of the brain.

6.6.1 Round Representation & Feature Extraction

In order to represent the EEG signals within a round in the form of a feature

vector, we extracted a set of time and spectral features. In particular, the following

six features were extracted for a given sequence of EEG measurements within a round

of the WCST:
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1. Mean Value

2. Standard Deviation

3. Maximum Value

4. Minimum Value

5. Spectral Centroid (equation-2.13)

6. Spectral Rollof (equation-2.17)

Considering that the MUSE has 4 electrodes in total the final representation

for each round was a feature vector of size 4electrodes × 6 features
electrode

= 24 features.

6.6.2 Classification Results & Analysis

For classification purposes, we experimented with a set of traditional ML clas-

sifiers that have been extensively used for modeling problems of similar nature. More

specifically we tried SVMs, SVM with an RBF kernel (SVMr), Random-Forests (RF),

Extra-Trees (ET) and Gradient-Boosting (GB) [185, 60].

In order to evaluate our models, we performed a 10-Fold cross-validation across

all the available data provided by the 76 tests available in the CogBeacon dataset

(20% of the sessions for testing and the rest for training). The distribution of samples

across the two classes in training and testing varied in each fold based on the total

number of times users reported fatigue in the specific sessions that were used for

training or testing respectively. However, in all cases the two classes were highly

unbalanced towards the ”NO-FATIGUE” class. Hence, in order to efficiently train our

classifiers and avoid over-fitting, we omitted most of the ”NO-FATIGUE” samples to

avoid extreme biases and we trained the classifiers on balanced classes, with the total

number of samples for each class being equal to the available ”FATIGUE” samples

in each fold. For testing, we kept the original sample ratio so to have a realistic
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representation of the targeted problem. For the rest of this chapter ”NO-FATIGUE”

class will be represented as NF while ”FATIGUE” class as F.

Table-6.2 depicts the details of the data used for experimentation while Table-

6.3 shows the best results obtained by the aforementioned classifiers.

Fold
#Sps F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

NF F NF F NF F NF F NF F NF F NF F NF F NF F NF F
Tst 938 550 1034 438 959 481 1160 300 1135 305 698 596 1037 431 955 525 942 514 1325 155

Tst (%) 0.63 0.37 0.7 0.3 0.67 0.33 0.79 0.21 0.79 0.21 0.54 0.46 0.71 0.29 0.65 0.35 0.65 0.35 0.9 0.1
Tr / C 1610 1722 1679 1860 1855 1564 1729 1635 1645 2005
Total 4708 4916 4798 5180 5150 4422 4926 4750 4746 5490

Table 6.2. The final distribution of train and test data across all folds. As it is easy
to observe the NF class dominates F in all testing cases making detection of fatigue
much more challenging and highlighting the overall difficulty of the target problem.
The abbreviations of Table-6.2 are the following: Sps: Smaples, Tst: Test, Tr: Train,
C: Class

Looking deeper into the final results presented in Table-6.3 it is observed that

despite the simplistic modeling of the problem this preliminary ML analysis can pro-

vide very promising results and great insights towards identifying robust CF patterns

for the specific task. As highlighted in the previous paragraph, derivatives of gamma

and beta wavelengths seem to be the most informal towards identifying intense cog-

nitive effort. Moreover, the relatively high Precision of the NF class achieved by all

classifiers indicates that when an algorithm characterized a user as not-fatigued there

was a big chance (>70%) that the prediction was correct. On the other hand, the

comparatively low Precision for the F class ( best is 51% for the RF classifier) indi-

cates that only in 50% of the cases that the algorithm detected fatigue the prediction

was in line with the user responses. Judging now according to the Recall scores, it

seems that in the cases of RF classifier for the NF class and for SVMs for the F

class the algorithms were very likely to capture efficiently most samples belonging in
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each corresponding class (>=70%). Based on these preliminary results we perform a

post-classification by combining the predictions of all 5 methods by averaging their

assigned probabilities for each label. Combining all methods provided an improve-

ment of 2% in terms of average F1 compared to the best F1 reported by the individual

classifiers.

Rc Pr F1 Avg F1 Ac
Cl S NF F NF F NF F

SVM gA 0.6 0.7 0.83 0.43 0.7 0.53 0.61 0.63
SVMr gA 0.58 0.65 0.8 0.40 0.67 0.49 0.58 0.6

RF bA 0.75 0.46 0.7 0.51 0.72 0.48 0.60 0.64
ET dS 0.58 0.62 0.72 0.47 0.64 0.53 0.59 0.6
GB bR 0.59 0.64 0.74 0.40 0.66 0.54 0.60 0.61
combined 0.72 0.56 0.79 0.46 0.75 0.51 0.63 0.67

Table 6.3. Average Classification results across all Folds for different classifiers. The
S column indicates the EEG feature stream that provided the best results after the
exhaustive grid search analysis on all the collected EEG signals (see Section-??). In
last row we show the best results achieved by combining the predictions of all the
trained models. Values in bold correspond to the methods that provided the best and
more stable results. The abbreviations of Table-6.3 are the following: Cl: Classifier,
S: Signal, Pr: Precision, Rc: Recall and Ac: accuracy.

The graphs of Figure-6.10 show the ROC curves of the combinatory classifier

as estimated for each individual fold. ROC curve is a performance measurement for a

classification problem at various thresholds settings. ROC is a probability curve and

AUC represents the degree or measure of separability. It indicates how much a model

is capable of distinguishing between classes. Higher the AUC, better the model is at

predicting Fs as Fs and NFs as NFs. According to Figure-6.10, in 8 out of 10 cases

the combinatory classifier was able to successfully distinguish between the two class

in a rate equal or higher to 66% which, is very promising given the difficulty and the
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ambiguity of the problem. In two cases, Fold-3 and Fold-6 the classifier performed

very poorly and failed to provide sufficient separability between ’FATIGUE’ and ’NO-

FATIGUE’. That indicates that in the sessions used for testing at these Folds, users

had very divergent behaviors when reporting cognitive fatigue thus, confusing the

predictive model. This observation highlights the fact of individual differences and

provides a very useful insight for future directions.

These results are very informative about how different traditional ML tech-

niques may behave towards modeling the targeted problem of CF detection and will

guide our future directions. In addition, they come to complement our prior findings

on predicting user performance through EEG, where we used a similar modeling pro-

cess but for a completely irrelevant task related to short-term memory assessment

[60]. Based on these observations, we could speculate that incorporating more user-

specific information to our models could be proven very beneficial for targeting CF

and that is where we plan to draw our attention during the next steps.

6.7 Takeaways

In this chapter we presented CogBeacon. The first publicly available multi-

modal dataset designed for the analysis and prediction of cognitive fatigue. Towards

tackling the major problem of reproducibility and limited data availability, along

with the dataset we provided free access to the data collection software thus, allowing

other researches to expand the current version of CogBeacon and also integrate more

sensors in an intuitive way to the back-end of the system. These contributions are

crucial towards capturing additional sources of information towards understanding

how CF affects specific aspects of cognitive performance across different users. Cur-

rent analysis based on the conducted user study and the preliminary results on CF

138



Figure 6.10. Roc Curve Estimated for each Fold after applying the combinatory
classifier.

detection indicate the meaningfulness of the dataset and pave the way towards future

exploration of CF detection and prediction using machine learning based techniques.

Our initial findings indicate that user reports are critical towards identifying

robust patterns of CF across different subjects. However, it seems clear that person-
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alized behaviors must be taken into account in the future towards improving cognitive

assessment and creating more personalized and user-centric interaction scenarios.

CogBeacon is still an evolving platform. Our future steps will be focused on

three main axes. Firstly enrich the current dataset with more subjects. This step

would help us depict more generalized patterns of CF and will also help draw results

with respect to the relation of CF to actual task performance. Secondly, we plan to

incorporate more cognitive games that challenge different cognitive functionalities in

the data collection software, such as the SL task presented in Section-5.2.1.1. This

step is critical towards understanding how CF affects variant aspects of cognitive be-

havior and will help us correlate various aspects of cognitive performance. Finally, we

plan to experiment with more sophisticated modeling techniques able to incorporate

additional personal characteristics of the user during interaction. Such characteris-

tics could be either information extracted from the camera sensor such as levels of

motion or emotion or metrics captured directly from the user’s performance in the

cognitive task (such as reaction time). Figure-6.11 shows an overall illustration of the

data-collection platform and highlights its various potentials for future exploration.
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Figure 6.11. The CogBeacon Data Collection Framework. CogBeacon is an open-
access software5. It currently supports multiple variations of the WCST cognitive
task and in future versions will be enriched with additional cognitive games. It is easy
to download and install almost in any platform and can easily support the integration
of different sensoring devices. Currently, data have been collected using a single RGB
web-camera and the MUSE EEG headset. However, integrating additional sensor
is very intuitive as long as they have an API that listens to Python programming
language. .
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CHAPTER 7

CONCLUDING REMARKS & FUTURE DIRECTIONS

7.1 Summary

This Thesis focuses on the potentials of using machine learning methodologies

towards understanding ambiguous aspects of human behavior. Through a set of end

to end experiments, ie. from data collection to modeling, analysis, and application,

we evaluated how modern and more traditional machine learning approaches can

be exploited towards describing different human-generated signals to enhance the

effectiveness and quality of various HCI scenarios. Our analysis concluded that ML-

based modeling can potentially achieve state-of-the-art results in several detection

and prediction problems related to human behavior analysis and that such techniques

have the potential to eventually light unknown and unexplored areas related to how

humans act, think and react. Thus, providing unprecedented ways towards accessing

user skills, performance and intentions in a diverse spectrum of interaction scenarios.

Throughout this extensive research, we discussed the advantages and drawbacks

of different techniques. Moreover, we highlighted the number one problem that arises

in this field of research which has to do with the limited data availability when it comes

to multi-modal monitoring and the difficulty to reproduce the required experimental

conditions. This fact unavoidably leads to a lack of standardized datasets to be

used for benchmarking thus, refraining researchers from making safe comparisons and

improving current methodologies in challenging problems such as fatigue detection

and analysis.
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Motivated by this observation we proposed CogBeacon. A multi-modal dataset

and data-collection software that can be used to improve AI research around mod-

eling and understanding aspects of cognitive fatigue. Our platform which is still an

evolving framework aims to help researchers draw correlations of how different cogni-

tive functionalities are affected by cognitive fatigue and can be used to derive robust

behaviors across various human subjects but also design methods towards personal-

ized and user-centric cognitive assessment. In our next sections, we summarise the

main contributions of this Thesis.

7.2 Traditional Machine Learning VS Deep Learning for Human Behavior Modeling

& Monitoring

A research question that this Thesis is trying to address is to what extend

deep learning approaches can provide flexible solutions in problems related to behav-

ioral monitoring and when such solutions must be chosen against traditional machine

learning algorithms. As we extensively discussed in Chapter-3, deep learning methods

tend to produce better results in terms of accuracy and noise invariance when suffi-

cient training data are available. However, collecting data from human subjects can

often become a very overwhelming and expensive process. Moreover, when it comes

to user monitoring it is quite common to have underrepresented behaviors in the final

dataset which usually are also the behaviors of interest. Thus, collecting a sufficient

amount of data points to train deep classifiers can be very difficult. In applications

such as activity recognition, speaker diarisation or speech-music discrimination, deep

learning methods can produce state-of-the-art results because the problems are much

easier to represent through data. Thus, making the data collection and augmenta-

tion processes significantly simpler. However, when it comes to applications where

the discrimination of the different classes is less intuitive, such as in the problem of
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detecting and predicting fatigue, it is very common that the available data for the un-

derrepresented classes is insufficient to train deep classifiers. In such cases traditional

machine learning methods can be proven more valuable. The main reason is that in

contrast to deep-classifiers which usually act as a black box, algorithms like SVMs

or Random-Forests are much more intuitive and their learning process is much easier

to interpret. Additionally, since they can operate on a small number of handcrafted

features they allow the designer to create a more controlled environment of variables

that are easier to observe over-time thus, making the feature selection process easier.

Finally even though given an application there are always unique features that can

be extracted; our experimentation showed that in most cases statistical and entropy-

based features extracted from the time and the spectral domain can provide very

valuable information about a signal’s behavior. Therefore such features must always

be considered towards building prototypes for human monitoring applications where

most generated signals can be decomposed in the form of 1-D information streams.

7.3 Unimodal VS Multi-Modal Systems for Human Behavior Monitoring

Even though multi-modal data acquisition can, in general, provide significantly

greater insights about most applications related to behavioral modeling it should not

be assumed as a trivia process for multiple reasons. The first bottleneck is dictated

by the nature of the application itself since integrating multiple sensors often trans-

lates to increased levels of system-invasiveness. Thus, it is a decision that the system

architect has to make in order to optimize that trade-off. Secondly, the choice of the

modalities themselves is a challenge that also needs to be investigated based on the

behaviors of interest. As discussed in Section-2.2 there are different ways of com-

bining different modalities and it is very crucial towards exploiting the most out of

them. Overlapping modalities can potentially increase the computational cost of a
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system while failing to justify a significant improvement in terms of performance.

Hence, a safer approach would be to approach a problem in a divide and conquer

approach where multiple single-modality based models are combined towards achiev-

ing a greater and more complex goal. This approach gives greater control to the

designer towards optimizing the performance and outcomes of each individual com-

ponent and can also provide flexibility towards deciding the best modeling method

for each modality. For example, some modalities can be analyzed using deep learning

methodologies if the available data are present and others can be addressed through

more conventional ML methods. Lastly, since human behaviors are always character-

ized by great levels of subjectivity, incorporating user-centric reactions and opinions

in the overall architectures has been proven very beneficial in most applications (see

Chapter-4 and Chapter-6). That is especially true for problems that cannot be in-

tuitively interpreted by our current knowledge of human behavior analysis, such as

human physical and cognitive fatigue. Incorporating user perspective in a system can

be achieved in various ways through a computational model and is a crucial step to-

wards developing more effective interaction scenarios that can keep the users engaged

and motivated.

7.4 Published Datasets

One of the main outcomes of this research is a set of various datasets related to

human behavior modeling and monitoring. These datasets are either a direct product

of the experiments discussed in this Thesis or are modified versions of pre-existing

datasets in order to serve as ML-based benchmarks. In particular, the following six

datasets have become available to the public:

1. EEG dataset for Predicting Cognitive Performance on the Sequence Learning

cognitive game for short-term memory assessment [60]. Dataset available at:
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https://github.com/MikeMpapa/EEG-Dataset--Sequence-Learning. Orig-

inally proposed by Tsiakas et al. [152]

2. Cognilearn - A Video-Based dataset with cognitive exercises related to cog-

nitive assessment [4, 62, 186]. Dataset Available at: http://vlm1.uta.edu/

~srujana/HTKS/CogniLearn_HTKS_Dataset.html. Dataset was built in col-

laboration with Dr. Srujana Gattupalli, a past colleague at the University of

Texas at Arlington, for the purposes of the NSF funded project ”CHS: Large:

Collaborative Research: Computational Science for Improving Assessment of

Executive Function in Children”.

3. EMG dataset for Detection and Prediction of Physical Fatigue [132]. Dataset

Available at: https://github.com/MikeMpapa/MLEmg_Monitoring_Physical_

Fatigue. Originally proposed by Kanal et al. [187]

4. Video-based Activity Recognition for detecting Activities of Daily Living [23].

Dataset Available at: https://www.dropbox.com/s/919kt3dtgasu1n8/RadioData_

3Classes_small.zip?dl=0. Dataset was developed for the purposes of the EU

funded project ” Robots in Assisted Living Environments- Unobtrusive, Effi-

cient, Reliable and Modular Solutions for Independent Ageing” ”

5. RGB and Accelerometer dataset towards Recognising Physical Activities related

to Fitness Monitoring [34]. Datasaet Available at: https://www.dropbox.com/

s/iu4jcyubxor2q2r/fitRecognition.zip?dl=0

6. CogBeacon - A Multi-Modal dataset for Cognitive Fatigue Analysis. Dataset

Available at: https://github.com/MikeMpapa/CogBeacon-MultiModal_Dataset_

for_Cognitive_Fatigue
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7.5 Published Implementations

A second major outcome of this thesis is a collection of various programming

implementations towards analyzing different aspects of human behavior. Through-

out this research the following systems have become available to the public towards

assisting the reproducibility of our results:

1. The CogBeacon Data Collection platform for analyzing cognitive fatigue. This

first version of the platform currently supports three variations of the WCST

cognitive game in terms of rules (see Chapter-6) and also three variations in

terms of input stimuli (visual, textual and auditory). It will soon be updated

to include more cognitive games and an easier to handle API. The current

version can be found at: https://github.com/MikeMpapa/CogBeacon-WCST_

interface

2. A machine learning implementation towards predicting task performance and

cognitive fatigue through EEG [60]. The implementation for predicting task

performance can be found online here:

https://github.com/MikeMpapa/EEG-Sequence-Learning

and its variation that focuses on analyzing cognitive fatigue can be found here

as part of the CogBeacon Dataset:

https://github.com/MikeMpapa/CogBeacon-MultiModal_Dataset_for_Cognitive_

Fatigue

3. A machine learning methodology towards detection of physical fatigue [132,

187]. Code available at: https://github.com/MikeMpapa/MLEmg_Monitoring_

Physical_Fatigue

4. A robust python based deep learning framework for Speech-Music Discrimina-

tion [39]. The system to our knowledge provides state-of-the-art results on the
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task. Along with the methodology itself, the trained models have also become

available and can be used in a plug-and-play manner. The code can be found

available online at:

https://github.com/MikeMpapa/CNNs-Speech-Music-Discrimination

5. A deep learning and framework for recognizing Emotion from speech in a Lan-

guage independent manner [45, 47]. This method provides results directly

comparable to other state-of-the-art methods. As before the trained models

have also become available to the public. The method can be found online at:

https://github.com/MikeMpapa/CNNs-Audio-Emotion-Recognition

6. A machine learning approach towards multi-modal activity recognition for fit-

ness monitoring [34]. The code can be found online at https://github.com/

MikeMpapa/recognizeFitExercise

7. A computer vision system to track human motion and monitor activity [17].

Code available at: https://github.com/MikeMpapa/Motion-Tracker

7.6 Future Directions

The future directions of the research proposed in this Thesis can be summarised

into five major points that describe immediate and far-reaching goals:

1. Expansion of the CogBeacon Data-Collection Platform

We envision the future of CogBeacon as a standardized platform for data-

collection of multi-sensing data towards the analysis of cognitive fatigue. One

of our immediate goals is to expand the software’s functionalities and create a

more intuitive API for other researchers to use. The upcoming versions of the

platform will aim to incorporate additional cognitive games, tasks, and popu-

lar tests as well as an easy way to bind new hardware and wearables with the

system’s back-end infrastructure. Thus, assuring a stable multi-modal synchro-
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nization and accurate time-stamping of the different invents monitored by the

CogBeacon platform in a device independent way. Given the rapid evolution of

sensing technologies

2. Expand Research on Fatigue Analysis

The concept of human fatigue remains a very vague area of research from all

perspectives. In particular, questions related to how different cognitive func-

tionalities affect and are being affected by cognitive fatigue is in the center of

our future goals. Moreover, the relation between physical and cognitive fatigue

is a major topic of our immediate research interests. Our goal is to develop

more advanced AI-based computational methodologies towards revealing those

relations and design intelligent systems able to track multiple human-generated

signals and their evolution over time. Our far-reaching objective is to build

technologies able to assess user skills with respect to fatigue in a universal

and task-independent manner. Technologies that will be responsible to assist

behavioral scientists towards understanding how these concepts affect human

performance but also tools to enhance human-computer interaction and improve

the outcomes of interactive scenarios both for the human-subject but also for a

faster and more efficient adaptation of the system itself.

3. Explore Novel Ways Towards Integrating Personalised Feedback

A common observation that emerged throughout the various experiments con-

ducted for the purposes of this Thesis, was that integrating user feedback and

personalized characteristics into the analysis could potentially lead to signifi-

cant improvements over the overall system performance. Even-though generic

modeling machine learning methods were in all cases able to depict and describe

universal patterns of behavior across users and/or tasks in many cases it was

not sufficiently enough. In the future, we plan to investigate computational
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ways of integrating different types of implicit or explicit user feedback towards

creating more personalized scenarios. Reinforcement Learning and Interactive

Machine Learning methods could potentially pave the way towards evolving and

better exploiting the prior knowledge incorporated into pre-trained models by

tailoring their decision-making behavior on the fly based on the specific skills

of each individual.

4. Towards Models of General Human Intelligence

The ultimate future objective of intelligent behavioral modeling and monitoring

is in line with the more general goal of today’s AI, which is nothing else but our

ability to built generic computational architectures able to learn and interpret

rules on new, unknown environments and domains and make decisions based on

experience; just like humans do. Having this perspective as our guideline, the

future scope of this research will be to exploit machine learning for the creation

of systems that can autonomously adapt on different applications, users and

modalities by exploiting their prior knowledge towards providing all-around so-

lutions. Although we are still far away from achieving this goal, as the results

of this Thesis indicate, modern AI can render this path with promising answers

for the creation of methods that can capture meaningful features across modal-

ities and generalize their decision making between problems. Hence, providing

encouraging results for future experimentation.
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