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ABSTRACT 

Instrument Playing Technique recognition is a growing research field of Music 

Information Retrieval. Regarding stringed instruments, an instrument playing 

technique can be defined as any particular motive of the instrument players’ fingers 

applied on either the strings of the neck or on the strings of the body or sound hole of 

the instrument. In this work, the automated recognition of instrument playing 

techniques in solo recordings of the Greek stringed instrument bouzouki is examined. 

Towards this, a Dataset comprising of 336 recordings and 5 different playing 

techniques (slurring, trembling in one string, trembling in two strings, chord play, 2 

strings play) is generated. The signal of each recording is firstly broken into short-

term frames and the audio features (34) for each frame are extracted. In addition, the 

mean and standard deviation are extracted for each mid-term segment by applying 

them per sequence of short-term feature sequence for each segment. In total, there are 

68 audio features for each recording. 8 different combinations of short and mid term 

windows and sizes have been selected in order to extract features and train models. 

Five Machine Learning models (SVM, K-NN, Gradient Boosting, Extra Trees, 

Random Forest) are trained on the extracted features, resulting in a total of 40 trained 

models. The trained models are evaluated in a generated test set comprising of 5 

popular songs. Besides the five techniques, a ‘None’ technique is introduced, as a 

segment can either have a technique or be a simple melody (absence of technique). In 

order to address this, we experiment with different confidence levels for the 

classifications of the models. If the confidence (probability of classification) made by 

a model for a specific segment is lower than the selected confidence, then the ‘None’ 

class is assigned to this segment. The best performing model was SVM with mid-term 

window 0.9, mid-term step of 0.6, short-term window of 0.06 and short-term step of 

0.02. This model achieved the highest F1 score (0.5880) at Confidence value 0.4. 

Recall drops and precision rises as the confidence limit rises. An open-source 

standalone python script was developed which classifies each segment of a given solo 

bouzouki instrument recording as of the playing technique using the best 6 (pre-

trained) models of this Thesis.  

Keywords: Music Information Retrieval, Instrument Playing Technique 

recognition, Machine Learning, Audio Features Extraction, Signal Processing 
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1. INTRODUCTION 

The current Thesis investigates the application of Machine Learning models in 

the task of the automated recognition of instrument playing techniques of the Greek 

stringed instrument bouzouki. An instrument playing technique is defined as any 

extended technique that is used by an instrument player on either the strings of the 

neck (thin part of the instrument, usually used with bare hands) or on the strings of the 

body or the sound hole of the instrument. The examination of automatic recognition 

of playing techniques of other instruments can be of great importance, as instrument 

learning draws off from classical methods such as conservatoires and teacher help. 

New beginners are now using the web more and more (online tutorials etc.) in order to 

study and learn how to play an instrument. As a result, the need for automated tools 

that can help the music community process music material grows.    

The goal of this task is to develop a Machine Learning model which identifies 

a playing technique in a given recording. In total, there are 5 general playing 

techniques. The techniques in the table below are general categories, which can have 

more sub-techniques. However, they generalize well all the instrument’s techniques. 

Of course, besides these 5 categories, the category ‘None’ is introduced for 

characterizing all parts of a song with absence of any technique. These parts are often 

called simple melodies or normal string strikes. 

Techniques 

Trembling in one string (tremoulo 1) 

Trembling in two strings (tremoulo 2) 

Slurring (kalopismos) 

Two strings play (2 xordes) 

Chord (sigxordia) 

Table 1: General techniques of Bouzouki 

 

The current work is a subject to Music Information Retrieval (MIR). MIR is 

the interdisciplinary field of Information Technology and Music Science, which 

applies algorithms on musical Data in order to extract valuable and meaningful 

information out of it [1,2]. The continuous generation of large amounts of digital 
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music Data highlighted the need of methodologies which can efficiently exploit it. 

Taking advantage of great advances in Machine Learning and Deep Learning, 

researchers from various fields such as Music Science, Engineering and Computer 

Science have cooperatively proceeded to the development of several MIR applications 

[2].   
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2. RELATED WORK 

Audio Features Extraction 

In order to make use of musical Data through application of Machine Learning 

or Deep Learning, the music signal has to be transformed into an algorithm-friendly 

structure. The process of analyzing a recorded musical signal and extracting important 

audio features of it is called Audio Features Extraction or Audio Analysis [3]. Several 

methodologies are proposed throughout the last years, in order to extract short and 

mid term audio features of a raw signal [3-5]. A key factor in analyzing a raw signal is 

partition of the signal into small pieces and then the calculation of short-term feature 

vectors for each of these pieces, in order to take advantage of the stability of signal 

features in these small parts [6]. Such features can be based on Fast Fourier 

Transform (FFT), MPEG Filterbank Analysis, Linear Predictive Coding (LPC) and 

Mel-Frequency cepstrum coefficients (MFCC) [3-6]. A common methodology is to 

compute the mean and variance of these features over a larger time window [3]. 

Extracting audio features is a prerequisite in any MIR task and therefore results may 

differ based on the type and the number of features extracted [7]. Audio features can 

then be used for classification or regression tasks, such as classification of music 

genre and emotion classification [7]. Audio Features Extraction over large streams or 

batches of music Data can be computationally inefficient. This issue has also been 

addressed, as existing methodologies also propose a distributed process for extracting 

audio features in parallel, thus saving time and efforts significantly [8].  

Music Genre Classification 

One of the most researched applications of MIR is the music genre 

classification. A music genre is an abstract term which is assigned to a music song as 

a label by humans, based on the instruments used, the rhythm and the audio content 

[9]. The audio features play a key role in this task. Training Machine Learning models 

on a music Dataset’s audio features with human labeled music genres and validating 

them in unlabeled songs results in accuracies comparable to humans classification [9]. 

Beyond Machine Learning, Deep Learning has also been applied for music genre 

classification. Experiments showed that convolutional neural networks (CNNs) are a 
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good performing alternative for automatic feature extraction and music genre 

classification [10]. A combination of convolutional neural networks (CNNs) for 

extracting short term audio features and recurrent neural networks (RNNs) for 

maintaining temporal information out of the extracted features perform well on music 

genre classification [11]. Another combination of convolutional neural networks 

(CNNs) and Robust Local Binary Pattern achieved an accuracy of 92% in the Latin 

Music Database (LMD) [12,13]. Finally, music genre classification can also be 

approached with combination of textual features such as lyrics and audio features 

[14].   

Audio Fingerprinting 

Audio fingerprinting is another highly researched area of MIR. Each audio has 

its own content-based signature, called the audio fingerprint, which is a unique 

compact low-level representation of an audio signal [15,16]. Therefore, any song can 

be identified by its audio fingerprint. Audio fingerprinting techniques rely on a 

Database with known songs and their respective fingerprints and metadata. The 

fingerprint of the unknown song (to be identified) is used as a query in the Database. 

With use of similarity measures, the most similar song (in terms of the fingerprint) is 

returned along with its metadata [16].  

 

Music recognition and audio event detection 

Music recognition and audio event detection has also captured MIR’s 

community interest. Trained Machine Learning classifiers can classify audio features 

as either music or all other types of audio in video streams such as movies, while their 

results achieved high accuracies in the detection of music even in extreme cases, such 

as mixes of multiple types of audio in the recording [17]. More advanced approaches 

with Fisher linear semi Discriminant Analysis and Hidden Markov Models can 

achieve even better results in detecting music parts [18]. Such applications are found 

for music detection in movies, the Television industry and streaming platforms and 

are very helpful for content review and digital media rights [17-19]. Other approaches 
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related to music recognition and complex audio event detection propose content-based 

segmentation and classification of audio or video files. Via this, the classification of 

the segments into labels of interest such as violent content is possible [20]. 

Speech vs Music discrimination 

In addition to binary MIR classification tasks, Speech/Music discrimination in 

audio recordings can help in the characterization of audio content. A Speech vs Music 

discrimination methodology was applied on various radio recordings achieving an 

accuracy of 96% [21]. Specifically, the proposed technique consists of 3 stages. In the 

first stage, the audio features of the signal are extracted and predictions are made only 

in the segments with either high music or high speech precision. The remaining 

unclassified parts are given as input to the second stage. Here, the proposed algorithm 

seeks the sequence of segments and respective class labels that give the maximum 

product of posterior class probabilities for all the initial signal using a Bayesian 

Network in order to estimate the posterior probabilities [21,22]. Finally, possible 

errors at the boundaries of generated segments are corrected. In order to limit the 

complexity and computational needs of such an approach and its application on real 

time data, a Fisher Linear Discriminant Analysis methodology with use of only one 

extracted audio feature was proposed and demonstrated to give good results [23]. 

Another Speech vs Music discrimination approach was validated on a large Dataset, 

giving an accuracy of 97% in segmentation and an accuracy of 95% in classification 

(speech vs music) [24]. Deep Learning models are also applied and proposed for 

classifying an audio segment as either music or speech. Specifically, convolutional 

neural networks (CNNs) were used in order to learn visual feature dependencies from 

images such as the audio spectrograms [25]. It was shown, that these models managed 

to learn meaningful deep structures and correlations and outperformed simpler 

Machine Learning models. Finally, recurrent neural networks (RNNs) have also been 

used for discriminating speech vs music [26].  

Music recommendation systems  

Music recommendation systems involve MIR techniques, in order to extract 

audio features and recommend content related and similar music to users according to 
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their preferences and musical habits. Current music recommendation approaches can 

be divided several categories: collaborative filtering, content based, hybrid, statistical 

[27, 28]. Collaborative fingering techniques rely on a large collection of preferences 

of other users and propose automatic predictions based on them when analyzing a 

users’ preferences [29]. In addition, content-based techniques treat the 

recommendation as a user specific classification task, where the goal is to recommend 

music similar to the music that a user listened to in the past or is currently listening to 

[30]. Such recommendations can also be hybrid and are not only based on user 

profiling and analysis of their history (Metadata) but also from audio related features 

(content-based recommendation) [27]. Deep Learning and especially convolutional 

neural networks (CNNs) play a key role in music recommendation systems based on 

only Metadata and can outperform traditional approaches [31]. Recommendation 

systems which make use of audio features have also been used in order to extract 

traditional audio features (such as rhythm, tonal strength and spectral characteristics) 

and recommend based on a high-level music similarity metric [32]. However, these 

features might not capture important relevant information [33]. In addition, acoustic-

based music recommendation systems combining audio features with textual social 

media data can also be effective [34]. 

Music Synthesis 

Music Synthesis is yet another field of research in MIR which has captured the 

interest of researchers especially during the last years and the growth of Deep 

Learning field [35]. Recurrent neural networks (RNNs) can capture valuable long-

term dependencies and preserve past information in the signal, which are essential in 

such a sequential task, where the goal is to «recommend» something about the next 

sequence based on previous information [36]. Early neural network research on music 

generation used mostly recurrent neural networks (RNNs) and long short-term 

memory models (LSTMs) [37,38]. However, convolutional neural networks (CNNs) 

are also capable of generating realistic musical sequences (melodies) and therefore be 

used as a Generator [37,39]. In addition, this can be generalized to a Generative 

Adversarial Network (GAN) with use of a discriminator which learns the distributions 
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of true melodies and tries to distinguish between fake and real in the generated 

melodies from the Generator [37]. 

Music emotion classification 

Audio features extracted from raw audio signals can also be used for emotion 

classification. Support Vector Machines (SVMs) can be trained in a multiple binary 

classification approach on rhythmic contents, timbres, textures and other audio 

features and then classify a musical song as of its emotion [40]. Deep Learning 

models are also performing well in detecting emotions in music [41, 42].  Typically, 

there are two variables of interest in such tasks that need to be predict before 

classifying an audio signal to an emotion: arousal and valence. These two parameters 

can be either have a continuous value between -1 and 1, which is a regression task or 

a categorical value (positive, negative) which is a classification task. In both cases, 

each song will have its own tuple of valence and arousal, which can be placed in a 

coordinate system with arousal being the y-axis and valence being the x-axis [42]. 

Points in the first quadrant (positive arousal and valence) are related to happy 

emotions, whereas points in the second quadrant (positive arousal and negative 

valence) are related to angry or nervous emotions. Points in the third quadrant 

(negative arousal and negative valence) refer to sad emotions and points in the fourth 

quadrant (negative arousal and positive valence) refer to relaxed and peaceful 

emotions. The above categorization is known as Russel’s circumplex model of 

emotions [43]. Via this, the emotion recognition task can be either treated as a 

regression task (arousal and valence continuous value between -1 and 1) or as 

classification task (high/low arousal and valence or other categorical values for 

emotion). Support Vector Machines (SVMs), which treat music samples as single 

point in the arousal-valence system combined with Principal Components Analysis 

(PCA) to reduce correlations between arousal and valence and advanced feature 

engineering techniques perform well [44]. Support Vector Machines (SVMs) are also 

used for respective classification tasks (categorical values in arousal and valence) and 

can be applied on recommendation systems based on the emotion [45]. Such 

approaches can also be used for tracking emotion variations in a song [46].  
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Software and libraries 

As MIR research grew rapidly in the last years, various related software, open-

source libraries and frameworks were developed in order to support further research, 

commercial products and users’ or musicians’ needs. Marsyas is one of the earliest 

open source frameworks, which supports audio processing techniques such as feature 

extraction and Machine Learning [47]. PyAudioAnalysis is another open-source 

library, written in Python, which supports audio features extraction both in short and 

mid term basis [48]. In addition, pyAudioAnalysis is a helpful tool for classification 

and regression on musical Data, both for black box use and manual tuning [48].  

Specifically, pre-trained models are offered for various popular MIR tasks, such as 

speech-music classification, music genre classification and audio event detection [48]. 

Finally, audio segmentation and audio visualization are also some easy-to-use tools 

offered by pyAudioAnalysis. YAAFE, also written in python, offers audio features 

extraction tools [49]. Another python library for signal processing and audio analysis 

is LibROSA, which is focused on audio features extraction [50]. Essentia is another 

open-source library, written in C++, which is focused mainly on audio features 

extraction [51]. The MATLAB audio analysis library offers MATLAB solutions for 

general audio handling, audio processing, audio feature extraction, classification and 

segmentation of audio [52]. It is also specialized for MIR tasks, as users can 

implement audio content characterization with segmentation and classification 

techniques and furthermore experiment on music thumbnailing, music content 

visualization and tempo induction [52].  Regarding MATLAB, MIRtoolbox also 

offers functions related to the extraction of music audio features and statistical 

analysis, segmentation and clustering tools [53]. Graphical user interface (GUI) 

applications such as jAudio and OpenSmile offer user-friendly functions for audio 

feature extraction, general audio handling, statistical analysis and Machine Learning 

[54, 55]. 

Music Instrument Recognition 

Music Instrument Recognition is a subfield of MIR, which applies statistical 

and Machine Learning techniques in order to identify separate instruments involved in 
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a musical composition. A pattern-recognition technique on acoustic features was 

applied on a Dataset with 15 different orchestral instruments being able to achieve a 

70% accuracy on the identification of individual instruments [56]. An application of 

linear prediction analysis on a database of more than 5000 solo tunes from 29 

different western orchestral instruments achieved an accuracy of 35% for individual 

instrument recognition and 77% for instrument families, when trained in mel-

frequency cepstral coefficients and other extracted audio features [57]. A pitch 

independent musical instrument recognition approach on spectral and temporal 

properties of 1498 samples with 30 different orchestral instruments correctly 

identified 94% of test set instances as of the instrument family and 80% of test set 

instances as of the individual instrument [58]. A study on a Dataset with 10 different 

instruments and training on more than 150 audio features showed that higher 

accuracies can be achieved when splitting the feature set into two pairwise optimized 

subsets and training with Support Vector Machines (SVMs) [59]. Regarding feature 

engineering in such tasks, another study proved that transforming the audio features 

(mel-frequency cepstral coefficients and their first derivatives) to a feature set with 

maximal statistical independence using independent component analysis (ICA) can 

improve instrument recognition accuracy by 9% with use of hidden Markov models 

(HMM) [60]. Deep Learning models have also been examined for instrument 

recognition tasks. A simple feedforward Neural Network correctly identified 97% of 

test instances in a test set including 4 instruments (piano, marimba, accordion, guitar), 

which represent the major music instrument families [61]. However, slightly better 

accuracies were achieved using a k-nearest neighbors (KNN) algorithm in the same 

Dataset [61, 62]. 

Instrument Playing Technique recognition/classification 

The current Thesis deals with the identification/recognition of instrument 

playing techniques in audio recordings with solo playing of the Greek instrument 

Bouzouki. The playing technique of instruments in a song is a field which has a lot of 

interest for professional instrument players or amateur hobbyists. A lot of people turn 

their focus on understanding playing patterns or even explicit techniques of famous 

instrument players. However, the automatic detection or identification of instrumental 
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playing technique is underdeveloped [63]. Beyond signal processing and MIR, the 

automatic identification of instrument playing technique is an important research field 

also for biomechanics and gestural interfaces [64]. An evaluation of machine learning 

models for this task on the Sound Online Dataset (comprising of 16 musical 

instruments playing more than 25000 isolated notes in total) achieved a precision of 

99.7% for individual instrument recognition and 61% for instrument playing 

technique recognition [63, 65]. Specifically, k-nearest neighbours algorithm (kNN) 

with an euclidean distance as metric was applied on the mel-frequency cepstral 

coefficients of audio recordings of 143 different instrument playing techniques of 16 

individual instruments [63]. Current work on instrument playing technique 

identification or classification focuses piano, guitar, violin, percussion, erhu and flute 

[63, 66-70]. In this work, an instrument playing technique of a stringed instrument 

(bouzouki) is proposed. Many playing techniques are technically similar to techniques 

of the electrical guitar. A guitar specific playing technique recognition validated on a 

dataset of 42 electric guitar solo tracks (without accompaniment), achieved a 74% 

accuracy on identifying 5 main electrical guitar playing techniques (bend, slide, 

vibrato, hammer-on and pull offs) [68]. Unlike previous work, the aforementioned 

approach does not focus on identifications based on single notes. Instead, the 

recognition of the playing technique is achieved for solo instrument recordings and 

has two stages [68]. Firstly, the audio recording is processed and candidate segments 

are identified via analysis of the melody contour. Finally, a pre-trained Support 

Vector Machine (SVM) classifier is used to classify the playing technique of the 

identified candidates of the first step based on extracted timbre and pitch features 

[68]. Another study on 6 electrical guitar playing techniques correlated individual 

audio features such as Spectral Flux and Amplitude with each playing technique by 

applying correlation analysis [71]. In addition to actual techniques (slide, bend, 

hammer on, pull off, harmonic muting and palm muting), this approach also 

introduced another two categories (normal and mute) in order to not only cover 

playing technique recognition but also parts of the recording where there is no 

technique applied [71]. Classification techniques based on the magnitude spectrum, 

cepstrum and phase derivatives such as instantaneous frequency deviation achieved an 

average F1 score of 71.7% for 7 different playing techniques of the electrical guitar 
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[72]. Furthermore, it was shown that cepstral and phase features are crucial in the 

discrimination between more similar techniques such as pull-offs, hammer-on and 

bend [72]. Regarding stringed instruments and besides the electrical guitar, instrument 

playing technique recognition has also been studied for the electrical bass guitar. 

Respective classification approaches achieved a 93.25% classification accuracy for 

plucking techniques [73].  
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3. DESCRIPTION OF THE PROBLEM 

The 5 general techniques (Table 1) chosen, were selected by 2 professional 

bouzouki players and 3 amateur players as the 5 categories which can generalize and 

include all existing instrument techniques. The goal was to minimize the classes of 

this problem. After finalization, the techniques are: 

1. Trembling in one string 

2. Trembling in two strings  

3. Slurring  

4. Two strings play  

5. Chord 

 

Trembling in one string refers to a bowed string instrument playing technique, 

in which the player strikes the string alternating downward and upward in a 

continuous fashion. In high speeds, the technique is also called “tremolo picking” or 

“double picking” [74, 75]. This technique usually lasts more than one second. In other 

words, this technique is used to cover longer parts of a song or enrich existing simple 

plays through notes. In general, due to the need of consecutively striking one string 

downward and upward, trembling needs more than 0.5 seconds to be performed. A 

recorded Graphics Interchange Format animation (GIF) of Trembling in one string 

can be seen by clicking here. Trembling in one string is a popular technique also 

among other bowed string instruments such as the electric guitar and the banjo. 

 Trembling in two strings is the exact same technique as trembling in 

one string but this time the continuous downward and upward strike is performed in 

two strings. It is a very common and popular technique in folk Greek music and is 

deployed mainly to cover parts of the songs where vocals exist in order to accompany 

the voice of the singer. As with trembling in one string, also here there is a significant 

amount of time (>0.5 seconds) in order to perform one complete trembling in 2 

strings. Both tremblings can occur repeatedly one after another. In other words, a 

trembling can follow another one, which is usually the case. A recorded Graphics 

Interchange Format animation (GIF) of Trembling in two strings can be seen by 

clicking here.  

https://en.wikipedia.org/wiki/Guitar
https://en.wikipedia.org/wiki/Guitar_picking
https://i.imgur.com/TPsBg7L.gifv
https://en.wikipedia.org/wiki/Guitar
https://i.imgur.com/BkRq8SF.gifv
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Slurring is general technique in which a player brings sharply and rapidly a 

finger down on the fingerboard behind a fret, causing a note to sound [76]. Slurring 

can have sub-categories such as Legato and Hammer-ons. This technique is mainly 

used to enrich parts of a song with more notes, without interfering or changing the 

melody or the rhythm. Slurring is a fastly performed technique, which requires high 

familiarity with the instrument. Therefore, this technique can be completely 

performed just in less than 0.5 seconds. Of course, slurring can also be consecutive, 

which means that many complete performances of it occur one after another even 

with moving between different notes and places in the instrument’s neck. Slurring is 

also popular among the electrical and classical guitar and the banjo. A recorded 

Graphics Interchange Format animation (GIF) of  Slurring can be seen by clicking 

here. 

Two strings play is the playing (not trembling) of two notes together. In a 

bowed string instrument such as bouzouki, in order to achieve this, one has to play 

together two strings. Two strings play is used widely in folk greek music especially 

on specific genres, such as xasaposervika and rempetika. Two strings plays can 

replace simple one string melodies giving a richer sound. Α recorded Graphics 

Interchange Format animation (GIF) of Two strings play can be seen by clicking here. 

The technique Chord refers to set of notes played together. This technique is mostly 

used to accompany vocals or at the end of songs for closures. When played to 

accompany vocal, different Chords are usually played consecutively one after another. 

In the case of using Chords to end a song, usually a maximum of 3 different Chords 

are played consecutively. Α recorded Graphics Interchange Format animation (GIF) 

of Chord can be seen by clicking here. 

In addition to the above techniques, another class is introduced for describing all 

musical segments that do not belong to any of the aforementioned techniques. This 

class (“None”) consists of simple playing through notes that do not have any of the 

techniques. 

 

https://en.wikipedia.org/wiki/Fingerboard
https://en.wikipedia.org/wiki/Fret
https://en.wikipedia.org/wiki/Musical_note
https://i.imgur.com/go0mhrp.gifv
https://en.wikipedia.org/wiki/Guitar
https://i.imgur.com/r1yYIxD.gifv
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Musical_note
https://i.imgur.com/LOzDOcD.gifv
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4. METHODOLOGY 

i) The Dataset 

Five Machine Learning models (SVM, K-NN, Random Forests, Gradient 

Boosting, Extra Trees) will be trained on a Dataset consisting of 336 recordings of 

length varying from 1 second to 4 seconds. The training samples were recorded by the 

same player and instrument using the Audacity software and under the exact same 

environment (microphone, room). In all cases, the noise was limited to low values. In 

addition, all audio files are mono.  

The instrument’s techniques here can be very fast, meaning techniques can last 

from some milliseconds, depending on the speed of the track. The training samples 

distribution among classes is presented in Table 2 and the total length of training 

material per class is shown in Figure 1. All recordings of the training set are solo 

tracks without accompaniment. 

Technique Training Samples 

2 strings 69 

chord 67 

slurring 65 

trembling 1 string 68 

trembling 2 strings 67 

                      

Table 2: Training samples per technique 
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Figure 1: Training samples and total training length for each class 

Regarding the distribution of total length (sec) of each class in the training set, 

there were in total 140 seconds of “Two strings play”, 77 seconds of “Chord”, 235 

seconds of “Slurring”, 290 seconds of “Trembling in one string” and 210 seconds of 

“Trembling in 2 strings”. The high variance of these values is justifiable, as the 

technique with lowest length in training set (Chords) cover only small parts of any 

song (mainly at endings of songs or during parts of vocals). In other words, this 

technique appears much less than the other 4 (Slurring, Trembling in one string, 

Trembling in two strings, Two strings play). Therefore, there is a need to have much 

more training Data for the most appeared techniques in bouzouki solo tracks. 

The test Dataset consists of 5 recordings, which samples of popular bouzouki 

songs (Table 3) [77-81]. They were selected due to their rich content in different 

techniques that one can play in them. The first releases of these songs were not that 

rich in techniques. Therefore, these songs were studied in order to evaluate the parts 

of them, in which technique could be introduced. After appropriate adjustment, the 
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final samples were recorded with as many techniques as possible. All samples are solo 

tracks without accompaniment. 

Test recording Length (seconds) 

Xoros sakaina + Minore tis avgis [77] 134  

Mh mou ksanafigeis pia (intro) [78] 55 

Minore tou teke [79] 59 

Taksimi moraiti [80] 81 

Prin to xarama [81] 92 

Table 3: The test set and its length 

For each one of these recordings, a ground truth file with labels for each 

segment is created, in order to compare our findings and compute evaluation metrics. 

The ground truth files are simple comma separated values files (CSV) and were 

created using the software Audacity. In these files, the start of each segment, the end 

of it and the corresponding class (Technique or None) are stored. The ground truths 

for each test recording are presented in Figures 2-11 for mid-term and short-term 

windows 0.5 and 0.01 respectively and mid-term and short-term steps 0.25 and 0.005 

respectively. Ground truth values on the time (x) axis signify a None technique 

(absence of techniques) in the respective segment. The total length of each technique 

(class) in seconds in the test set is presented in Figure 12. 
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Figure 2: Ground truth for test rec “Minore tis avgis” 

 

Figure 3: Length (seconds) of each class in the test recording “Minore tis avgis” 

As presented in Figures 2-3 the first test recording, consists of 33.62 seconds 

of “Playing in two strings”, 4.12 seconds of “Slurring”, 6.48 seconds of “Chord play”, 

7.13 seconds of “Trembling in one string” and 46.76 seconds of “Trembling in two 

strings”. The remaining part of the song (36.8 seconds) does not contain any 

Technique. The first recording of the original song can be listened by clicking here. 

The test recording can be found here. 

https://www.youtube.com/watch?v=S2MynMibAAM
https://soundcloud.com/user-710056974-543290734/avgi
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Figure 4: Ground truth for test rec “Minore tou teke” 

 

Figure 5: Length (seconds) of each class in the test recording “Minore tou teke” 

As presented in Figures 4-5 the first test recording, consists of 7.24 seconds of 

“Playing in two strings”, 5.77 seconds of “Slurring”, 4.97 seconds of “Chord play”, 

5.74 seconds of “Trembling in one string” and 9.48 seconds of “Trembling in two 

strings”. The remaining part of the song (26.14 seconds) does not contain any 

Technique. The first recording of the original song can be listened to here. The test 

recording can be found here.  

https://www.youtube.com/watch?v=maW3d_jmS1s&t=169s
https://soundcloud.com/user-710056974-543290734/minore-teke
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Figure 6: Ground truth for test rec “Taksimi tou moraiti” 

 

Figure 7: Length (seconds) of each class in the test recording “Taksimi tou moraiti” 

As presented in Figures 6-7 the first test recording, consists of 7.51 seconds of 

“Playing in two strings”, 8.3 seconds of “Slurring”, 1.73 seconds of “Chord play”, 

8.64 seconds of “Trembling in one string” and 6.54 seconds of “Trembling in two 

strings”. The remaining part of the song (48.65 seconds) does not contain any 

Technique. The first recording of the original song can be listened to here. The test 

recording can be found here.  

https://www.youtube.com/watch?v=FUHKvFFw3JQ
https://soundcloud.com/user-710056974-543290734/moraitis
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Figure 8: Ground truth for test rec “Mi mou ksanafigeis pia” 

 

Figure 9: Length (seconds) of each class in the test recording “Mi mou ksanafigeis 

pia” 

As presented in Figures 8-9 the first test recording, consists of 13.62 seconds 

of “Playing in two strings”, 6.02 seconds of “Slurring”, 2.84 seconds of “Chord play”, 

4.41 seconds of “Trembling in one string” and 5.95 seconds of “Trembling in two 

strings”. The remaining part of the song (23.03 seconds) does not contain any 

Technique. The first recording of the original song can be listened to here. The test 

recording can be found here.  

https://www.youtube.com/watch?v=Fr3CUyz2sVs
https://soundcloud.com/user-710056974-543290734/magka-mou
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Figure 10: Ground truth for test rec “Print to xarama” 

 

Figure 11: Length (seconds) of each class in the test recording “Prin to xarama” 

As presented in Figures 10-11 the first test recording, consists of 1.99 seconds 

of “Playing in two strings”, 4.22 seconds of “Slurring”, 1.99 seconds of “Chord play”, 

0.97 seconds of “Trembling in one string” and 3.81 seconds of “Trembling in two 

strings”. The remaining part of the song (61 seconds) does not contain any Technique. 

The first recording of the original song can be listened to here. The test recording can 

be found here. 

https://www.youtube.com/watch?v=s1-LS6nIxpE
https://soundcloud.com/user-710056974-543290734/xarama
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Figure 12: Length distribution per class in total test set and total training set 

As presented in Figure 12, “2 strings play” is 35.45% (80.9 seconds) of the 

total test set and 14.71% (140 Seconds) of the training set. Slurring is 8.51% (19.43 

seconds) of the total test set and 8.09% (77 seconds) of the total train set. Chords 

cover 12.46% (28.43 seconds) of the test set and 24.68 % (235 seconds) of the 

training set. “Trembling in one string” is 11.79 % (26.9 seconds) of the test set and 

30.46% (290 seconds) of the training set. Trembling in two strings covers 31.79 % 

(72.55 seconds) of the test set and 22.06 % (210 seconds) of the training set. 

Specific combinations mt-window/step and st-window/step have been selected 

in order to extract features and train the models. With bouzouki being a solo 

instrument, fast playing speeds and rapid switch between techniques or between a 

technique and a simple melody is very common. For instance, Slurring can occur in 

just 0.2 seconds depending on the speed of the player. In addition, changes between 

three techniques can occur in less than 2 seconds. Therefore, small short-term steps 

and windows are also selected. The models selected are SVM, K-NN, Extra Trees, 

Random Forests and Gradient Boosting. In total, we get 8 mt-window/step and st-

window/step and 5 models, resulting in a total of 40 models. These are presented in 

Table 4. 
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mid term window mid term step short term window short term step 

0.5 0.25 0.01 0.005 

0.6 0.2 0.015 0.005 

0.8 0.1 0.02 0.005 

0.8 0.2 0.04 0.01 

0.8 0.04 0.02 0.01 

0.9 0.6 0.006 0.02 

1.6 1.6 0.06 0.06 

2.0 0.8 0.1 0.04 

  Table 4: The windows and steps selected (mid and short-term) 

ii) Audio Feature Extraction 

 In order to analyze the recordings, the signal of each recording has to 

be first broken into short-term (short) frames. These frames can be either overlapping 

or not, depending on the values of the frame window (length) and the step selected. 

For each of these frames (segments), the audio features are then extracted resulting in 

34 audio features for each frame. Then, the signal is broken again into frame, but this 

time into mid-term segments. Then, again the short-term feature extraction is 

repeated. The feature sequence extracted from each mid-term frame is processed and 

the audio feature statistics are extracted. In other words, the statistics (mean, standard 

deviation) are extracted for each mid-term segment by applying them per sequence of 

short-term feature sequence for each segment. At the end of the above procedure, 

there are in total 68 features for each recording, which correspond to the mean and 

standard deviation of the audio features of Table 5, which are described below. In 

Figure X, the process of analyzing a signal and extracting the audio features is 

presented. 
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Figure 13: The process of analyzing a signal and extracting its audio features through 

segmentation [82] 

 The short term features extracted in the current work are presented in 

Table 5. In general, these 34 audio features provide valuable and adequate 

information in order to describe a signal and discriminate it among other [83]. The 

features can be divided in four broader categories: 

Time-domain features 

Energy is a measure to describe how fast (or slow) the sign changes. It can be 

described as the rate of sign-changes of the signal during the duration of a particular 

frame [83]. Mathematically, it can be computed by summing the squared signal 

values, normalized by the window length selected for the analysis. Given N frames of 

length L, the short-term energy of frame i is calculated by: 

 , where xi(n) (n=1,…,WL) is the sequence of audio 

samples of the i-th frame. 

Zero Crossing Rate (ZCR) is defined as the rate of sign-changes divided by 

the duration of the frame. ZCR is a measure to describe the amount of noise of a given 

signal. It is calculated by rate of sign changes during the frame: 

 

, where sgn is the function: 



39 

 

                                        

Entropy of Energy captures and measures the abrupt changes of the Energy. 

First, K sub-frames are created by the original frame and the normalized sub-energies 

(Esubframe_k) of each K-frame are computed. The energy of each sub-frame is also 

computed and divided by the total Energy of the signal. The entropy of the 

normalized sub-energies (computed in previous step) is then calculated. The sub-

frame energy values ej (j=1,…,K) are calculated by: 

 

, where:  

 

The entropy H(i) of the sequence ej is then calculated by: 

 

 

Frequency Domain (Spectral) Features 

The spectral centroid is the center of gravity of the spectrum. It belongs to the 

frequency domain features. It can be computed by:  

 

Spectral spread is the 2nd central moment of the spectrum and can be 

calculated by 
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Spectral entropy is of a signal is a measure of its spectral power distribution.  

It can be computed in a similar way as the entropy of energy, but for the frequency-

domain. Specifically, the spectrum is divided into L sub-bands and the normalized 

sub-band energies (Ef) are computed.  

                                                                   , where  

Finally, the entropy is computed by: 

 

Spectral flux is a is a measure of how quickly the power spectrum of 

a signal is changing, calculated by comparing the power spectrum for one frame 

against the power spectrum from the previous frame (Spectral change between two 

successive frame) [3, 83, 84]. At first, the ENi of each frame i and for a value k are 

computed. ENi(k) is the k-th normalized DFT coefficient at the i-th frame and can be 

computed by:  

 

Then, the flux is calculated by: 

 

https://en.wikipedia.org/wiki/Power_spectrum
https://en.wikipedia.org/wiki/Signal_(electrical_engineering)
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Spectral rolloff is the frequency below which a certain percentage of the 

magnitude distribution of the spectrum is concentrated. 

Cepstral Domain 

Mel-frequency cepstral coefficients (MFCCs) are coefficients that collectively 

make up an MFC [84]. They are calculated using a cepstral representation of the 

signal. Specifically, MFCCs are the discrete cosine transform coefficients on the mel-

scaled log-power spectrum [3, 48, 82]. Firstly, the DFT is computed and the mel-scale 

filter bank is applied. The Mel scale relates perceived frequency, or pitch, of a pure 

tone to its actual measured frequency [83] and can be computed by: 

                                            

 Than, Ok is computed, which represents the power of the output of 

each of the above filters. Finally, the MFCCs are the the discrete cosine transform 

coefficients of the mel-scaled log-power spectrum: 

                                    , where 

 

Chroma Vector 

Chroma vector is a 12-element frequency representation of an audio signal. 

Each k value is computed by: 

                                                     , where  

 

 

https://en.wikipedia.org/wiki/Cepstrum
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Index Name Description 

1 Zero 

Crossing 

Rate 

The rate of sign-changes of the signal during the duration of a 

particular frame. 

2 Energy The sum of squares of the signal values, normalized by the 

respective frame length. 

3 Entropy of 

Energy 

The entropy of sub-frames’ normalized energies. It can be 

interpreted as a measure of abrupt changes. 

4 Spectral 

Centroid 

The center of gravity of the spectrum. 

5 Spectral 

Spread 

The second central moment of the spectrum. 

6 Spectral 

Entropy 

Entropy of the normalized spectral energies for a set of sub-

frames. 

7 Spectral 

Flux 

The squared difference between the normalized magnitudes of 

the spectra of the two successive frames. 

8 Spectral 

Rolloff 

The frequency below which 90% of the magnitude 

distribution of the spectrum is concentrated. 
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9–21 MFCCs Mel Frequency Cepstral Coefficients form a cepstral 

representation where the frequency bands are not linear but 

distributed according to the mel-scale. 

22–

33 

Chroma 

Vector 

A 12-element representation of the spectral energy where the 

bins represent the 12 equal-tempered pitch classes of western-

type music (semitone spacing). 

34 Chroma 

Deviation 

The standard deviation of the 12 chroma coefficients. 

Table 5: Audio features [3, 48, 82, 83] 

iii) Classification Methodology 

Besides the 5 general classes of techniques, we introduce also a new class 

(called None) which corresponds to parts of a given sample with absence of 

technique. A segment of a song can be either one of the above-mentioned techniques 

or it could be a simple melody without any technique. In order to address this, we 

experiment with different confidence levels for the classifications of the models. If the 

confidence of the classification made by a model for a specific segment is lower than 

the selected confidence, than we “do not allow” any classification by the model. 

Instead, the classification of the model is set to “None”. Respectively, in the ground 

truth of a test recording, segments not containing any technique, are assigned a 

“None” value.  

At first, the 40 aforementioned models (5 models X 8 combinations) are 

trained. Then, for each test recording (with its ground truth) the below steps are 

followed: 

For every confidence level in the range of [0.4,1) with step 0.025 we let every 

model make a prediction for each segment of the test recording. If the confidence of 
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the classification of the model for the specific segment is lower than the confidence 

we examine, than the model classifies the segment as “None” technique. If the 

classification of the model for the segment is greater than the selected confidence, we 

accept the predicted value. This continues for all segments of each test recording.  

To evaluate accuracy, we have introduced weighted errors for 

misclassifications, as some techniques are more similar to each other. As a result, 

some misclassifications cannot be considered totally false. These weighted errors 

have been discussed and chosen by 2 professional music players and 3 amateur 

players and are presented in Table 6. According to the weighted errors matrix, the 

normalized accuracy is calculated.  

 2 strings chord slurring trembling 1 

string 

trembling 2 

strings 

None 

2 strings  0 0.5 1 1 0.5 1 

chord 0.5 0 1 1 0.8 1 

slurring 1 1 0 1 1 1 

trembling 1 

string 

1 1 1 0 0.5 1 

trembling 2 

strings 

0.5 0.8 1 0.5 0 1 

None 1 1 1 1 1 0 

Table 6: Matrix of normalized weighted errors for misclassifications 

Two chords play consists of a strike in two strings but not in a continuous 

fashion (as Trembling in two strings). Two chords play is more like a simple melody 

in two strings, whereas Trembling in two strings is the continuous strike (downward 

and upward) of two strings. However, the two techniques have in common the strike 

in two strings. Therefore, a half unit error is introduced for the misclassification of 

technique “2 strings play” and “Trembling in one chord” and the opposite. 

 In addition, Chords are the combination of strike of 3 or 4 strings. 

Chords and “2 string play” have therefore two things in common. The first is the 

strike of 2 (or more in the case of Chords) strings. The second one is the not 

continuous fashion of play. For instance, both techniques do not refer to trembling, as 

they are simple strikes tempowise. As a result, an error of half unit is introduced for 

such misclassification. In the opposite hand, “Chords” and “Trembling in two strings” 
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have a 0.8 error, as they have in common a significant parameter (two or more strings 

play) but differ significantly in the playing tempo (Trembling in two strings is a much 

faster technique than Chords). 

 Trembling in one string and Trembling in two strings have in common 

the necessity of fast play. More specifically, both techniques require a continuous 

strike (downward and upward). However, they differ significantly in the number of 

strings played. Therefore, these two techniques have a 0.5 error value for the case of 

misclassification. All other misclassification cases have a typical error, which cannot 

be normalized, as these techniques have nothing in common. All normalized errors 

have been decided unanimously by the 2 professional and 3 amateur bouzouki 

players. 

 In Figure 14, the algorithm of the approach is presented. At first, a list 

of all models to be trained is initialized (SVM, K-NN, Gradient Boosting, Extra 

Trees, Random Forest). Then, the combinations of mid-term windows, mid-term 

steps, short-term windows and short-term steps are also initialized. For each model 

(SVM, K-NN, Gradient Boosting, Extra Trees, Random Forest) and each window/step 

combination, the audio features extraction is the next step: The training recordings are 

processed (audio signal processing) and the features of Table 5 are extracted for a 

specific combination (Table 4). These features are used as training Dataset. After 

training a model on a specific window/step combination (model, combination), the 

model is stored for later use. 

 The next step is to initialize a range of confidence values to check. 

Then, for each stored model the following methodology is followed: For each test file, 

the audio features are extracted for the given mid-term window, mid-term step, short-

term window and short-term step combination are extracted and given as input to the 

model for classification. The next step if to loop through confidence values. The 

confidences values are all values between 0.4 and 0.975 with step 0.025. For each of 

these values, the model classifies each segment (y_pred). For a given confidence c, 

we accept the classification of a model for a specific segment only if its probability is 

greater than c. If the probability of the classifier’s decision is greater than the 

investigated confidence value, then this classification is accepted, otherwise the class 

‘None’ is assigned to the segment. After classifying all segments of all test files for a 
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specific model, combination of windows/steps and confidence, the evaluation metrics 

are computed (confusion matrix, Recall, Precision, F1, accuracy, normalized 

accuracy). The ROC curves are also plotted and evaluated. The above procedure 

results in 1440 different tests (36 confidence X 8 window/step combinations X 5 

models) to compare efficiency (Recall, Precision, F1-score, Accuracy, Normalized 

Accuracy, ROC curves).  

  

 

Figure 14: The methodology of the approach for the recognition of instrument playing 

technique 
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iv) Model Training 

The models trained were evaluated using the function evaluateClassifier of 

pyAudioAnalysis in order to perform cross validation and select the optimal classifier 

parameter. For SVM, the parameter studied is the soft margin parameter C. For k-NN 

classifier, the number of nearest neighbors was examined whereas for Random Forest 

classifier the number of trees was studied. For Gradient Boosting, the amount of 

boosting stages was optimized during training. Finally, the Extra Trees classifier was 

studied as of the number of trees.  

For SVM, the parameter under study (C) is the penalty parameter C of the 

error term. Depending on its value, C can influence the balance between low training 

errors and low testing errors. In other words, C is a crucial parameter for the model’s 

generalization on unseen data. For Gradient Boosting, the boosting stages (number of 

estimators) are the number of trees in the forest. The parameter tuning is done in order 

to find a good balance point between low values (which can cause the model to 

overfit) and high values (which can slow down the training significantly).  

After training and testing on the test recordings, the 8 models that achieved the 

best F1-scores and accuracies (>0.5) were selected. These are presented and discussed 

in Figures 15-30 in the section of results. Regarding parameter tuning during training, 

the optimezed parameters (C for svm and number of estimators for Gradient 

Boosting) of the best 8 models are presented in Table 7 below. 

Model Parameters 

svm (0.9, 0.6, 0.06, 0.02) Soft margin parameter C: 0.01 

gradient boosting (0.9, 0.6, 0.06, 0.02) Number of Estimators (n_estimators): 200 

svm (0.8, 0.4, 0.02, 0.01) Soft margin parameter C: 0.01 

svm (0.8, 0.2, 0.04, 0.01) Soft margin parameter C: 20.0 

svm (0.6, 0.2, 0.015, 0.005) Soft margin parameter C: 0.01 

gradient boosting (0.6, 0.2, 0.015, 0.005) Number of Estimators (n_estimators): 100 

svm (0.5, 0.25, 0.01, 0.005) Soft margin parameter C: 0.01 

gradient boosting (0.5, 0.25, 0.01, 0.005) Number of Estimators (n_estimators): 500 

Table 7: Selected Parameters of 8 best models 
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Besides C for SVM and boosting stages for Gradient Boosting, the rest of the 

parameters are in common for all models, are they were note finetuned. These 

parameters are presented in Table 8. For SVC, the kernel parameter can be either 

‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’ or ‘precomputed’ and refers to the kernel type to be 

used. Kernels are mathematical functions which take the input data and transform it 

into another dimension. This dimensionality transformation is done in order to 

achieve a clear dividing margin between classes. In this case, the kernel type selected 

was linear. This means, that the Data is separated by a straight line. The degree refers 

to the degree of the polynomial kernel function (‘poly’). In the ‘linear’ kernel case, 

this value is ignored by taking the default value 3. The parameter gamma is a 

coefficient used for the kernel types ‘rbf’, ‘poly’, and ‘sigmoid’. In the case of ‘linear’ 

kernel type, gamma has the value ‘auto_deprecated’ which is used to indicate that no 

explicit value of gamma was passed. Coef0 is another irrelevant parameter with 

kernel type ‘linear’, which is used only in ‘poly’ and ‘sigmoid’ kernel functions.  

Shrinking refers to the shrinking heuristics which are used to speed up the 

optimization and effect the runtime. In this case, shrinking was se to true, enabling the 

shrinking heuristics to be used in the optimization. The parameter probability is set 

here to true, in order to also compute probability estimates. However, enabling the 

calculation of probability estimates can slow down the training process. The tol 

parameter refers to the tolerance for the stopping criteria (allowed in the optimization 

process). Once this value is achieved, the search for the optimum is stopped. Here, the 

tol value is set to the default 0.0001. Cache_size is the size of the kernel cache (in 

MB) and has a strong impact on runtime of the training. Here, cache_size is set to 

default value 200. The parameter class_weight is used to assign weights to classes. In 

this case, it is set to None, signifying that all classes have equal weights (1). Verbose 

is a parameter that enables or disables detailed logging information. Here, it is set to 

False. Max_iter refers to a hard limit on iterations within solver. Specifically, the 

value of max_iter is the maximum number of iterations allowed in order to optimize. 

In this case, it is set to -1, signifying no limit of iterations. The parameter 

decision_function_shape is used for specifying the methodology of treating the 

different classes. In this case, it is set to ‘ovr’, which refers to One vs Rest approach. 

This approach models each class against all of the other classes independently and 
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trains a classifier for each situation. Random_state specifies the seed of the pseudo 

random number generator used when shuffling the data for probability estimates. 

Here, it is set to None which uses the random state generator of Numpy. 

For Gradient Boosting, the parameter criterion refers to the function to be 

called to measure the quality of a split. The ‘friedman_mse’ selected here uses the 

mean squared error with an improvement score by Friedman. The loss parameter 

refers to the loss function to be optimized. Here, it is set to ‘deviance’, which signifies 

a logistic regression approach with probabilistic outputs. Learning_rate value 

specifies the value, by which the contribution of each tree is shrinked. Here, it is set to 

the default value of 0. 1. Subsample indicates the fraction of samples that are used for 

fitting the individual ensembles. The value of subsample here is 1. Min_sample_split 

is the minimum number of samples required to split an internal node. Assigning high 

values to this parameter can cause the tree to become more constrained as it has to 

consider more samples at each node. Here, min_samples_split is set to the default 

value 2. Min_samples_leaf is the minimum number of samples required to be at a leaf 

node. Here it is set to the default value 1, meaning that one sample is required at least 

to be at a leaf node. Min_weight_fraction_leaf refers to weights of samples. In this 

case, it is set to 0, resulting in an equal weight of the samples. Max_depth refers to the 

deepness of the tree to be built. Higher values result in deeper trees and more splits 

necessary. In addition, higher value can capture more information about the data and 

generalize better. There is, however, a risk of overfitting. In this case, max_depth was 

set to the default value 3. Min_impurity_decrease is the value, above (or equal to) 

which any node will be split regarding the induced decrease of impurity. 

Min_impurity_decrease was set here to the default value 0, meaning there is no test 

regarding splitting and impurity decrease. The parameter min_impurity_split indicates 

a threshold for early stopping of the tree growing. Any node will split if the impurity 

it induces is higher than this threshold. In the opposite case, the node will be a leaf 

node. Here, the parameter value is the default value ‘None’, meaning there is no such 

threshold. Init is an estimator for the computation of the initial predictions. It is set to 

None, as there is no need for initial predictions. The parameter random_state refers to 

the random number generator used as in SVC. It is set to ‘None’ and thus the Numpy 

random generator is used. Max_features is the number of features that need to be 
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considered for the best split. It is set to ‘None’, resulting in max_features equal to the 

number of features. Verbose (just as in SVC) enables or disables detailed logging 

information and here it is disabled (value 0). Max_leaf_nodes specifies the maximum 

amount of leaf nodes in the tree allowed. Here, it is set to None, meaning there is no 

limit in the number of leaf nodes. Warm_start is used to recall and reuse aspects of the 

model learnt from previous parameter values. Here it is set to False, which erases the 

previous solution. Presort is used in order to pre-sort the data and speed up the search 

of the best splits. Here, it has the default value ‘auto’, which enables the pre-sorting 

on dense data and default to normal sorting on parse data. The parameter 

validation_fraction indicates the proportion to training data to be considered and left 

as validation set for early stopping. The default value of 0.1 was used. The value of 

n_iter_no_change decided whether early stopping will be used in the case that 

validation score shows no improving. Here, it was disabled by assigning to it the 

default value None. The parameter tol (as in SVC) refers to the tolerance for the 

stopping criteria (allowed in the optimization process). Once this value is achieved, 

the search for the optimum is stopped. Here, the tol value is set to the default 0.0001.  

 

Model Parameters 

 

 

SVC 

kernel  ‘linear’ 

degree 3 

gamma ‘auto_deprecated’ 

coef0  0 

shrinking  TRUE 

probability TRUE 

tol  0.0001 

cache_size 200 

class_weight None 

verbose FALSE 

max_iter -1 

decision_function_shape  ‘ovr’ 

random_state None 
 

 

 

 

loss ‘Deviance’ 

learning_rate 0.1 

subsample 1 

criterion friedman_mse' 

min_samples_split 2 
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GradientBoosting min_samples_leaf 1 

min_weight_fraction_leaf  0 

max_depth 3 

min_impurity_decrease 0 

min_impurity_split None 

init  None 

random_state None 

max_features  None 

verbose 0 

max_leaf_nodes None 

warm_start FALSE 

presort ‘auto’ 

validation_fraction  0.1 

n_iter_no_change None 

tol 0.0001 
 

Table 8: Parameter values for models SVC and Gradient Boosting 
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5. IMPLEMENTATION ISSUES 

Firstly, 8 different combinations of mid and short term windows and steps are 

selected (Table 4). Making use of the Machine Learning models (5 in total) offered in 

pyAudioAnalysis library for audio classification results in a total of 40 models (8 

combinations X 5 models) [48]. These models are SVM, K-NN, Extra Trees, Random 

Forests and Gradient Boosting.  The models trained were evaluated using the function 

evaluateClassifier of pyAudioAnalysis in order to perform cross validation and select 

the optimal classifier parameter. For SVM, the parameter studied is the soft margin 

parameter C. For k-NN classifier, the number of nearest neighbors was examined 

whereas for Random Forest classifier the number of trees was studied. For Gradient 

Boosting, the amount of boosting stages was optimized during training. Finally, the 

Extra Trees classifier was studied as of the number of trees.  

The function train(mt_size,mt_step,st_size,st_step) is the first function called. 

It takes as argument the mid-term size and step and short-term size and step. The 

function featureAndTrain of module audioTrainTest of pyAudioAnalysis is then 

called 5 times in total, one time for each model. The arguments passed in 

featureAndTrain are the paths to the folders containing the techniques, the windows 

and sizes, the preferred model and a path to save the model trained. This function then 

analyzes the training Data (feature extraction) with respect to the passed mid and 

short term parameters and trains the models. The training Dataset can be found by 

clicking here [85]. 

Then, the test(filepath,segmentpath,confidence,test_name) function is called 

for each file of the test set. The test files can be found by clicking here [86]. The first 

argument passed is the path to the test file. The path to the ground-truth segment file 

(manually annotated) is also passed for later comparison between ground truth and 

classifications. In addition, this function is called for every confidence level in the 

range of [0.4,1) with step 0.025. A test_name argument is passed in order to save 

respective results. This function then searches for all models stored after train 

function. For each model (out of the 40 in total) and for each confidence the function 

mtFileClassification(input_file, model_name, model_type, confidence, test_name, 

plot_results=False, gt_file="") of the module audioSegmentation of pyAudioAnalysis 

is called. This function is adjusted to the needs of the current work as following: We 

https://github.com/kostispar/ThesisData/tree/master/Data
https://github.com/kostispar/ThesisData/upload/master/testData
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let every model make a prediction for each segment of the test recording. If the 

confidence of the classification of the model for the specific segment is lower than the 

confidence we examine, than the model classifies the segment as “None” technique. If 

the classification of the model for the segment is greater than the selected confidence, 

we accept the predicted value. This continues for all segments of each test recording. 

The resulted confusion matrices of each classification of each test file on each model 

and confidence are stored all together in subfolders per test file. Additionally, 

mtFileClassification was altered as following: To evaluate accuracy, we have 

introduced weighted errors for misclassifications (Table 6), as some techniques are 

more similar to each other. As a result, some misclassifications cannot be considered 

totally false. These weighted errors have been discussed and chosen by 2 professional 

music players and 3 amateur players. The normalized accuracy is calculated according 

to the weighted errors matrix, which is also used for all next steps. 

Afterwards, a sort_folders() is called in order to store the confusion matrices 

created in previous step firstly per test name and then per model in respective 

subdirectories. Then the create_folder_models() is called in order to store confusion 

matrices firstly per model, then in subdirectories per test file. Then, 

calculate_partial_f1s() is called which analyzes the stored confusion matrices of 

previous step, computes recall, precision and f1-score per model, confidence and test 

file and stores them. Function calculate_total_f1s is called then, which analyzes the 

classification results of previous step and creates a single file for each model (40 

models) . This file is a table containing all possible confidence and respective average 

precision, recall and f1-score of all test files. Additionally, it computes the recall vs 

precision graphs for each model and saves them only if the f1-score is greater than 

0.5. 

Then, the files stored from create_folder_models (separate confusion matrices 

per model, test file and confidence) are passed in the function 

create_partial_folders_per_confidence(), which saves the confusion matrices first per 

model, then per confidence and then per test file. Later, 

create_total_folders_per_confidence() is called. This function takes the files from last 

step and calculates the total confusion matrices for all test files per model and then per 

confidence. Finally, the stored files are analyzed by function precision_vs_recall() 
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which computes the total recall, precision and f1-scores for all test files and for each 

model. It also plots the recall vs precision graphs with respect to the confidence 

(Figures 15, 17, 19, 21, 23, 25, 27, 29) for the 8 best models.  

Finally, function roc_curves(model) is called 40 times in total (one time for 

each model). It takes as argument the model name and searches in the directory of 

lastly stored (by function create_total_folders_per_confidence()) confusion matrices 

for the respective confusion matrix of the model. It calculates True Positive Rate 

(TPR) and False Positive Rate (FPR) for each model (all test files and for each 

confidence level) and plots the Roc Curves (Figures 16, 18, 20, 22, 24, 26, 28, 30) for 

the best 8 models. Figures 33-42 were created with application of the normalized 

weighted error matrix on mtFileClassification and plotSegmentationResults of 

pyAudioAnalysis. The methodology of the approach is also presented in Figure 14. 

The code described above can be found by clicking here [87]. Besides 

pyAudioAnalysis, the libraries numpy, pandas and matplotlib were used [88-90].  

 For the purposes of this Thesis, an open-source standalone python script was 

developed which classifies each segment of a given solo bouzouki instrument 

recording as of the playing technique using the best 6 (pre-trained) models of this 

Thesis. The repository with the code and the pre-trained models of the project can be 

found in github [91]. Chapter 9 of this work covers a detailed description of the 

repository and the code. 

 

 

 

 

 

 

 

 

https://github.com/kostispar/ThesisData/blob/master/training_testing.py
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6. RESULTS AND DISCUSSION 

Precision, Recall and F1 were calculated for all test recordings together. In 

order to evaluate the results, the means of Precision, Recall and F1 for the non None 

techniques were computed. Precision grows and recall shrinks as confidence level 

grows for the non None techniques. On the other hand, for the None technique, 

precision shrinks and recall grows. In addition, the roc curves for each model on the 

whole training Dataset (only for the techniques) are also computed. The graphs of 

Precision vs Recall and the ROC curves of the best 8 models are presented in Figures 

15-30. 

 

I) Multiclass Roc Curves, AUC Score and Confusion 

Matrices 

A receiver operating characteristic curve (ROC) is a graphical plot that shows 

the ability of a classifier to discriminate two classes depending on the confidence of 

the classifications. Specifically, the ROC curve shows the efficiency of the model to 

distinguish two different classes with respect to the probabilities of the predictions. In 

general, the Y axis of the ROC curve is the true positive rate of a class whereas the X 

axis represents the false positive rate. As a result, a false positive rate of zero and a 

true positive rate of one (which is the best discrimination that can be achieved) is on 

the top left corner of the plot. The confidence threshold that gives ROC value closer 

to this point is typically a good threshold compared to the rest. As mentioned above, 

ROC curves are illustrations that are used in binary classifications. In order to apply 

ROC curves for multi-class tasks, the label must be first binarized. In addition, one 

ROC curve is plotted per class. The micro-averaging ROC curve can be computed if 

considering each label as binary prediction (One vs Rest). Macro-averaging ROC 

curve is computed by assigning equal weight to the classification of each label. The 

AUC score refers to “area under the ROC curve” and signifies the area underneath the 

ROC curve. It is an aggregate metric of the performance with respect to all 

classification thresholds (confidences). AUC can be related to the probability of the 

model ranking a random positive (true) instance highly than a random negative (false) 

instance. 

https://en.m.wikipedia.org/wiki/Graph_of_a_function
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Figure 15: Recall vs Precision for model svm and combination 0.9 (mt window), 0.6 

(mt step), 0.06 (st window), 0.02 (st step)  

The model svm for mid-term window 0.9, mid-term step 0.6, short-term 

window 0.06 and short-term step 0.02 achieved the highest F1 (0.5880) score of all 

models at Confidence value 0.4. As expected, recall drops and precision rises as the 

confidence limit rises. Precision and recall are equal at confidence value of 0.7. At the 

point of Precision, Recall and F1-Score equality (confidence 0.7), their values are 

0.55. The confusion matrix of the model for all test recordings and confidence 0.7 is 

presented on Table 9 below. 

True 

Predicted trembling1 trembling2 slurring 2strings chord 

trembling1 14 7 0 0 1 

trembling2 0 22 0 0 0 

slurring 3 2 36 6 1 

2strings 4 20 2 99 1 

chord 0 0 0 0 25 
 

Table 9:  Confusion Matrix of Techniques for model svm  (mid-term window: 0.9, 

mid-term step: 0.6, short-term window: 0.06 and short-term step: 0.02 
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Figure 16: Roc curve for model svm and combination 0.9 (mt window), 0.6 (mt step), 

0.06 (st window), 0.02 (st step)  

The model svm for mid-term window 0.9, mid-term step 0.6, short-term 

window 0.06 and short-term step 0.02 achieved a micro average ROC curve area of 

0.83 and a macro-average ROC curve area of 0.85. The class “Trembling in one 

string” achieved a ROC curve area of 0.74 and “Trembling in two strings“ achieved a 

ROC curve area of 0.83. The class “Slurring” achieved a ROC curve area of 0.85 and 

the class “2 strings play” a ROC curve area of 0.86. Finally, the class “Chord” 

achieved a ROC curve area of 0.94.  The AUC scores are presented in Table 10. 

Technique AUC score 

Trembling in one string 0.74 

Trembling in two strings 0.83 

Slurring 0.85 

2 strings play 0.86 

Chord 0.94 

Micro-average  0.83 

Macro-average 0.85 
 

 Table 10: AUC scores for model svm and combination 0.9 (mt window), 0.6 

(mt step), 0.06 (st window), 0.02 (st step)  
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Figure 17: Recall vs Precision for model gradient boosting and combination 0.9 (mt 

window), 0.6 (mt step), 0.06 (st window), 0.02 (st step)  

The model gradient boosting for mid-term window 0.9, mid-term step 0.6, 

short-term window 0.06 and short-term step 0.02 achieved the highest F1 score 

(0.5564) at Confidence value 0.7. As expected, recall drops and precision rises as the 

confidence limit rises. Precision and recall are equal at confidence value of 0.9. At the 

point of Precision, Recall and F1-Score equality (confidence 0.9), their values are 

0.52. The confusion matrix of the model for all test recordings and confidence 0.9 is 

presented on Table 11 below. 

True 

Predicted trembling1 trembling2 slurring 2strings chord 

trembling1 17 13 0 0 1 

trembling2 0 19 0 0 0 

slurring 3 6 33 7 1 

2strings 2 26 2 74 1 

chord 3 1 0 0 22 
 

Table 11: Confusion Matrix of Techniques model gradient boosting and combination 

0.9 (mt window), 0.6 (mt step), 0.06 (st window), 0.02 (st step)  
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Figure 18: Roc curve for model gradient boosting and combination 0.9 (mt window), 

0.6 (mt step), 0.06 (st window), 0.02 (st step)  

The model gradient boosting for mid-term window 0.9, mid-term step 0.6, 

short-term window 0.06 and short-term step 0.02 achieved a micro average ROC 

curve area of 0.79 and a macro-average ROC curve area of 0.84. The class 

“Trembling in one string” achieved a ROC curve area of 0.80 and “Trembling in two 

strings” achieved a ROC curve area of 0.79. “Slurring” achieved a ROC curve area of 

0.86 and the class “2 strings play” a ROC curve area of 0.81. The class “Chords“ 

achieved a ROC curve area of 0.94.  The AUC scores are presented in Table 12.  

Technique AUC score 

Trembling in one string 0.80 

Trembling in two strings 0.79 

Slurring 0.86 

2 strings play 0.81 

Chord 0.94 

Micro-average  0.79 

Macro-average 0.94 
 

Table 12: AUC scores for model gradient boosting and combination 0.9 (mt 

window), 0.6 (mt step), 0.06 (st window), 0.02 (st step)  
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Figure 19: Recall vs Precision for model svm and combination 0.8 (mt window), 0.4 

(mt step), 0.02 (st window), 0.01 (st step)  

The model svm for mid-term window 0.8, mid-term step 0.4, short-term 

window 0.02 and short-term step 0.01 achieved the highest F1 score (0.5813) at 

Confidence value 0.7. As expected, recall drops and precision rises as the confidence 

limit rises. Precision and recall are equal at confidence value of 0.525. At the point of 

Precision, Recall and F1-Score equality (confidence 0.525), their values are 0.55. The 

confusion matrix of the model for all test recordings and confidence 0.525 is 

presented on Table 13 below. 

 

True 

Predicted trembling1 trembling2 slurring 2strings chord 

trembling1 21 5 0 0 1 

trembling2 0 62 0 0 2 

slurring 13 19 54 22 3 

2strings 12 45 11 166 4 

chord 7 0 1 0 36 

Table 13: Confusion Matrix of Techniques model model svm for mid-term window 

0.8, mid-term step 0.4, short-term window 0.02 and short-term step 0.01 
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Figure 20: Roc curve for model svm and combination 0.8 (mt window), 0.4 (mt step), 

0.02 (st window), 0.01 (st step)  

The model svm for mid-term window 0.8, mid-term step 0.4, short-term 

window 0.02 and short-term step 0.01 achieved a micro average ROC curve area of 

0.79 and a macro-average ROC curve area of 0.80. The class “Trembling in one 

string” achieved a ROC curve area of 0.76 and “Trembling in two strings” achieved a 

ROC curve area of 0.79. The class “Slurring” achieved a ROC curve area of 0.79 and 

the class “2 strings play” a ROC curve area of 0.81. Finally, the class “Chord” 

achieved a ROC curve area of 0.83.  The AUC scores are presented in Table 14.  

Technique AUC score 

Trembling in one string 0.76 

Trembling in two strings 0.79 

Slurring 0.79 

2 strings play 0.81 

Chord 0.83 

Micro-average  0.79 

Macro-average 0.80 
 

Table 14: AUC scores for model svm for mid-term window 0.8, mid-term step 0.4, 

short-term window 0.02 and short-term step 0.01 
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Figure 21: Recall vs Precision for model svm and combination 0.8 (mt window), 0.2 

(mt step), 0.04 (st window), 0.01 (st step)  

The model svm for mid-term window 0.8, mid-term step 0.2, short-term 

window 0.04 and short-term step 0.01 achieved the highest F1 score (0.5636) at 

Confidence value 0.4. As expected, recall drops and precision rises as the confidence 

limit rises. Precision and recall are equal at confidence value of around 0.625. At the 

point of Precision, Recall and F1-Score equality (confidence 0.625), their values are 

0.54. The confusion matrix of the model for all test recordings and confidence 0.625 

is presented on Table 15 below. 

True 

Predicted trembling1 trembling2 slurring 2strings chord 

trembling1 25 12 0 0 3 

trembling2 0 70 0 0 3 

slurring 34 16 116 42 6 

2strings 2 74 4 282 7 

chord 6 10 7 10 77 

Table 15: Confusion Matrix of Techniques model svm for mid-term window 0.8, 

mid-term step 0.2, short-term window 0.04 and short-term step 0.01 
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Figure 22: Roc curve for model svm and combination 0.8 (mt window), 0.2 (mt step), 

0.04 (st window), 0.01 (st step)  

The model svm for mid-term window 0.8, mid-term step 0.2, short-term 

window 0.04 and short-term step 0.01 achieved a micro average ROC curve area of 

0.77 and a macro-average ROC curve area of 0.81. The class “Trembling in one 

string” achieved a ROC curve area of 0.73 and “Trembling in two strings” achieved a 

ROC curve area of 0.80. The class “Slurring” achieved a ROC curve area of 0.84 and 

the class 2 strings play” a ROC curve area of 0.80. Finally, the class “Chord” 

achieved a ROC curve area of 0.85.  The AUC scores are presented in Table 16.  

Technique AUC score 

Trembling in one string 0.73 

Trembling in two strings 0.80 

Slurring 0.84 

2 strings play 0.80 

Chord 0.85 

Micro-average  0.77 

Macro-average 0.81 

Table 16: AUC scores for model svm for mid-term window 0.8, mid-term step 0.2, 

short-term window 0.04 and short-term step 0.01 
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Figure 23: Recall vs Precision for model svm and combination 0.6 (mt window), 0.2 

(mt step), 0.015 (st window), 0.005 (st step)  

The model svm for mid-term window 0.6, mid-term step 0.2, short-term 

window 0.015 and short-term step 0.005 achieved the highest F1 score (0.5199) at 

Confidence value around 0.4. As expected, recall drops and precision rises as the 

confidence limit rises. Precision and recall are equal at confidence value of around 

0.525. At the point of Precision, Recall and F1-Score equality (confidence 0.525), 

their values are 0.51. The confusion matrix of the model for all test recordings and 

confidence 0.525 is presented on Table 17 below. 

True 

Predicted trembling1 trembling2 slurring 2strings chord 

trembling1 37 0 0 0 4 

trembling2 0 128 1 8 5 

slurring 9 16 76 53 6 

2strings 25 114 42 315 14 

chord 13 6 2 0 66 

Table 17: Confusion Matrix of Techniques model svm for mid-term window 0.6, 

mid-term step 0.2, short-term window 0.015 and short-term step 0.005 
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Figure 24: Roc curve for model svm and combination 0.6 (mt window), 0.2 (mt step), 

0.015 (st window), 0.005 (st step)  

The model svm for mid-term window 0.6, mid-term step 0.2, short-term 

window 0.015 and short-term step 0.05 achieved a micro average ROC curve area of 

0.82 and a macro-average ROC curve area of 0.83. Specifically, the class “Trembling 

in one string” achieved a ROC curve area of 0.86 and “Trembling in two strings” 

achieved a ROC curve area of 0.82. The class “Slurring” achieved a ROC curve area 

of 0.82 and the class “2 strings play” a ROC curve area of 0.80. The class “Chord” 

achieved a ROC curve area of 0.87.  The AUC scores are presented in Table 18.  

Technique AUC score 

Trembling in one string 0.86 

Trembling in two strings 0.82 

Slurring 0.82 

2 strings play 0.80 

Chord 0.87 

Micro-average  0.82 

Macro-average 0.83 
 

Table 18: AUC scores for model svm for mid-term window 0.6, mid-term step 0.2, 

short-term window 0.015 and short-term step 0.05 
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Figure 25: Recall vs Precision for model gradient boosting and combination 0.6 (mt 

window), 0.2 (mt step), 0.015 (st window), 0.005 (st step)  

The model gradient boosting for mid-term window 0.6, mid-term step 0.2, 

short-term window 0.015 and short-term step 0.005 achieved the highest F1 score 

(0.5133) at Confidence value 0.4. As expected, recall drops and precision rises as the 

confidence limit rises. Precision and recall are equal at confidence value of around 

0.625. At the point of Precision, Recall and F1-Score equality (confidence 0.625), 

their values are 0.46. The confusion matrix of the model for all test recordings and 

confidence 0.625 is presented on Table 19 below. 

True 

Predicted trembling1 trembling2 slurring 2strings chord 

trembling1 38 1 0 2 4 

trembling2 2 132 0 2 8 

slurring 21 21 73 85 10 

2strings 3 108 9 200 3 

chord 10 15 5 14 75 

Table 19: Confusion Matrix of Techniques model gradient boosting for mid-term 

window 0.6, mid-term step 0.2, short-term window 0.015 and short-term step 0.005 
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Figure 26: Roc curve for model gradient boosting and combination 0.6 (mt window), 

0.2 (mt step), 0.015 (st window), 0.005 (st step)  

The model gradient boosting for mid-term window 0.6, mid-term step 0.2, 

short-term window 0.015 and short-term step 0.005 achieved a micro average ROC 

curve area of 0.80 and a macro-average ROC curve area of 0.82. The class 

“Trembling in one string” achieved a ROC curve area of 0.85 and “Trembling in two 

strings” achieved a ROC curve area of 0.80. “Slurring” achieved a ROC curve area of 

0.85 and the class “2 strings play” a ROC curve area of 0.73. The class “Chord” 

achieved a ROC curve area of 0.88.  The AUC scores are presented in Table 20.  

Technique AUC score 

Trembling in one string 0.85 

Trembling in two strings 0.80 

Slurring 0.85 

2 strings play 0.73 

Chord 0.88 

Micro-average  0.80 

Macro-average 0.82 
 

Table 20: AUC scores for model gradient boosting for mid-term window 0.6, mid-

term step 0.2, short-term window 0.015 and short-term step 0.005 
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Figure 27: Recall vs Precision for model svm and combination 0.5 (mt window), 0.25 

(mt step), 0.01 (st window), 0.005 (st step)  

The model svm for mid-term window 0.5, mid-term step 0.25, short-term 

window 0.01 and short-term step 0.005 achieved the highest F1 score (0.5119) at 

Confidence value 0.4. As expected, recall drops and precision rises as the confidence 

limit rises. Precision and recall are equal at confidence value of around 0.6. At the 

point of Precision, Recall and F1-Score equality (confidence 0.6), their values are 

0.49. The confusion matrix of the model for all test recordings and confidence 0.6 is 

presented on Table 21 below. 

True 

Predicted trembling1 trembling2 slurring 2strings chord 

trembling1 20 6 0 0 4 

trembling2 0 87 0 2 4 

slurring 9 10 68 34 6 

2strings 26 56 28 235 4 

chord 10 8 0 9 56 
 

Table 21: Confusion Matrix of Techniques model svm for mid-term window 0.5, 

mid-term step 0.25, short-term window 0.01 and short-term step 0.005 
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Figure 28: Roc curve for model svm and combination 0.5 (mt window), 0.25 (mt 

step), 0.01 (st window), 0.005 (st step)  

The model svm for mid-term window 0.5, mid-term step 0.25, short-term 

window 0.01 and short-term step 0.005 achieved a micro average ROC curve area of 

0.83 and a macro-average ROC curve area of 0.84. The class “Trembling in one 

string” achieved a ROC curve area of 0.83 and “Trembling in two strings” achieved a 

ROC curve area of 0.85. The class “Slurring” achieved a ROC curve area of 0.85 and 

the class “2 strings play” a ROC curve area of 0.80. Finally, the class “Chord” 

achieved a ROC curve area of 0.88.  The AUC scores are presented in Table 22.  

Technique AUC score 

Trembling in one string 0.83 

Trembling in two strings 0.85 

Slurring 0.85 

2 strings play 0.80 

Chord 0.88 

Micro-average  0.83 

Macro-average 0.84 
 

Table 22: AUC scores for model svm for mid-term window 0.5, mid-term step 0.25, 

short-term window 0.01 and short-term step 0.005 
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Figure 29: Recall vs Precision for model gradient boosting and combination 0.5 (mt 

window), 0.25 (mt step), 0.01 (st window), 0.005 (st step)  

The model gradient boosting for mid-term window 0.5, mid-term step 0.25, 

short-term window 0.01 and short-term step 0.005 achieved the highest F1 score 

(0.5023) at Confidence value 0.475. As expected, recall drops and precision rises as 

the confidence limit rises. Precision and recall are equal at confidence value of around 

0.75. At the point of Precision, Recall and F1-Score equality (confidence 0.75), their 

values are 0.47. The confusion matrix of the model for all test recordings and 

confidence 0.75 is presented on Table 23 below. 

True 

Predicted trembling1 trembling2 slurring 2strings chord 

trembling1 39 5 1 0 4 

trembling2 0 66 0 2 6 

slurring 13 5 58 21 6 

2strings 8 46 9 210 5 

chord 11 45 0 9 55 

Table 23: Confusion Matrix of Techniques model gradient boosting for mid-term 

window 0.5, mid-term step 0.25, short-term window 0.01 and short-term step 0.005 
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Figure 30: Roc curve for model gradient boosting and combination 0.5 (mt window), 

0.25 (mt step), 0.01 (st window), 0.005 (st step)  

The model gradient boosting and combination 0.5 (mt window), 0.25 (mt 

step), 0.01 (st window), 0.005 (st step) achieved a micro average ROC curve area of 

0.81 and a macro-average ROC curve area of 0.86. Specifically, the class “Trembling 

in one string” achieved a ROC curve area of 0.90 and “Trembling in two strings” 

achieved a ROC curve area of 0.82. The class “Slurring” achieved a ROC curve area 

of 0.90 and the class “2 strings play” a ROC curve area of 0.86. The class “Chords” 

achieved a ROC curve area of 0.82.  The AUC scores are presented in Table 24.  

 

Technique AUC score 

Trembling in one string 0.90 

Trembling in two strings 0.82 

Slurring 0.90 

2 strings play 0.86 

Chord 0.82 

Micro-average  0.81 

Macro-average 0.86 

Table 24: AUC scores for model gradient boosting and combination 0.5 (mt 

window), 0.25 (mt step), 0.01 (st window), 0.005 (st step) 

 



72 

 

II) Metrics for model with best F1-Score 

In all cases, precision and recall are equal around 60%-70% confidence. The 

maximum F1 (~58%) is achieved by model “svm” at combination mt_win = 0.9, 

mt_step = 0.6, st_win = 0.06, st_step =0.02 at confidence ~40%. Recall and Precision 

are equal at confidence ~70%. The confusion matrix for this model at confidence 70% 

is: 

True 

Predicted trembling1 trembling2 slurring 2strings chord 

trembling1 14 7 0 0 1 

trembling2 0 22 0 0 0 

slurring 3 2 36 6 1 

2strings 4 20 2 99 1 

chord 0 0 0 0 25 

Table 25: Confusion matrix for model svm and combination 0.9 (mt window), 0.6 

(mt step), 0.06 (st window), 0.02 (st step) only for techniques (confidence 70%) 

True 

Predicted None trembling1 trembling2 slurring 2strings chord 

None 101 20 69 7 27 7 

trembling1 3 14 7 0 0 1 

trembling2 1 0 22 0 0 0 

slurring 118 3 2 36 6 1 

2strings 88 4 20 2 99 1 

chord 23 0 0 0 0 25 

Table 26: Confusion matrix for model svm and combination 0.9 (mt window), 0.6 

(mt step), 0.06 (st window), 0.02 (st step) for techniques and the None class 

The above results give a total Accuracy of 42% including the None class. The 

average F1-score, average Precision and average Recall of techniques (None class 

excluded) are 55.8%. In general, the main misclassifications among techniques are 

between “Trembling in two strings” and “2 strings play”. This can be explained by the 

similarity of these two techniques. Both techniques have strikes in exact two strings 

but differ in the continuity of the strikes. However, in just very small segments, the 

continuous strike of 2 strings (trembling in two strings) might not be easy to 

discriminate. As a result, many segments with “trembling in two strings” were 

misclassified as “2 strings play”. In addition, the two trembling techniques (one string 

and two strings) have also technically a lot in common. The continuous and fast 
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fashion of playing (in both techniques) might be the reason behind the 

misclassifications of trembling in two strings as trembling in one string. The 

confidence value of 0.7 can explain the significant amount of techniques classified as 

None class. In general, the probabilities of classifications of the model can have 

values smaller than 0.7. Thus, by raising the confidence of acceptance, a lot of 

classification might not be accepted and the None class is assigned in the position of 

the model’s classification. Raising the confidence values makes the decisions of the 

classifier “stronger” in terms of probability but smaller probability classifications 

could also be true.  

As of evaluation metrics for techniques, the class “Trembling in one string” 

achieved an F1-score of 42.42%, Recall of 34.15% and Precision of 56%. The class 

“Trembling in two strings” achieved an F1-score of 30.77%, Recall of 18.33% and 

Precision of 95.65%. The class “Slurring” achieved an F1-score of 34.12%, Recall of 

80% and Precision of 21.69%. The class “2 strings play” achieved an F1-score of 

57.23%, Recall of 75% and Precision of 46.26%. Finally, the class “Chords” achieved 

an F1-score of 60.24%, Recall of 71.43% and Precision of 52.08%. A graphical 

comparison between Recall, Precision and F1-Score among techniques for the model 

svm and combination 0.9 (mt window), 0.6 (mt step), 0.06 (st window), 0.02 (st step) 

are presented in Figure 31. 

 



74 

 

Figure 31: Precision, Recall, F1 per class for model svm and combination 0.9 (mt 

window), 0.6 (mt step), 0.06 (st window), 0.02 (st step) 

III) Results per model family 

Out of the 5 models (SVM, K-NN, Gradient Boosting, Extra Trees and 

Random Forests), only SVM and Gradient Boosting achieved F1-scores and 

accuracies above 50%. The best 9 models were presented in Figures 15-30. However, 

a comparison between SVM and Gradient Boosting (Figure 32) shows that SVM 

achieves better F1-score for the same combination of mid-term window, mid-term 

step, short-term window and short-term step compared to Gradient Boosting. In 

addition, equality of Precision and Recall for same windows and steps combination is 

in lower confidence levels compared to Gradient Boosting. 

 

 

Figure 32: Comparison of F1-scores of models at confidence of Precision-Recall 

Equality 

 

 

 

 



75 

 

IV)  Examination of predictions on ground truth of test 

recordings 

For a focused evaluation of the models on the separate test recordings, the 

ground-truth vs predicted comparisons for each recording are presented in Figures 33-

42.  

 

 

Figure 33: Ground truth vs predicted for test recording “Minore tis avgis” for model 

svm and combination 0.9 (mt window), 0.6 (mt step), 0.06 (st window), 0.02 (st step) 

 

In Figure 33, the ground truth of the test recording “Minore tis avgis” is 

compared with the classifications of the approach. The red line refers to the ground 

truth of each segment (x-axis) and the blue dots to the classification of the approach. 

Red and blue values on top of the x-axis signify a None class. The model predicted 

correctly 91 segments (techniques and None) out of the total 225 segments giving an 

Accuracy of 40.44% (“Total” bar). The total normalized accuracy is 45.78% 

(“Normalized Total” bar).  78 out of the 160 total techniques were predicted correctly 

giving an Accuracy in Techniques of 48.75 (“Identified vs total techniques”) and a 

Normalized Accuracy in Techniques of 56.25% (“Normalized identified vs total 

identified” bar). The accuracy in None techniques is 20% (“identified none 

techniques” bar). This means that many None techniques (ground truth) were 

misclassified as a technique. Finally, the model predicted correctly 49.37% of the 

techniques with respect to the total identifications it made (“identified vs total 
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identified” bar). The respective normalized accuracy is 56.96% (“Normalized 

identified vs total identified” bar). These values are presented in Figures 34 and 35. 

 

 

Figure 34: Evaluation metrics for test recording “Minore tis avgis” for model svm 

and combination 0.9 (mt window), 0.6 (mt step), 0.06 (st window), 0.02 (st step) 

 

 

Figure 35: Accuracies for test recording “Minore tis avgis” for model svm and 

combination 0.9 (mt window), 0.6 (mt step), 0.06 (st window), 0.02 (st step) 
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In Figure 36, the ground truth of the test recording “Mi mou ksanafigeis pia” 

is compared with the classifications of the approach. The red line refers to the ground 

truth of each segment (x-axis) and the blue dots to the classification of the approach. 

Red and blue values on top of the x-axis signify a None class.  

 

 

Figure 36: Ground truth vs predicted for test recording “Mi mou ksanafigeis pia” for 

svm and combination 0.9 (mt window), 0.6 (mt step), 0.06 (st window), 0.02 (st step) 

 

The model predicted correctly 36 segments (techniques and None) out of the 

93 total segments giving an Accuracy of 38.71% (“Total” bar). The total normalized 

accuracy is 38.71% (“Normalized Total” bar).  24 out of the 53 total techniques were 

predicted correctly giving an Accuracy in Techniques of 45.28% (“Identified vs total 

techniques”) and a Normalized Accuracy in Techniques of 45.28% (“Normalized 

identified vs total identified” bar). Equality of these accuracies shows that no 

techniques with error weights lower than 1 were misclassified. The accuracy in None 

techniques is 30% (“identified none techniques” bar). This means that many None 

techniques (ground truth) were misclassified as a technique. Finally, the model 

predicted correctly 40% of the techniques with respect to the total identifications it 

made (“identified vs total identified” bar). The respective normalized accuracy is 40% 

(“Normalized identified vs total identified” bar). These values are presented in 

Figures 37 and 38. 
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Figure 37: Evaluation metrics for test recording “Mi mou ksanafigeis pia” for model svm and combination 

0.9 (mt window), 0.6 (mt step), 0.06 (st window), 0.02 (st step) 

 

 

 

 

Figure 38: Accuracies for test recording “Mi mou ksanafigeis pia” for model svm and 

combination 0.9 (mt window), 0.6 (mt step), 0.06 (st window), 0.02 (st step) 
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In Figure 39, the ground truth of the test recording “Minore tou teke” is 

compared with the classifications of the approach. The red line refers to the ground 

truth of each segment (x-axis) and the blue dots to the classification of the approach. 

Red and blue values on top of the x-axis signify a None class. 

 

 

 

Figure 39: Ground truth vs predicted for test recording “Minore tou teke” for model 

svm and combination 0.9 (mt window), 0.6 (mt step), 0.06 (st window), 0.02 (st step) 

 

The model predicted correctly 43 segments (techniques and None) out of the 

99 total segments giving an Accuracy of 43.43% (“Total” bar). The total normalized 

accuracy is 43.94% (“Normalized Total” bar).  30 out of the 53 total techniques were 

predicted correctly giving an Accuracy in Techniques of 56.6% (“Identified vs total 

techniques”) and a Normalized Accuracy in Techniques of 57.55% (“Normalized 

identified vs total identified” bar). The accuracy in None techniques is 28.26% 

(“identified none techniques” bar). This means that many None techniques (ground 

truth) were misclassified as a technique. Finally, the model predicted correctly 

46.15% of the techniques with respect to the total identifications it made (“identified 

vs total identified” bar). The respective normalized accuracy is 46.92% (“Normalized 

identified vs total identified” bar). These values are presented in Figures 40 and 41. 
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Figure 40: Evaluation metrics for test recording “Minore tou teke” for model svm and combination 0.9 

(mt window), 0.6 (mt step), 0.06 (st window), 0.02 (st step) 

 

 

 

Figure 41: Accuracies for test recording “Minore tou teke” for model svm and 

combination 0.9 (mt window), 0.6 (mt step), 0.06 (st window), 0.02 (st step) 
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In Figure 42, the ground truth of the test recording “Taksimi moraiti” is compared 

with the classifications of the approach. The red line refers to the ground truth of each 

segment (x-axis) and the blue dots to the classification of the approach. Red and blue 

values on top of the x-axis signify a None class.   

 

Figure 42: Ground truth vs predicted for test recording “Taksimi moraiti” for model  

svm and combination 0.9 (mt window), 0.6 (mt step), 0.06 (st window), 0.02 (st step) 

 

The model predicted correctly 62 segments (techniques and None) out of the 

136 total segments giving an Accuracy of 45.59% (“Total” bar). The total normalized 

accuracy is 46.32% (“Normalized Total” bar).  30 out of the 54 total techniques were 

predicted correctly giving an Accuracy in Techniques of 56.56% (“Identified vs total 

techniques”) and a Normalized Accuracy in Techniques of 57.41% (“Normalized 

identified vs total identified” bar). The accuracy in None techniques is 39.02% 

(“identified none techniques” bar). Finally, the model predicted correctly 35.71% of 

the techniques with respect to the total identifications it made (“identified vs total 

identified” bar). The respective normalized accuracy is 36.9% (“Normalized 

identified vs total identified” bar). These values are presented in Figures 43 and 44. 



82 

 

 

                     Figure 43: Evaluation metrics for test recording “Taksimi moraiti” for svm and combination 0.9 

(mt window), 0.6 (mt step), 0.06 (st window), 0.02 (st step) 

 

 

 

Figure 44: Accuracies for test recording “Taksimi moraiti” for svm and combination 

0.9 (mt window), 0.6 (mt step), 0.06 (st window), 0.02 (st step) 
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In Figure 45, the ground truth of the test recording “Prin to xarama” is 

compared with the classifications of the approach. The red line refers to the ground 

truth of each segment (x-axis) and the blue dots to the classification of the approach. 

Red and blue values on top of the x-axis signify a None class. 

 

   

 

Figure 45: Ground truth vs predicted for test recording “Prin to xarama” for model 

svm and combination 0.9 (mt window), 0.6 (mt step), 0.06 (st window), 0.02 (st step) 

 

The model predicted correctly 65 segments (techniques and None) out of the 

154 total segments giving an Accuracy of 42.21% (“Total” bar). The total normalized 

accuracy is 42.53% (“Normalized Total” bar).  34 out of the 53 total techniques were 

predicted correctly giving an Accuracy in Techniques of 64.15% (“Identified vs total 

techniques”) and a Normalized Accuracy in Techniques of 65.09% (“Normalized 

identified vs total identified” bar). The accuracy in None techniques is 30.69% 

(“identified none techniques” bar). Finally, the model predicted correctly 31.19% of 

the techniques with respect to the total identifications it made (“identified vs total 

identified” bar). The respective normalized accuracy is 31.65% (“Normalized 

identified vs total identified” bar). These values are presented in Figures 46 and 47. 
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Figure 46:  Evaluation metrics for test recording “Prin to xarama” for model svm and combination 0.9 (mt 

window), 0.6 (mt step), 0.06 (st window), 0.02 (st step) 

 

 

 

Figure 47: Accuracies for test recording “Prin to xarama” for model svm and 

combination 0.9 (mt window), 0.6 (mt step), 0.06 (st window), 0.02 (st step) 
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V) Feature Importances 

In order to evaluate the contribution of the audio features in the classification 

task, the SVM coefficients and the feature importance values were calculated for the 

best 6 models -available in the open-source program- for SVM and Gradient Boosting 

models respectively. For the 4 SVM models, the SVM coefficients can help determine 

the feature importance.  

 

Figure 48: Five highest SVM coefficients for the model SVM with mid-term window 

0.5, mid-term step 0.2, short-term window 0.015, short-term step 0.005 and 

confidence 0.525. 

The SVM coefficient of the mean of Energy Entropy has the highest value and 

therefore has the highest contribution on the separation task. The mean of the standard 

deviation of the 12 chroma coefficients has a close value to the mean of Energy 

Entropy mean and therefore also plays an important role in the classification. The 

SVM coefficients of the model for the features of the standard deviation of the 13th 

and the mean of the 10th Mel Frequency Cepstral Coefficient have also high-ranked 

values. The mean of the Spectral Flux complements the top 5 SVM coefficients for 
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the model SVM with mid-term step 0.5, mid-term window 0.2, short-term step 0.015, 

short-term window 0.005 and confidence 0.525. 

 

Figure 49: Five highest SVM coefficients for the model SVM with mid-term window 

0.8, mid-term step 0.2, short-term window 0.04, short-term step 0.01 and confidence 

0.625. 

The SVM coefficient of the standard deviation of the Spectral Flux has the 

highest value and therefore has the highest contribution on the separation task. The 

mean of the 13th Mel Frequency Cepstral Coefficient has the second highest value. 

The SVM coefficients of the model for the features of the mean of the Spectral Flux 

and the mean of the Spectral Centroid have also high-ranked values. The standard 

deviation of the 1st Mel Frequency Cepstral Coefficient complements the top 5 SVM 

coefficients for the model SVM with mid-term window 0.8, mid-term step 0.2, short-

term window 0.04, short-term step 0.01 and confidence 0.625. 
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Figure 50: Five highest SVM coefficients for the model SVM with mid-term window 

0.8, mid-term step 0.4, short-term window 0.02, short-term step 0.01 and confidence 

0.525. 

The SVM coefficient of the mean of the standard deviation of the 12 chroma 

coefficients has the highest value and therefore has the highest contribution on the 

separation task. The mean of the Energy Entropy has the second highest value. The 

SVM coefficients of the model for the features of the standard deviation of the 13th 

Mel Frequency Cepstral Coefficient and the standard deviation of the standard 

deviation of the 12 Chroma vectors have also high-ranked values. The standard 

deviation of the 4th Mel Frequency Cepstral Coefficient complements the top 5 SVM 

coefficients for the model SVM with mid-term window 0.8, mid-term step 0.4, short-

term window 0.02, short-term step 0.01 and confidence 0.525. 
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Figure 51: Five highest SVM coefficients for the model SVM with mid-term window 

0.9, mid-term step 0.6, short-term window 0.06, short-term step 0.02 and confidence 

0.7. 

The SVM coefficient of the mean of the Spectral Flux has the highest value 

and therefore has the highest contribution on the separation task. The standard 

deviation of the Spectral Flux has the second highest value. The SVM coefficients of 

the model for the features of the mean of the 3rd and 10th Mel Frequency Cepstral 

Coefficients have also high-ranked values. The standard deviation of Spectral Spread 

complements the top 5 SVM coefficients for the model SVM with mid-term window 

0.9, mid-term step 0.6, short-term window 0.06, short-term step 0.02 and confidence 

0.7. 
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Figure 52: Five most important features for model Gradient Boosting with mid-term 

window 0.6, mid-term step 0.2, short-term window 0.015, short-term step 0.005 and 

confidence 0.625. 

The most important feature for the model Gradient Boosting with mid-term 

window 0.6, mid-term step 0.2, short-term window 0.015, short-term step 0.005 and 

confidence 0.625 is the standard deviation of the Energy Entropy. Second most 

important feature is the mean of the 1st Mel Frequency Cepstral Coefficient. The 

mean of the Energy Entropy, the standard deviation of the 4th Mel Frequency 

Cepstral Coefficient and the mean of Zero Crossing Rate complement the 5 most 

important features of the model. 
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Figure 53: Five most important features for model Gradient Boosting with mid-term 

window 0.9, mid-term step 0.6, short-term window 0.06, short-term step 0.02 and 

confidence 0.9. 

The most important feature for the model Gradient Boosting with mid-term 

window 0.9, mid-term step 0.6, short-term window 0.06, short-term step 0.02 and 

confidence 0.9 is the standard deviation of the Energy Entropy. Second most 

important feature is the mean of the Spectral Centroid. The mean of the Spectral Flux, 

the mean of the Zero Crossing Rate and the mean of the Spectral Roll-off complement 

the 5 most important features of the model. 
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7. CONCLUSION 

Five models (SVM, K-NN, Random Forest, Gradient Boosting, Extra Trees) 

were trained under 8 different combinations of mid-term window, mid-term step, 

short-term window and short-term step and under different confidence values in order 

to classify segments of solo bouzouki recordings as of the playing techniques (5 

techniques and a None technique class). Classifications of the model were accepted 

only if their probability was greater than the investigated confidence. In the case of 

being lower than the confidence, a ‘None’ class was assigned to the segment, 

signifying an absence of technique. Weighted errors were also introduced for the 

misclassifications of some techniques, which have some similarities. Thus, 

normalized values of the metrics (Normalized Accuracy) were also calculated.  The 

model that achieved the best evaluation metrics was svm with mid-term window 0.9, 

mid-term step of 0.6, short-term window of 0.06 and short-term step of 0.02. The 

model svm for mid-term window 0.9, mid-term step 0.6, short-term window 0.06 and 

short-term step 0.02 achieved the highest F1 (0.5880) score of all models at 

Confidence value 0.4. As expected, recall drops and precision rises as the confidence 

limit rises. Precision and recall are equal at confidence value of 0.7. At the point of 

Precision, Recall and F1-Score equality (confidence 0.7), their values are 0.55. At 

confidence 0.7, the recall of ‘None’ class was 30.24%, the precision of ‘None’ class 

was 43.72% and respective F1-score was 35.75%. For “trembling in one string”, 

Recall was 34.15%, Precision was 56.00% and F1-score 42.42% for confidence 0.7. 

Respectively, for “trembling in two strings”, Recall was 18.33%, Precision was 

95.65% and F1-score 30.77%. For “Slurring”, Recall was 80%, Precision 21.69% and 

F1-score 34.12%. For “2 strings play”, Recall was 75%, Precision 46.26% and F1-

score of 57.23%. Finally, “Chords” achieved a Recall of 71.43%, Precision of 52.08% 

and F1-score of 60.24% at confidence 0.7. The average value of techniques in this 

confidence, Recall and Precision were ~55.5%. The model svm for mid-term window 

0.9, mid-term step 0.6, short-term window 0.06 and short-term step 0.02 achieved a 

micro average ROC curve area of 0.83 and a macro-average ROC curve area of 0.85. 

Specifically, the class “Trembling in one string” achieved a ROC curve area of 0.74 

and “Trembling in two strings“ achieved a ROC curve area of 0.83. The class 

“Slurring” achieved a ROC curve area of 0.85 and the class “2 strings play” a ROC 
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curve area of 0.86. Finally, the class “Chord” achieved a ROC curve area of 0.94.  

Gradient boosting achieved similar results (>50% F1-score). Random Forest and 

Extra Trees had much lower scores and K-NN behaved poorly not being able to 

separate classes. Normalization of accuracy and weighted errors do not add much or 

raise the metrics, as there were only few misclassifications of more similar 

techniques. 
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8. FUTURE WORK 

In order to achieve better results and more accurate classifications 

(identifications) of instrument playing techniques, several methodologies are 

proposed in addition to the present study. Firstly, parameter tuning could include 

more parameters. In this case, only C (for svm) and boosting stages (for gradient 

boosting) were optimized during trained. The rest of parameters (for all investigated 

models) were used in their default values in all experiments. However, experimenting 

with more values and setting up an experiment to investigate (statistically) the 

influence of the parameters in the final results, could improve the accuracy metrics 

and generalize better. In addition, more models (Logistic Regression, Naïve Bayes, 

Deep Learning algorithms) can also be investigated. Furthermore, increasing the 

amount of training Data (more recordings in training set) is also a crucial aspect. 

Finally, extracting more audio features than the ones discussed in this approach will 

increase the feature vector in training process and could possibly deliver better results. 
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9. OPEN SOURCE INSTRUMENT PLAYING 

TECHNIQUE CLASSIFIER 

For the purposes of this Thesis, an open-source standalone python script was 

developed which classifies each segment of a given solo bouzouki instrument 

recording as of the playing technique using the best 6 (pre-trained) models of this 

Thesis. The repository with the code and the pre-trained models of the project can be 

found in github [91]. The dependencies are pyAudioAnalysis, numpy, pandas and 

matplotlib [48, 88-90]. Only two arguments are required here. First, the path to the 

mp3 or wav audio recording must be passed. In addition, the path to the stored pre-

trained models is also required. The output of the classifier script are 6 plots (one per 

model) that show the classification of each segment of each model. The pre-trained 

models available are presented in Table 27. These were the models that achieved the 

highest average F1-score in the current Thesis. The command line use is as below: 

$ python classifier.py <path-to-input-audio> <path-to-pretrained-models> 

 

model type mid term 

window 

mid term 

step 

short term 

window 

short term 

step 

confidence 

svm 0.6 0.2 0.015 0.005 52.5 % 

svm 0.8 0.2 0.04 0.01 62.5% 

svm 0.8 0.4 0.02 0.01 52.5 % 

svm 0.9 0.06 0.06 0.02 70% 

gradient 

boosting 

0.6 0.2 0.015 0.005 62.5% 

gradient 

boosting 

0.9 0.06 0.06 0.02 90% 

Table 27: Available pre-trained models in the open-source classifier 

 

There are four functions that are called inside the script. First, the main() 

function analyzes the arguments passed and calls the function 
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FileClassification(input_file, model_name, model_type, confidence). 

FileClassification function has the same functionality as the mtFileClassification 

function of pyAudioAnalysis. This function needs the audio file path (input_file), the 

model path (model_name), the model type (model_type) and the confidence of 

classification acceptance (confidence), which are analyzed by main.  Another 

function, called load_model() is called, which loads the pre-trained classifiers. Then, 

the input signal is analyzed with use of audioBasicIO of pyAudioAnalysis. Then, the 

audio features of the input signal are extracted with use of mtFeatureExtraction of the 

module audioFeatureExtraction of pyAudioAnalysis. For each segment, the 

classifierWrapper function of audioTrainTest module of pyAudioAnalysis makes a 

classification as of the technique. Note, that at this point, each segment is assigned 

with a specific technique and a probability of classification (Ps). The final 

classification with respect to the confidence level is computed in next step with use of 

plotSegmentationResults function. Finally, the function 

plotSegmentationResults(flags_ind, class_names, Ps, mt_win, mt_step, st_win, 

st_step, model_type, confidence) is called. The first argument (called flags_ind) are 

the indexes of the classes (0-5) that the previous function computed. In other words, 

flags_ind has a length of the total segments, where each element corresponds to the 

classification of FileClassification function to the respective segment. This argument 

is passed through FileClassification function. The argument “class_names” is a list 

with the names of the classes. The argument “Ps” is also passed through 

FileClassification and is a list of classification probabilities of each segment. 

According to this list, the final classification is made: If the probability of the 

classification of a segment is greater than the confidence of the model, than it is 

accepted. Otherwise, a None is assigned to this segment. The four next arguments 

(mt_win, mt_step, st_win, st_step) are the mid and short-term window and size 

parameters that were used during training of the respective pre-trained model. The 

“model_type” signifies the type of the model and is used for visualization purposes. 

Finally, the “confidence” argument is the confidence of acceptance of the respective 

pre-trained model and is used along with “Ps” for making the final classifications. 

This function first parses all classifications (flags_ind) and all classification 

probabilities (Ps) and checks if the classification probability assigned to each segment 
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in previous steps is greater than the confidence of the current model used. In this case, 

this classification is accepted. Otherwise, the “None” technique is assigned to the 

segment. Finally, the results are plotted showing a scatter with x-axis being the time 

(seconds) and y-axis being the respective technique (or None). Each scattered point 

signifies a segment and its y value refers to the classification (Technique). This 

process is repeated for all pre-trained models available. 
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