
UNIVERSITY OF THE PELOPONNESE & NCSR “DEMOCRITOS”

MSC PROGRAMME IN DATA SCIENCE

Evaluation of Video Soundtracks

using Machine Learning

Addressing the issues of data availability, feature extraction

and classification

by

Georgios Touros

A thesis submitted in partial fulfillment

of the requirements for the MSc

in Data Science

Supervisor: Theodoros Giannakopoulos

Principal Researcher of Multimodal Machine Learning

Athens, December 2020

Evaluation of Video Soundtracks using Machine Learning

Georgios Touros

MSc. Thesis, MSc. Programme in Data Science

University of the Peloponnese & NCSR “Democritos”, December 2020

Copyright © 2020 Georgios Touros. All Rights Reserved.

UNIVERSITY OF THE PELOPONNESE & NCSR “DEMOCRITOS”

MSC PROGRAMME IN DATA SCIENCE

Evaluation of Video Soundtracks

using Machine Learning

Addressing the issues of data availability, feature extraction

and classification

by

Georgios Touros

A thesis submitted in partial fulfillment

of the requirements for the MSc

in Data Science

Supervisor: Theodoros Giannakopoulos

Principal Researcher of Multimodal Machine Learning

Approved by the examination committee on December, 2020.

(Signature) (Signature) (Signature)

. .

Theodoros Giannakopoulos Konstantinos Limniotis George Papadakis

Principal Researcher External Researcher Post-Doctoral Researcher

Athens, December 2020

UNIVERSITY OF THE PELOPONNESE & NCSR “DEMOCRITOS”

MSC PROGRAMME IN DATA SCIENCE

Declaration of Authorship

(1) I declare that this thesis has been composed solely by myself and that it has

not been submitted, in whole or in part, in any previous application for a

degree. Except where states otherwise by reference or acknowledgment, the

work presented is entirely my own.

(2) I confirm that this thesis presented for the degree of Master of Science in Data

Science, has

(i) been composed entirely by myself

(ii) been solely the result of my own work

(iii) not been submitted for any other degree or professional qualification

(3) I declare that this thesis was composed by myself, that the work contained

herein is my own except where explicitly stated otherwise in the text, and

that this work has not been submitted for any other degree or processional

qualification except as specified.

(Signature)

.

Georgios Touros

Athens, December 2020

Acknowledgments

This thesis marks the end of the journey, for my Master’s degree in Data Science.

Given the tremendous effort and care that was put into completing both the courses

and this project, I’d say it’s with enormous joy that I reach the end.

The project was initially conceived with a much more ambitious end goal; to

create a full-fledged video soundtrack generation algorithm, using Deep Learning.

Unfortunately, as will be explained in the chapters that follow, this wouldn’t be

possible given our resources and available time. We made a conscious choice when

pitching this subject, as there seemed to be a high element of novelty, and at the

same time, it was very close to my own interests. Now that we’ve reached the end

of the project, this seems like a fool’s hope.

Nevertheless, here we are, and I’d like to take this opportunity to thank all of

the people that made this journey possible:

Firstly, I’d like to thank Mr. Giannakopoulos, who proved to be a vigilant mentor

throughout this process, and who kept providing valuable insights and directions, as

well as level-headed guidance, even during a time of incredible turmoil and instability

around the world.

Secondly, I’d like to thank my colleagues and leaders George Charikiopoulos and

Nikos Psaltopoulos, for giving me their full support and tolerance, during these years

of struggle, as well as my own team members Christos, Antonis and Tassos, for their

understanding and support in keeping balance at the work front.

Furthermore, I’d like to thank my buddies from the program, Ioannis Loumiotis,

Nikos Nikolaou and Kostas Gygtakis, for being the best companions one could hope

for, in a tough journey such as this. Their knowledge, their attitude and their

- 7 -

impeccable sense of humour were a source of energy and solace in the last two years.

Another special thanks goes to Giannis, Alexandros, Alexandros and Marios, for

swooping in like the Eagles to pick me up from the flames of Mount Doom, when

needed.

Finally, and most importantly, I’d like to thank my family and friends, for their

emotional support and their continuous faith in me, even when things seemed dire.

Their presence alone would be a great help when struggling to maintain emotional

and intellectual balance, but their persistence and active care-taking during this

time is a gift I’ll never be able to repay. It would be impossible for me to reach the

end, without their patience, their care, their love and affection.

And now, to the task at hand...

To Maya, for her kindness and patience

Abstract

T he aim of this thesis is to address the challenges of combining multimodal

data to evaluate video soundtracks. To tackle tasks in the field of soundtrack

generation, retrieval, or evaluation, data needs to be collected from as many relevant

modalities as possible, such as audio, video, and symbolic representations of music.

We propose a method of collecting relevant data from all of these modalities, and

from them, we attempt to describe and extract a comprehensive multimodal feature

library. We construct a database by applying our method on a small set of available

data from the three relevant modalities. We implement and tune a classifier in

our constructed database of features with adequate results. The classifier attempts

to discriminate between real and fake examples of video soundtracks. Finally, we

describe some possible improvements on the methods, and we point at some use-

cases and directions for future attempts at this and adjacent tasks.

- 11 -

- 12 -

Contents

List of Tables v

List of Figures vi

List of Code Fragments ix

List of Abbreviations x

1 Introduction 1

1.1 Problem Statement 3

1.2 Motivation - Ethical Concerns 3

1.2.1 On art and technology 3

1.2.2 On Artificial Intelligence and Art 4

1.2.3 Practical Aspects of a Soundtrack Discriminator or Generator 5

1.3 Related Work 6

1.4 The Contribution of this Thesis 8

1.5 Thesis structure 9

2 Data Collection Pipeline 11

2.1 Repo Structure 11

2.1.1 Pipeline Overview 13

2.2 Dependencies with 3rd Party Libraries 13

2.3 Alternative Data Sources 16

2.4 Collection, Cleanups and Storage 17

2.4.1 MIDI 17

- i -

CONTENTS

2.4.2 Audio 18

2.4.3 Video 18

2.4.4 Cataloging and Matching MIDI to Audio Data 19

2.5 Finding Music within Videos 24

2.5.1 On Fingerprinting 26

2.5.2 Caveats and Challenges of this approach 28

2.6 The Database structure 31

2.7 Concerns About Copyright 32

3 Music Representation and Feature Extraction Techniques from Au-

dio 35

3.1 Symbolic vs. Raw Audio 35

3.2 Representations based on Audio Processing 36

3.2.1 Sampling and Sampling Frequency 36

3.2.2 Short Term Audio Processing 37

3.2.3 Mid-Term Windows and Feature Extraction 38

3.2.4 Time domain Representations and Features 39

3.2.5 Spectral Domain Representations and Features 42

3.3 Extracting Audio Features 48

3.3.1 Beat Detection 49

3.3.2 Feature Overview 50

4 Symbolic Representations of Music and Feature Extraction Tech-

niques 53

4.1 Representation Strategies 53

4.1.1 Fundamental Symbolic Aspects 53

4.1.2 Format 56

4.1.3 Temporal Scope and Granularity 63

- ii -

CONTENTS

4.1.4 Encoding Strategies 64

4.2 Symbolic Feature Extraction 65

4.2.1 Caveats on Symbolic Feature Extraction with music21 65

4.2.2 Extracting Symbolic Features 66

5 Video representation and Feature Extraction Techniques 69

5.1 Video Processing Fundamentals 69

5.1.1 Video Signals and Images 69

5.1.2 Color 72

5.2 Flow Features and Shot Detection 74

5.3 Object Detection 75

5.3.1 Face Detection 76

5.3.2 Single Shot MultiBox Detector 76

5.4 Extracting Video Features 77

6 A Classification Experiment 79

6.1 Exploring the data-set 79

6.1.1 Dimensions 79

6.1.2 Attribute Completeness and Scaling 81

6.1.3 Attribute Relevance 82

6.2 Train-Test Split Methodology 83

6.3 Models tested 84

6.4 Baseline Results 85

6.5 Experiments with scaling 85

6.5.1 Standardisation 86

6.5.2 Normalization Using the L2 norm 86

6.6 Experiments with Dimensionality Reduction 87

6.6.1 Correlation-based feature selection 89

- iii -

CONTENTS

6.6.2 Correlation-based Extreme Dimensionality Reduction 89

6.6.3 Mutual Information-based Dimensionality Reduction 90

6.6.4 Dimensionality Reduction with PCA 91

6.7 Model Optimisations 92

6.8 Results Discussion 94

7 Extensions and Future Work 95

7.1 Improvements in the Data Collection Pipeline 95

7.1.1 Expanding the Collection 96

7.1.2 Data Quality 96

7.1.3 Scalability 98

7.1.4 Reducing Bias 100

7.1.5 Song Detection in Videos 100

7.1.6 More Modalities 101

7.2 Improvements in Model Selection 102

7.2.1 Voting Ensembles 102

7.2.2 Deep Architectures 102

7.2.3 Classifier by modality combination 102

7.3 Conclusion 103

A The Complete Feature Library 105

- iv -

List of Tables

2.1 pyDejavu parameters, storage size and detection accuracy 29

3.1 Audio Feature Overview 51

4.1 Symbolic Feature Overview 67

5.1 Video Feature Overview 78

6.1 Statistics for clips per film and the percentage clips that belong to

the positive class per film 80

6.2 Features with the highest absolute value of Spearman’s correlation

coefficient with the target variable. 83

6.3 Baseline Results 85

6.4 Scaling Setting 1: Using the StandardScaler 86

6.5 Scaling Setting 2: Applying Normalization 87

6.6 Dimensionality Reduction Setting 1: Correlation-based feature selection 89

6.7 Dimensionality Reduction Setting 2: Correlation-based Extreme Di-

mensionality Reduction 90

6.8 Dimensionality Reduction Setting 3: Mutual Information 90

6.9 Dimensionality Reduction Setting 4: PCA with arpack solver 91

6.10 Estimator Tuning 92

6.11 Classification report for winning estimator 93

A.1 Audio Feature Overview 105

A.2 Symbolic Feature Overview 110

A.3 Video Feature Overview 115

- v -

- vi -

List of Figures

2.1 From raw files to relational tables 14

2.2 Finding songs in videos and extracting features 15

2.4 The dejavu relational schema 31

2.3 The file system catalogs relational schema 32

3.1 Example of a typical audio waveform 39

3.2 The spectrogram of the audio track of Figure 3.1 44

3.3 The extraction process of the MFCC features, as described by Kim

et al. [1] 48

3.4 (a) Musical score of a C-major scale. (b) Chromagram obtained from

the score. (c) Audio recording of the C-major scale played on a piano.

(d) Chromagram obtained from the audio recording. Reproduced

from Meinard.mueller, CC BY-SA 3.0 “https://creativecommons.org/licenses/by-

sa/3.0”, via Wikimedia Commons 49

4.1 Three alternative positions (voicing inversions) for the C major chord 56

4.2 Excerpt from beginning of the song “Same Old Lang Syne” in MIDI

format 58

4.3 Excerpt from beginning of the song “Same Old Lang Syne” in musical

score 59

4.4 A piano-roll representation, as exported from a Digital Audio Work-

station 59

4.5 The traditional tune Speed the Plough in ABC Notation 61

4.6 The traditional tune Speed the Plough as standard score 61

- vii -

LIST OF FIGURES

5.1 Sampling in the horizontal, vertical and temporal dimensions [2] 70

5.2 The RGB color model. Courtesy of Wikimedia Commons 73

5.3 The HSV color model. Courtesy of Wikimedia Commons 73

5.4 The flow features extracted from a frame, using OpenCV 75

5.5 Haar Cascade Features 76

5.6 Single Shot MultiBox Detector for object detection using PyTorch 77

6.1 The distribution of classes and clips per film 80

6.2 Baseline Results: ROC curve, Precision Recall Curve, Confusion Matrix 86

6.3 Scaling Setting 1: ROC curve, Precision Recall Curve, Confusion

Matrix 87

6.4 Scaling Setting 2: ROC curve, Precision Recall Curve, Confusion

Matrix 88

6.5 Dimensionality Reduction Setting 1: ROC curve, Precision Recall

Curve, Confusion Matrix 89

6.6 Dimensionality Reduction Setting 2: ROC curve, Precision Recall

Curve, Confusion Matrix 90

6.7 Dimensionality Reduction Setting 3: ROC curve, Precision Recall

Curve, Confusion Matrix 91

6.8 Dimensionality Reduction Setting 4: ROC curve, Precision Recall

Curve, Confusion Matrix 92

6.9 Winning Estimator: ROC curve, Precision Recall Curve, Confusion

Matrix 93

- viii -

Listings

2.1 The file title cleanup code 20

2.2 The Spotify API wrapper 22

2.3 Smoothing of Song Detection Chunks 25

2.4 Tagging Misaligned Song Offsets 25

5.1 Shot Detection function 75

6.1 Our custom feature selection class 87

6.2 Parameters of the Selected Estimation Pipeline 93

- ix -

- x -

List of Abbreviations

etc. et cetera

i.e. id est

a.k.a. also known as

UGV User Generated Videos

Hz Hertz

AWF Audio Waveform

MPEG-7 Moving Picture Experts Group 7

DFT Discrete Fourier Transform

FFT Fast Fourier Transform

IFT Inverse Fourier Transform

MIDI Musical Instrument Digital Interface

SMF Standard MIDI File

ASCII American Standard Code for Information Interchange

MFCC Mel-Frequency Cepstrum Coefficients

ZCR Zero-Crossing Rate

RGB Red Green Blue

ADC Analog to Digital Conversion

- xi -

LIST OF ABBREVIATIONS

DT Decision Tree

LR Logistic Regression

kNN k Nearest Neighbors

SVM Support Vector Machines

RandF Random Forest

BTr Bagged Trees

AdaB Adaptive Boosting

XGB eXtreme Gradient Boosting

NB Näıve Bayes

PCA Principal Component Analysis

SVD Singular Value Decomposition

ExTrees Extra Trees

GradBoost Gradient Boosting

- xii -

Chapter 1

Introduction

The collaboration between artist and scientist, has been an evolving relationship,

ever since the first tools were used to create the first work of art; so much so that in

the early days of Man, artist and technician were inseparable terms. In our modern

age of Artificial Intelligence and Machine Learning, this relationship is as challenging

as it ever was.

In recent years, there is a multitude of attempts to create models that touch

upon the domain of artistic creativity. Either for evaluation of artistic products, or

for generating works of art in their own right, this interaction between human and

machine creativity has been an active field of research. Machine learning models

initially would focus in artistic domains that contained singular modalities such

as image, sound, music composition etc. As technology advances and more data

becomes available, models tend to combine more than one content modalities to

focus on more complex domains.

Such a domain is that of creating, or choosing, music that accompanies visual

content, i.e. video soundtracks. This is a type of artistic task that is usually taken

up by dedicated professionals. Especially in the film industry, a typical film would

have a composer and a music supervisor working separately to create and select the

musical content that best accentuates the themes, energy and emotion of a particular

scene. Their works are inter-connected, but a close collaboration between them is

not always the case. In this thesis, we attempt to address the challenges that affect

- 1 -

the aforementioned tasks before creating solutions for any of them. These issues

include data availability, data quality, data storage, representation and encoding of

the participating modalities, fusion of multimodal content and feature extraction.

Our work starts by describing our method for collecting, storing, combining and

cleaning up data. We present an end-to-end pipeline from raw data to a database

of features of all three participating modalities (raw audio, MIDI and video). With

this pipeline, we construct a functioning database, and lay out its relational schema.

We utilise an external knowledge base for songs in conjunction with text cleaning

techniques to match the songs in both their forms (audio and MIDI). To detect the

presence of these songs within a collection of films and television series, we use a

fingerprinting technique. We present a detailed description of the challenges of this

method, as we manage to collect 68 data points, and construct an equal amount of

negative examples.

We then attempt to create an understanding of the fundamentals, representation

and encoding strategies for each of the modalities that are relevant to the task: music

from a signal processing perspective, music from the perspective of computational

musicology (using symbolic representations of the compositions) and visual content,

using both low-level components (such as color) and higher level aspects (such as shot

and object detection). We dedicate a separate chapter for each of these modalities,

and we describe the techniques that we used to extract long-term statistics for each

one. Tables with all 455 available features collected are in the Appendix.

Following this, we experiment with creating a classifier that intends to discrimi-

nate between real soundtracks and fake, misfitted examples. We test various models,

and we experiment with different pre-processing and dimensionality reduction tech-

niques. We then perform hyper-parameter tuning for the most promising settings,

and end up with a classifier that achieves results that are better than chance. The

resulting model would not be suitable for cases where high precision matters, but

at this stage could serve as an initial filtering classifier for a soundtrack retrieval

system.

After evaluating the results of the classifier, we conclude our work with a sum-

mary of all the challenges and biases that arose in the process of building the data-

- 2 -

Chapter 1 : Introduction

set. Finally, we also point towards some promising directions for future improvement

of the pipeline, as well as some use-cases in adjacent tasks.

1.1 Problem Statement

The task that we will attempt to solve in this thesis is binary classification of

musical choices for videos, based on representations of the participating content. In

other words, the evaluation of whether the choice of a song as accompaniment for

a scene in a film is good or not, using different representations of the modalities

that are present in the scene. To that end, we will extract a selection of hand-

crafted features from three different content modalities: audio, video and symbolic

representations of music. These alternative representations and content modalities,

carry information of both higher levels (such as harmonious movements in music or

objects and faces contained within a video frame) and lower levels (such as statistics

about the audio signal’s energy or the colors in the video).

1.2 Motivation - Ethical Concerns

1.2.1 On art and technology

Human creativity has been a founding block of our civilization for centuries. From

images of hands in caves in Sulawesi Indonesia that date back forty thousand years,

to the latest webisode of a series in YouTube, humans have been trying to give form

to their thoughts and ideas through multiple mediums of artistic creation. These

mediums have been evolving, along with the technical advancements of humanity.

This dialogue between technology and artistic expression, is as true today as it had

been in the Bronze Age, as artists continue to use tools of variable complexity (from

chisels and hammers to video cameras and synthesizers) to create their art, and in

this process, scientists and inventors are motivated to keep improving, disrupting

and innovating these tools [3].

The distinction between art and technology is a rather recent notion in human

history, as artists, craftsmen and artisans were considered to be the same thing, and

the methods of working in any particular branch of art were considered as ’technical’

- 3 -

1.2 : Motivation - Ethical Concerns

[4]. Though it is beyond the scope of this thesis to define art in philosophical terms,

given that such a task might even be futile or even impossible [5], if we were to

follow the thought of Stephen Davies [6] we could claim that something is art

• if it shows excellence of skill and achievement in realizing significant aesthetic

goals, and either doing so is its primary, identifying function or doing so makes

a vital contribution to the realization of its primary, identifying function, or

• if it falls under an art genre or art form established and publicly recognized

within an art tradition, or

• if it is intended by its maker/presenter to be art and its maker/presenter does

what is necessary and appropriate to realizing that intention

1.2.2 On Artificial Intelligence and Art

In the context of Artificial Intelligence, it is tempting to consider how art that is

produced through algorithms can in itself be considered as art, and whether or

not the designer of the algorithm or Deep architecture is an artist, with generative

algorithms being new mediums for artistic expression. The third part of Davies’

definitions seems to allow us this conceptual leap.

Even more importantly, it seems that much of the innovation today concerning

art, is being made by people who work outside the confines of fine arts or tradi-

tionally accepted centres of artistic excellence. According to Jon McCormack [7],

these people work in the industries of popular culture, which he identifies as being

computer graphics, film, music videos and the Internet, and in terms of 2020 we can

extend to content streaming services and social media.

Achievements in computer hardware, shifting social needs and continuous re-

search in the field of Data Science, have enabled the evolution of artistic concepts,

such as generative art, computer art, computational art, interactive art and more.

These concepts seem to continuously challenge the philosophical and theoretical

conceptions of art, authenticity, agency and authorial responsibility [8] [9].

We will not attempt to address or challenge the opposing views on the matter

- 4 -

Chapter 1 : Introduction

in this work, as they are beyond the scope of this thesis. Nevertheless, such ethical

concerns have been important considerations during the process of formulating the

task, and framing the scope of the project and the thesis. In this light, we have

attempted to approach the relationship of Artificial Intelligence and Art from a

utilitarian perspective; from our point of view, the algorithms should exist to assist

the artist in their work, and not substitute them in any way.

1.2.3 Practical Aspects of a Soundtrack Discriminator or

Generator

Despite of our aesthetic and philosophical concerns, the recent achievements in

Machine Learning and Deep Neural Networks have greatly advanced this idea of

generating, retrieving and classifying multimedia. Relevant algorithms are being

introduced each year for different kinds of art, such as music, image and video, with

varying degrees of success. In this thesis, we attempt to focus on methods that

combine music and video, in order to approach the task of choosing satisfactory

accompaniment music for video content.

Such a system would be quite useful in a modern context of popular art creation,

as it’s too often the case that music is needed as an accompaniment for video content

that is produced by artists or corporations for commercial purposes or for temporary

enjoyment. It would also be useful during film production, in the editing process,

when the film’s music composer or supervisor has not yet delivered the music for

a scene, but the editors and the director need some temporary music in order to

get a rhythm for their editing process. This type of temporary music, currently a

usual practice in film production, sometimes leads to other implications, such as the

editing of the film being so tightly linked to the temporary music, that the official

music composer has no option but to create music that closely resembles it [10].

These possible use cases call for music that is either royalty-free, or even disposable,

and AI would definitely reduce the cost and implications of creating or choosing

such music. In the following paragraphs, we will attempt to envision some of what

we had in mind while constructing our pipeline, in the hope that some of our ideas

- 5 -

1.3 : Related Work

could potentially lead to more exciting applications in the field.

Soundtrack composition systems Our initial ambition for this thesis was to

create a soundtrack generation model. With our limited time and resources, this

was not possible. Nevertheless, the data collection and extraction pipeline that we

will propose, if applied in scale, could potentially be a suitable starting point for a

soundtrack composition system.

Furthermore, the classifier that we have experimented with could be used as

an evaluation method for such as system, as it could potentially discriminate the

real from the fake examples. This hypothesis would need more data in order to be

thoroughly tested.

Machine-aided Soundtrack Evaluation An improved version of the model that

we experiment with in Chapter 6, probably one that is trained with a lot more

data, could be used to create a platform for video soundtrack selection. The end-

users could be video editors that need a temporary music while they wait for the

music supervisor to provide them with a fitting, licensed piece of music, or music

supervisors that want to validate their choice of music or let the algorithm help

them decide between some options. Such a system could also serve as a platform for

artists that want to expose their music to such an audience (video editors or film

producers), by providing an evaluation of the goodness of fit of their music, with

regards to the visual content.

Further to this, such a model could be used in order to create a soundtrack

recommender system from a database of existing tracks. Such a system could be

used either as a plug-in on video editing software, or as a stand-alone application.

1.3 Related Work

There is a lot of literature around video processing, audio processing and classi-

fication. To our knowledge, there are not as many papers when it comes to video

soundtrack generation or classification. In the following sections we describe the

most common research threads that we came across.

- 6 -

Chapter 1 : Introduction

Soundtrack Retrieval for User Generated Videos A common thread in sim-

ilar research is music retrieval for user generated videos (UGV). In [11] a system

for creating automatic generation of soundtracks for outdoor videos of users is pro-

posed. The system is built on contextual data based on the geo-location in which

the video was shot. This contextual data contains geographic tags, and mood tags,

collected from OpenStreetMap and Foursquare. In [12] a system for recommend-

ing soundtracks for user outdoor videos is proposed, based on geographic, visual

and audio features. The visual features are based on color only, and are combined

with tags of the mood of the specific area. These are then combined with music,

combining the user’s previous listening history with mood tags and audio features

of the track. A similar approach is followed in [13]. In [14] the authors propose a

process that recommends the soundtrack and edits the video simultaneously. Their

approach uses a multi-task deep neural network to predict the characteristics of an

ideal song for the video, and then retrieves the closest match from a database. The

track is then aligned to the video using a dynamic time warping algorithm, and

concatenates the video given a cost function, trained on an annotated corpus.

Soundtrack Recommendation for Video Editing Another research thread

tries to create music recommenders that could be used as plug-ins in video editing

software, or in order to create music videos. In [15] a method and a system is

proposed for the recommendation of soundtracks by video editing software. The

proposed system is based on emotional and contextual tags given by the end-user,

and then retrieves and combines relevant loops of preexisting content. In [16] a

music video generation system is developed, which utilizes the emotional temporal

phase sequence of the multimedia content to connect music and video. It is trained

on annotated data that is mapped to an arousal-valence scale that is tracking the

shifts in emotion along the content of the medium. The multimedia are then matched

according to the time-series of the emotional shifts, using string matching techniques.

In [17], a model that synchronises the climax of a video clip and a music clip is

proposed. The model is trained on annotated data for the audience perception of

climax in music and video, and applies dynamic programming to synchronise the

- 7 -

1.4 : The Contribution of this Thesis

climax in both modalities.

1.4 The Contribution of this Thesis

In our work, we attempt to define the problems that arise when constraints of

different modalities are involved in tasks involving video soundtracks. Our focus

will be on classification of fit for video soundtracks. We break down the task into

its main components:

• Collecting the data

• Extracting features

• Selecting a suitable classifier

• Evaluating the result

We then formulate the challenges on each of these components, and try to address

them.

Despite our best efforts, we could not find another work that combined visual

features with features that are extracted from symbolic representations of music.

Our experimentation suggests that there is potential in this approach, as high-

level features about song composition are combined with low-level features from the

audio tracks and visual features that are both low-level, such as color histograms,

and high-level, such as object and movement detection;.

Given the complexity of the task, and the lack of available open data (challenges

which are described in detail in Chapter 2), our main focus was on creating a large

enough data-set that contains data from all the necessary modalities and forms

(songs in raw audio form, transcriptions of these songs in midi form and video

excerpts containing these songs). Our contribution is not only to gather and clean

the data, but also to create an open-source scalable process to create and manage

such data-sets, which could potentially be given to the research community for

further expansion.

We also proceed to extract features from this data-set, and examine their suit-

ability using a rudimentary classifier, that matches the different modalities with

- 8 -

Chapter 1 : Introduction

each other. We experiment with tuning the model, but the lack of large-scale data

in our proof-of-concept, prevents us from reaching high levels of accuracy.

1.5 Thesis structure

The rest of the thesis is organised as follows:

In Chapter 2 we describe in detail our attempt to address the data availability

issue. We propose a method of acquiring, cleaning and managing the data of all three

relevant modalities, and we report on the specifics and challenges of implementing

this method.

In Chapter 3 we discuss issues of representation and encoding of data for audio

and music, and we describe in depth the feature extraction process from the audio

domain.

In Chapter 4 we describe the fundamentals of symbolic representations of musical

content, we discuss issues of encoding these representations, and we explain how we

extracted features from this domain.

In Chapter 5 we delve into the specifics of representing and encoding visual

content, and we describe the feature extraction process that was implemented for

this modality.

In Chapter 6 we experiment with the creation of a classifier that could discrim-

inate between real and fake examples of soundtracks, given data and features that

was collected in the previous chapters. We present the results of our experiments,

and we highlight some promising directions.

In Chapter 7 we sum up our challenges and findings, and we discuss future work,

focusing on how our own contributions could build up to a large scale data set

that could better handle the task of soundtrack recommendation and potentially

complement existing music generation models for soundtrack generation for visual

content.

- 9 -

1.5 : Thesis structure

- 10 -

Chapter 2

Data Collection Pipeline

As we mentioned in section 1.2.3, the main challenge of creating music for videos

is data availability. We could not find any open data set that includes all three

necessary modalities or that was scalable enough for our purposes. We therefore

proceeded with creating our own data collection pipeline, which we will describe in

detail in the following sections.

2.1 Repo Structure

We have used GitHub to store our code for this project1. It follows a modular

logic, and is split into the following modules:

• config: the central position of settings, paths and credentials

– credentials.py is where the credentials are stored for interacting

with external APIs (database, Spotify etc.).

– paths.py is where all the paths are stored for data inputs and outputs,

as well as for temporary folders.

– settings.py is where the parameters for audio and video processing

are stored. These include:

∗ CHUNK SIZE SECONDS: the size of the chunks for audio recognition

within video files in seconds.

1https://github.com/GeorgeTouros/video-soundtrack-evaluation

- 11 -

2.1 : Repo Structure

∗ CHUNK SIZE MS: the size of the chunks for audio recognition within

video files in milliseconds (for direct use within ffmpeg).

∗ SAMPLE RATE: the sample rate used for fingerprinting as well as for

parsing audio files

∗ CHANNELS: set 1 for mono and 2 for stereo.

∗ BATCH SIZE: the number of video files processed in each batch.

∗ AUDIO FILE TYPE: the output type for audio files.

• db handler: contains db handler.py wherein exists the DatabaseHandler

class, a wrapper class around the sqlalchemy2 package. This class is used

for invoking database operations, such as creating databases, tables, inserting

lines, deleting schemas, tables, lines and simple queries.

• feature extractor: contains three modules with classes that extract fea-

tures for each of the modalities of interest.

– audio features.py, which contains the AudioFeatureExtractor

class. For more details on how it works, please refer to section 3.3.

– video features.py, which contains the VideoFeatureExtractor

class. For more details on how it works, please refer to section 5.4.

– symbolic features.py, which contains the SymbolicFeatureExtractor

class. For more details on how it works, please refer to section 4.2.2.

• fingerprinting: contains djv.py which has the wrapper functions around

the pyDejavu3 library, for fingerprinting. For more details please refer to sec-

tion 2.5.1.

• media manipulation: a module that contains all the scripts for manipu-

lating audio and video data.

– audio conversions.py: includes wrapper functions for invoking ffm-

peg commands to convert audio files into the appropriate format for fin-

gerprinting.

2https://www.sqlalchemy.org/
3https://github.com/worldveil/dejavu

- 12 -

Chapter 2 : Data Collection Pipeline

– song retrieval.py: contains all the functions needed to search within

a video for songs. For more information please proceed to section 2.5.

– video manipulation.py: includes wrapper functions for invoking

ffmpeg commands to crop videos and mix audio with video.

• spotify wrapper: includes a wrapper class around the spotipy4 library.

We use this class to retrieve information on song titles, during the matching of

audio and MIDI files. For more information, please proceed to section 2.4.4.

• utils: a module containing various utilities for the all the other modules and

scripts. These include:

– catalog utils.py: which contains utility functions for scanning folder

directories and creating catalog entries within the database.

– common utils.py: which contains utility functions for time calcula-

tions, and other miscellaneous tasks.

2.1.1 Pipeline Overview

In figures 2.1 and 2.2 we provide a brief overview of the process that will be explained

in detail in the following sections. The flowcharts also include the names of the

Python scripts that are included in the root directory of the repo, and the sequence

of execution is explained.

2.2 Dependencies with 3rd Party Libraries

All code is written in Python, bash and SQL, run and tested in Ubuntu Linux

20.04. There are some dependencies with 3rd party software beyond those that are

mentioned in the requirements document in the repo. These are:

• ffmpeg5: A complete, cross-platform solution to record, convert and stream

audio and video.

4https://spotipy.readthedocs.io/en/2.16.1/
5https://ffmpeg.org/

- 13 -

2.2 : Dependencies with 3rd Party Libraries

Figure 2.1: From raw files to relational tables

• MySQL6: An open-source database

• Cuda Toolkit7 (optional) If available, it would speed up the extraction of

visual features.

• MuseScore 38: an open source software for visualizing MusicXML files.

• FluidSynth 9: a real-time software synthesizer based on the SoundFont 2

specifications

6https://www.mysql.com/
7https://developer.nvidia.com/cuda-downloads
8https://musescore.org/en
9http://www.fluidsynth.org/

- 14 -

Chapter 2 : Data Collection Pipeline

Figure 2.2: Finding songs in videos and extracting features

• QjackCtl10: a simple Qt application to control the JACK sound server dae-

mon, specific for the Linux Audio Desktop infrastructure.

• QSynth 11: a fluidsynth GUI front-end application written in C++ around

the Qt framework using Qt Designer.

• lilypond12: a music engraving program, devoted to producing the highest-

quality sheet music possible. We use it for some of the visualizations of sheet

music in this thesis.

10https://qjackctl.sourceforge.io/
11https://qsynth.sourceforge.io/
12http://lilypond.org/

- 15 -

2.3 : Alternative Data Sources

2.3 Alternative Data Sources

Our search13 yielded the following data sets:

• The AudioSet Soundtrack data set from Google14 which contains audio fea-

tures from YouTube videos that contain soundtracks. The main problem is

that the videos included are parsed from YouTube and too many of them

consist of music playing over static images. We therefore couldn’t yield good

enough results by downloading the YouTube video. The data-set also lacks

the track name and any symbolic representation.

• Soundtracks data-sets for music and emotion15 by the Univer-

sity of Jyväskylä, which consists of short (approx. 15 second) excerpts from

film soundtracks. The main problem is that there is no video or symbolic

information.

• Plenty of MIDI data-sets in Kaggle16, most of which are classical composers

works and aren’t relevant to the task.

• The movie-net17 data-set, which is a huge collection of data around movies,

including video and audio features. At the time of writing this, the underlying

data-set of movies is not publicly available, therefore it wouldn’t be possible

to find the point in each film where a song is used. Thus, it also wouldn’t be

possible to synchronise video with music. Also there is no symbolic data for

the songs or soundtrack titles.

• The collection of MIDI data sets found in composing.ai18, which gathers

several data sets of popular music in MIDI form.

13search keywords “film soundtrack dataset”, “midi dataset” in Google, “video music midi”,
“soundtrack” in Kaggle

14https://research.google.com/audioset/dataset/soundtrack_music.html
15https://www.jyu.fi/hytk/fi/laitokset/mutku/en/research/projects2/

past-projects/coe/materials/emotion/soundtracks/Index
16https://www.kaggle.com/search?q=music+video+midi+in\%3Adatasets
17http://movienet.site/
18https://composing.ai/dataset

- 16 -

Chapter 2 : Data Collection Pipeline

It became apparent that the task could not be carried out using one of the above

data sets. To address that, we decided to create a data collection pipeline of our

own, using the composing.ai collection of MIDI files as the basis for our further

work. In the following sections we describe the method that we followed in detail.

2.4 Collection, Cleanups and Storage

In the following paragraphs we describe the available data and their sources.

2.4.1 MIDI

We downloaded the MIDI data from composing.ai (last retrieved on 2020-05-02),

which contains 124,470 files. The main problem of this data-set is its lack of struc-

ture. The files come from different data sources, using different naming conventions

and directory structures, making it quite hard to determine which songs are actually

available in this directory. The script inventory catalogs and matching.py

which is situated in the root directory, handles this job, when used in “midi mode”.

It goes through the directories and uses some rules in order to ignore irrelevant file-

names. We then used some regular expressions to perform a cleanup of the names,

which we passed on to the Spotify API in order to get a proper name of each MIDI

filename, as well as relevant artist and URL information. The match rate is currently

at 61%.

The resulting MIDI file set is useful, but comes with its own limitation for the

task at hand, which has to do with the fact that it mostly consists of known pop and

rock songs. While a lot of films use these as background music for montages, due to

the fact that they are usually expensive to obtain, this limits the pool of films and

scenes we can draw from. Films usually also have their own score, which is unique

to the film and in most cases carries the bulk of the scenes and the emotional core

of the film.

Furthermore, the MIDI files themselves are “dirty”. They do not follow the same

naming conventions for instruments or quantizations, some of them are plain wrong,

and the fact that they are multi-tracks and contain multiple percussion elements (as

- 17 -

2.4 : Collection, Cleanups and Storage

pop and rock songs have a strong emphasis in rhythm) adds further problems when

parsing for the feature extraction process (see section 4.2.1). Nevertheless, as this

is the only large enough set of MIDI files that we could find for free, we decided to

work with this. The resulting MIDI dataset is comprised by 43,567 MIDI files.

2.4.2 Audio

The audio data is based on a personal collection of MP3 files. This provides some

challenges, as a lot of the data might be misleading for our task at hand, as will be

explained in sections 2.4.4.2 and 2.5.2.

The collection has an initial catalog of 55,800 files from different genres and of

varying audio quality. They are arranged in directories according to genre, country

and artist. Here we present some high-level statistics, to get a context of what we

are working with:

• 32,319 files belong to a directory that has the word ’rock’ in it.

• 6,696 files belong to a directory that has the word ’jazz’ in it.

• 239 files belong to a directory that has the word ’classical’ in it.

• 4,833 files belong to a directory that has the words ’live’, ’concert’ or ’bootleg’

in it. Out of these, 3,385 also contain the word ’rock’.

As was the case with the MIDI files, the files are “dirty”, as they do not follow

strict naming conventions for the song titles, and the sampling rates and bit rates

vary.

2.4.3 Video

Video data is based on our private film collection. The collection includes 106 films

and 37 episodes from television series. The files are in various types: avi, mp4 and

mkv. As was the case with the other two modalities, the naming conventions and

image quality of the raw data are inconsistent.

- 18 -

Chapter 2 : Data Collection Pipeline

2.4.4 Cataloging and Matching MIDI to Audio Data

As we hinted at in the previous sections, we utilized a rule-based method to connect

our MIDI with our Audio data. The work is done in stages, using a Python script

that we have named inventory catalogs and matching.py. The script works

in the following modes:

• all: runs the whole pipeline, creating all the catalogs for MIDI, Audio and

Video files, as well as matching MIDI and Audio files.

• midi: creates a catalog for MIDI files, assumed to be within the path specified

in config/paths.py. The script assumes that the data set is the one

described in 2.4.1, and therefore has some hard-coded cleaning functions that

skip files that are not MIDI, and also folders that have MIDI files without the

song name on the title (as there are a lot of MIDI files with hashed titles). The

script then proceeds to do some cleaning of these names to remove irrelevant

punctuation marks etc. As a final step, these cleaner titles are fed to the

Spotify API in order to get a matching song name and URL, and the data is

stored in the table midi catalog.

• audio: creates a catalog for audio files, assumed to be within the path speci-

fied in config/paths.py. Follows a similar cleanup process, removing di-

rectories that would introduce noise in the data-set later on (for example the

’Bootlegs’ directories’), and files that do not contain music. After cleaning up

the titles of the files, it feeds them to the Spotify API in order to get a matching

song name and URL, and store the data in the table audio catalog.

• video: creates a catalog of video files, assumed to be within the path spec-

ified in config/paths.py. The cleanup process is much milder, as the

names of the videos are not of such importance at any later stages. An addi-

tional column called searched is defined, to be used during the video searching

phase by relevant video segment finder.py, in order to discriminate

the videos that have already been parsed for song detection. This script is

incremental, so that more video files can be added later on, if more are found.

- 19 -

2.4 : Collection, Cleanups and Storage

• merge: performs an inner join of the audio and MIDI catalogs, based on

the song name as given by the Spotify API (for more details on the matching

process see paragraph 2.4.4.1). For those that are matched, a pair id is created,

and it is stored, along with the relevant IDs for audio and MIDI files, to the

table midi audio matches. In our case, the matching resulted in 3,109

audio-MIDI matches.

The functions used to perform the file name cleanup are shown in code listing 2.1.

Listing 2.1: The file title cleanup code

1 import re

2 import pandas as pd

3

4

5 def cleanup_file_titles(df, file_type, allow_numbers=False):

6 """

7 get the titles of a file and return a DataFrame with a title column and a filetype column

8 :param allow_numbers: boolean that passes to the regex cleaner function

9 and allows numbers in the output.

10 :param df: the midi track catalogue

11 :param file_type: the type of files in the catalogue. Possible values: "audio", "video", "midi"

12 :return: df with an extra column with titles and file type

13 """

14 suffix = determine_relevant_suffices(file_type)

15 titles = []

16 file_types = []

17 for filename in df[’filename’]:

18 # only keep relevant file types

19 suf_search = re.search(suffix, filename)

20 if suf_search:

21 # strip from suffix

22 stripped = suf_search.group(1)

23 words = reg_cleaner(stripped, allow_numbers=allow_numbers)

24 titles.append(words)

25 suf = suf_search.group(2).strip(".")

26 file_types.append(suf)

27 else:

28 titles.append(’’)

29 file_types.append(’’)

30 df[’title’] = titles

31 df[’file_type’] = file_types

32 df = df[df[’title’] != ’’]

33 return df

34

- 20 -

Chapter 2 : Data Collection Pipeline

35

36 def reg_cleaner(string, allow_numbers=True):

37 """

38 simple function to convert string to lowercase and remove special characters

39 :param allow_numbers: specify if you want to allow numbers or not (default yes)

40 :param string: the string you want to clean

41 :return: the clean string

42 """

43 if allow_numbers:

44 remove_special = re.sub(’[ˆA-Za-z0-9]+’, ’ ’, string)

45 else:

46 remove_special = re.sub(’[ˆA-Za-z]+’, ’ ’, string)

47 pascalcase = re.sub(r’([a-z](?=[A-Z])|[A-Z](?=[A-Z][a-z]))’, r’\1 ’, remove_special)

48 clean_string = pascalcase.lower()

49 removed_stopwords = remove_stopwords(clean_string)

50 removed_multi_space = remove_multi_spaces(removed_stopwords)

51 return removed_multi_space

52

53

54 def remove_stopwords(string):

55 removed_stopwords = ’ ’.join([word for word in string.split() if word not in FILENAME_STOPWORDS])

56 return removed_stopwords

57

58

59 def remove_multi_spaces(string):

60 multiple_spaces = re.compile(’(\s\s+)’)

61 stripped_string = re.sub(multiple_spaces, ’ ’, string)

62 return stripped_string

2.4.4.1 The Spotify API

In order to match the audio and MIDI files, we needed to use a knowledge base that

could provide a ground truth for song information. We chose the popular music

streaming platform Spotify19. The platform provides a web-based API, which we

access using the relevant Python library spotipy20.

In order to run the code, it is necessary to set up a free account in order to

complete the user authorization in each call. An app needs to be registered at

MyDashboard21 to get the credentials necessary to make authorized calls (a client

id and client secret). In order to achieve the maximum reply rate possible, we used

19www.spotify.com
20https://spotipy.readthedocs.io/en/2.16.1/
21https://developer.spotify.com/documentation/web-api/

- 21 -

2.4 : Collection, Cleanups and Storage

the client credentials authorisation flow. These credentials are stored in the file

config/credentials.py.

The class that we have created, named Spotify, is a rudimentary wrapper

class. It exposes the functions that are useful for the matching process, namely the

song searching function, that returns a song name and metadata. The basic code

can be found in code listing 2.2

Listing 2.2: The Spotify API wrapper

1 import spotipy

2 from spotipy.oauth2 import SpotifyClientCredentials

3 from config.credentials import spotify_creds

4

5 client_credentials_manager = SpotifyClientCredentials(client_id=spotify_creds[’clientID’],

6 client_secret=spotify_creds[’clientSecret’])

7 sp = spotipy.Spotify(client_credentials_manager=client_credentials_manager)

8

9

10 class Spotify(object):

11

12 def __init__(self):

13 pass

14

15 @staticmethod

16 def ask_spotify(title):

17 """

18 for a potential title, ask spotify for a name

19 :param title: a string

20 :return: list of song attributes

21 """

22 song = sp.search(q=title, limit=1, type=’track’)

23 try:

24 info = song[’tracks’][’items’][0]

25 if info:

26 artist = info[’artists’][0][’name’]

27 song_name = info[’name’]

28 song_url = info[’external_urls’][’spotify’]

29 data = {’name’: song_name, ’artist’: artist, ’URL’: song_url, ’clean_title’: title}

30 return data

31 except IndexError:

32 pass

- 22 -

Chapter 2 : Data Collection Pipeline

2.4.4.2 Caveats in audio-MIDI matching

As was mentioned in the beginning of section 2.4.4, our method yields 3,109 audio-

MIDI matches. While this number seems adequate, there are some caveats. We

try to describe most of them below:

• The recall of the Spotify search API. This depends on the level of cleanliness

of the original file names, as well as how well our custom regex-based cleaner

works. This is evident in the fact that in the audio files (which had much better

initial file names) recall is considerably higher than in the (much “dirtier”)

MIDI files. More specifically, in the audio files, recall reaches 83.3%, whereas

in the MIDI catalog, it’s only 65.2%. This means that we lose a lot of MIDI

data when we apply the matching process.

• The precision of the Spotify search API. This depends on the level of accuracy

of the original files, i.e. whether the file name reflects the actual content of the

file. Due to the size of the data-set, we weren’t able to precisely compute the

precision of the method. Nevertheless while performing manual curation of

the matched files, in order to create fake examples for our classifier, we came

across plenty of files that were wrongly matched. This has a few implications:

– There were plenty of audio files that weren’t the original versions of the

songs, (most often being covers in other genres, or live versions).

– There were cases where the MIDI and audio files had the same song

title, but were referring to different songs with the same name. Since the

Spotify search API yields the most popular result, one of them (or both)

were falsely identified.

– A lot of jazz songs have titles that closely resemble other popular songs,

therefore there were cases where the audio was falsely identified as a more

popular song by the Spotify API.

• The quality of MIDI data. It is often the case that MIDI data is corrupt, or

otherwise inappropriate for further processing. Nevertheless this could only

- 23 -

2.5 : Finding Music within Videos

become evident in the feature extraction process, which happens much later

in the pipeline.

2.5 Finding Music within Videos

The ultimate goal in our data collection pipeline is finding combinations of videos

and songs, in both audio and symbolic formats. Initially, we tried starting from a

knowledge base like iMDb22 that would contain movie soundtrack information. Nev-

ertheless, the format of our film collection and the structure of the iMDb search API

wouldn’t allow for this process to run smoothly. Besides, even if we did follow that

route, the database wouldn’t contain the exact timestamp of the song’s appearance

in the film.

We therefore decided to follow a different approach, one that would allow a future

expansion to videos that aren’t necessarily listed in external knowledge bases; we cre-

ated the script relevant video segment finder.py which, given a database

of song fingerprints (see section 2.5.1 for details), breaks the video in chunks and

compares the audio against said fingerprints. The comparison is done using the

same parameters as the ones that were used while building the fingerprint database,

and are stored in config/settings.py. If a match is found for more than

three consecutive video chunks with the same song, the clip is stored in the table

video clip catalog. The match information between audio and video clips is

stored in audio video matches.

In our experimental setup we chose the following settings, after some fine-tuning:

• Video chunk size: 5 seconds

• Audio sample rate: 16 KHz

• Audio channels: 1

In order to increase the recall of the method, we impose the following rule: For

every three video chunks, if the first and third are matched with the same song,

22www.imdb.com

- 24 -

Chapter 2 : Data Collection Pipeline

then we impose the same match to the middle one too. Given our objective, we

also impose a minimum size of three chunks to each extracted video clip, in order

to maintain a balance between keeping irrelevant minuscule clips and missing the

opportunity to get larger clips by combining chunks together. Our implementation

is demonstrated in Listing 2.3

Listing 2.3: Smoothing of Song Detection Chunks

1 def smooth_chunk_matches(chunk_match_data):

2 """

3 for each row, if the previous match is the same as the next one, change the label of the row and set the offset as

4 the mean between the 2 rows.

5 :param chunk_match_data:

6 :return: smooth song label, smooth song offset

7 """

8 chunk_label = chunk_match_data[’song_id’]

9 chunk_offset = chunk_match_data[’offset_seconds’]

10 prev_chunk_label = chunk_match_data[’prev_song_id’]

11 prev_offset = chunk_match_data[’prev_offset_seconds’]

12 next_chunk_label = chunk_match_data[’next_song_id’]

13 next_offset = chunk_match_data[’next_offset_seconds’]

14 if needs_smoothing(prev_chunk_label, next_chunk_label, chunk_label):

15 return prev_chunk_label, smooth_chunk_offset(prev_offset, next_offset)

16 else:

17 return chunk_label, chunk_offset

Ideally, we would also want to maximise precision. To that end, we use the

song fingerprint offsets per video chunk, which are calculated by pyDejavu. These

offsets demonstrate which part of the song corresponds to the matched video chunk.

We then calculate the mode (most frequent value) of these offsets for each clip

(which is a collection of at least 3 chunks) and flag those clips that have no mode.

In a perfect match scenario, the mode of these offsets would be equal to the chunk

length. Our flagging process is presented in Listing 2.4.

Listing 2.4: Tagging Misaligned Song Offsets

1 def flag_possible_errors(df):

2 filter_df = df.loc[df[’match_id’].notna()].copy()

3 grouped_df = filter_df.groupby(’match_id’)[’offset_diff’]

4 modes = grouped_df.apply(get_match_area_mode)

5 valid_modes = modes[modes.notna()].index.values

6 sizes = grouped_df.size()

7 tp = sizes[sizes >= 3].index.values

- 25 -

2.5 : Finding Music within Videos

8 filter_df[’too_small’] = [0 if i in tp else 1 for i in filter_df[’match_id’].values]

9 filter_df[’invalid_mode’] = [0 if i in valid_modes else 1

10 for i in filter_df[’match_id’].values]

11 return filter_df

Overall the method yields 68 video clips.

2.5.1 On Fingerprinting

One of our main challenges during the data collection process was finding songs from

our database within films. To tackle that issue, we used an audio fingerprinting

technique, implemented in a Python library called pyDejavu.

As explained in [18], an audio fingerprint is a compact content-based signa-

ture that summarizes an audio recording. Audio fingerprinting technologies extract

acoustic relevant characteristics of a piece of audio content and store them in a

database. When presented with an unidentified piece of audio content, characteris-

tics of that piece are calculated and matched against those stored in the database.

Using fingerprints and matching algorithms, distorted versions of a single recording

can be identified as the same music title.

The implementation of audio fingerprints in pyDejavu uses the spectrogram

(see Section 3.2.5.1 for more) as the basis for creating the fingerprint. As described

by the creator of the library Drevo [19], the algorithm finds peaks in the spectrogram,

which are defined as time-frequency pairs that correspond to an amplitude value

which is the greatest in a local “neighborhood” around it. Other such pairs around

the peak are lower in amplitude, and thus less likely to survive noise. To find the

peaks, pyDejavu is implementing a combination of a high pass filter and local

maxima structs from the Python library SciPy.

The spectrogram peak frequencies along with the time difference between them

are then passed through a hash function (SHA-1), representing a unique fingerprint

for this song. In order to save space, the SHA-1 hash is cut down to half its size (just

the first 20 characters), and then converted to binary, reducing the fingerprint’s size

from 320 bits down to 80 bits. After the database is filled with the fingerprints of

the available songs, a new audio can be matched using the same hashing method.

- 26 -

Chapter 2 : Data Collection Pipeline

An important factor in the success of the matching is hash alignment. When

doing the original fingerprinting of a sample, the absolute offset, with regards to the

beginning of the song, is stored. When the captured sound that is to be compared

with the database is fingerprinted, the offset is relative to the start of the sample

playback. If we make the assumption that the playback speed and sample rates are

identical between the songs in our database and the input, then it follows that the

relative offset should be the same distance apart. Under this assumption, for each

match the difference between the offsets is calculated:

difference = database offset from original track− sample offset from recording

(2.1)

This always yields a positive integer since the database track will always be at least

the length of the sample. All of the true matches will have this same difference.

The system then looks over all of the matches and predicts the song ID that has the

largest count of a particular difference.

We used the following settings when importing pyDejavu:

• Sampling Rate: 44100

• FFT Window Size: 4096

• FFT Overlap Ratio: 0.5

• Fan Value23: 15

• Minimum Amplitude of Peaks: 10

• Minimum Number of Cells Around an Amplitude Peak: 10

As these settings are not exposed in the library’s API, we had to apply the

changes locally. Prior to initialising the fingerprint database, we applied pre-processing

in the original data, in order to bring the audio files in the same sample rate and

number of channels as the videos (as explained in section 2.5.

23Degree to which a fingerprint can be paired with its neighbors.

- 27 -

2.5 : Finding Music within Videos

2.5.2 Caveats and Challenges of this approach

While the proof of concept for utilizing pyDejavu was initially promising, we came

across some significant caveats that should be taken into consideration in the future.

2.5.2.1 Execution Time

Filling in the database takes a lot of time, especially when using settings that favour

high accuracy. We have identified the main bottleneck as the data input in the

MySQL database. Using the settings described in 2.5.1 we calculate an average

of 104,882 fingerprints per song, and total running time to parse 3,109 songs was

approximately 210 hours, even though we had three instances of the script working

in parallel.

When debugging the script, we identified that it takes almost 45 minutes to

calculate fingerprints for a batch of 200 songs, but it takes 12 hours to perform the

database insert for each batch. This translate to 3 minutes per song insert, which

makes sense, if each song insert translates to 100 thousand row inserts. We tried to

perform some optimisation in the INNODB settings of the MySQl server, but we

didn’t see considerable improvements.

This meant that each experiment would take approximately a whole week to run,

making it very hard to experiment on the whole pipeline end-to-end.

2.5.2.2 Storage Size

As we explained in the previous section, each song would be represented with a

hundred thousand rows on average. This leads to a crucial trade-off between storage

size and accuracy. The most important parameters that affect this trade-off are

summed in table 2.1.

In our implementation, the dejavu schema takes up 32 GB, which is larger than

even the original storage size of the raw data which is 27 GB. For systems where

storage and scalability play an important part, this would probably be a concern.

- 28 -

Chapter 2 : Data Collection Pipeline

Parameter Name Size Accuracy

Sampling Rate + +

FFT Window Size - -

FFT Overlap Ratio + +

Fan Value + +

Table 2.1: pyDejavu parameters, storage size and detection accuracy

2.5.2.3 Playback Speed and Sample Alignment

The biggest concern that arises from this fingerprinting application is that of the

alignment of samples between the audio signal that is being searched and the finger-

print database. As was explained in section 2.5.1, the assumption is made that the

playback speed and sample rates are identical between the songs in our database

and the input. However this is not always the case in our particular scenario.

While running the pipeline, we encountered cases where the song that was used

in the video, while it existed within the database, would not be matched. Initially

we hypothesized that this has to do with the quality of the original song, or that the

film excerpt was too noisy. However, we noticed that the algorithm did surprisingly

well in very noisy scenes, whereas it would miss quite obvious and prominent clips.

Nevertheless when playing back the video, we realised that the song in the film was

in fact played at a different speed to the original, which also resulted to a slightly

different pitch. This goes against the assumption that was made above, and it leads

to a failure to match songs in a lot of films.

Furthermore, the fact that we apply re-sampling in the audio files, before initial-

ising the fingerprint database may also play a part in the process, even though our

tests with fabricated examples didn’t suggest that this was the case.

2.5.2.4 Quality of the video content

Due to the nature of the dataset, it is often the case that music is used in an incon-

sequential way. Such would be the cases when the song is so far in the background

of the audio mix, or is so generic that virtually any song could be used in its place.

Furthermore, it is possible that the song is only used in the end credits of a film or

- 29 -

2.5 : Finding Music within Videos

TV episode. In these cases, when taken out of context, the visual content wouldn’t

really carry enough information to be easily classifiable.

This is an issue that we faced in our implementation too, but due to the size of

the dataset, we decided to also keep those video clips in the dataset.

2.5.2.5 Manual Intervention

Manual interventions in such pipelines, especially when trying to build large data-

sets, should preferably be avoided. Nevertheless, due to the nature of the data, we

needed to intervene manually in two situations:

• Curation of audio - video matches: After we run the script that finds songs in

videos (relevant video segment finder.py), we go through its results

to make sure that the matches are indeed correct and appropriate. We store

the results in a file within the var folder.

• Creation of fake examples: Initially we considered using the segment finder

script’s mismatches as negative examples in the classifier that we built. Nev-

ertheless, we found that this could result in an imbalance data-set and, further

to that, these mismatches could, in fact, be potentially good alternative songs

for a scene. We, therefore, chose to handcraft fake examples for the negative

class, in order to make sure that the resulting data would be balanced, and

that the visual content would indeed not match the song.

As is the case with manual interventions do not scale, and are not appropriate for

building larger data-sets.

2.5.2.6 Bias

As is true in almost everything, most of our design choices introduce biases in the

resulting data-set. Reflection on the process reveals the following sources of bias:

• The available songs and videos. As the raw content is based on our privately-

owned collection, the limits of its diversity are the limits of our own taste.

This could be problematic when trying to train a general-purpose classifier.

- 30 -

Chapter 2 : Data Collection Pipeline

• Curating the audio-video matches. Manual curation of a data-set can lead to

oversights that could increase bias in a model. This is especially true as the

size of the data-set increases.

• The notion of a song fitting a scene. The definition of whether a song is a good

fit for a video or not is a subjective matter. In our work we have implicitly

assumed that the choices of the original music directors were good fits, even

though some other music director could have chosen something else. Further

to that, the manufactured “bad” examples are only bad because we judged

them as such. This further intensifies the problem of creating a data-set that

is biased to our personal taste.

• Cultural bias. The data-set is comprised almost exclusively from Hollywood

films and series, and the songs that were available in both MIDI and audio

formats were mostly western pop and rock ranging from the 1960s to the

2000s. When training a model, this would of course introduce cultural bias to

the model.

2.6 The Database structure

All the data in this process are stored in a MySQL database. There are two

schemas involved. The principal schema is file system catalogs where all the

work described in sections 3.3, 5.4, 4.2.2, 2.4 and 2.5 is stored. An overview of the

table relations can be seen in Figure 2.3.

Figure 2.4: The dejavu

relational schema

An additional auxiliary schema is built by the

pyDejavu library, which is called dejavu, and con-

tains the necessary data to perform fingerprint recogni-

tion queries.

All of the tables are created automatically through

the scripts stored under db handler/sql, which are

called when necessary.

- 31 -

2.7 : Concerns About Copyright

Figure 2.3: The file system catalogs relational schema

2.7 Concerns About Copyright

One of the main reasons that made the construction

of such a pipeline necessary, was the fact that all of the

raw data that are relevant to this task (music, compo-

sitions, films, videos) are subject to copyright. During

the process of building this data-set, we were mindful of

this, and have designed the pipeline in such a way, that

copyright would be respected:

• Storing the raw data itself is not necessary. Once the feature extraction process

is completed, only the comprehensive feature library is stored, along with some

rudimentary metadata, so that the features can be traced back to their source.

• The raw data used is either freely available on the Web (in the case of MIDI

files), or is part of our privately owned collection. At the end of the process

only the database and the code is publicly shared.

• The database is expandable. All the catalog processes, feature extraction

methods and matching functions work in such a way that it is possible for

anyone to add more data from their own collection. Potentially this could

- 32 -

Chapter 2 : Data Collection Pipeline

lead to a crowd-sourced data-base of features, without ever sharing any of the

underlying raw data.

- 33 -

2.7 : Concerns About Copyright

- 34 -

Chapter 3

Music Representation and Feature

Extraction Techniques from Audio

This, and the chapters that follow, focus on the issue of data representation, i.e.

how musical and visual content is represented. It is evident that in order to be used

in a model, the data needs to be somehow converted to a numerical and tabular

format. There are plenty of considerations that need to be made when choosing a

representation strategy for audio and visual data, as well as the suitable encoding

method for each type of data. In the following chapters, we will discuss the issues

that need to be taken into account when choosing representation, encoding and

feature extraction strategies for each of the other relevant modalities.

We will attempt to explain the difference between representations of music based

on audio processing, and higher level symbolic representations. We will then focus

on audio content and organise the rest of the chapter in sections: one is for rep-

resentation and feature extraction strategies, drawing mainly from the works of

Giannakopoulos and Pikrakis [20] and Kim et al. [1]; further to that, we will present

the features that we have extracted for this thesis.

3.1 Symbolic vs. Raw Audio

Given that our task does not concern general audio signals, but music of some

form, we have the choice of representing it as raw audio, or as some higher level

- 35 -

3.2 : Representations based on Audio Processing

symbolic representation. The techniques for processing and transforming each one

of these is quite different, with the former leaning more towards the realm of signal

processing, and the latter being closer to the domain of knowledge representation.

This choice is particularly important as each type of representation reveals differ-

ent aspects of the content. Audio features based on signal processing, might reveal

more about timbre and texture of a piece (such as the energy of the signal, or fre-

quencies present), while symbolic representations allow us to extract elements that

belong to musicology, such as the flow of harmony, cadence and melodic structures.

Furthermore, if the resulting classifier was to be used as a method of evaluation,

or an objective function for an architecture that generates music for videos, it should

be able to handle both types of representations. Therefore, including the musical

content in both modalities, is very important.

3.2 Representations based on Audio Processing

In the following sections we will examine raw audio representations. In order to

understand the basic concepts, we will use the standard notation from the MPEG-7

standard 1, and briefly explain how physical audio signals are captured, represented

and then transformed in various ways within the digital domain. To that end, we will

mostly incorporate elements from the works of Kim et al. [1] and Giannakopoulos

and Pikrakis [20].

3.2.1 Sampling and Sampling Frequency

Before we dive into the various representations, it is useful to define the process of

creating a digital signal from its analog audio counterpart. Even though in nature

time has a continuous flow, in the digital realm we need to manipulate samples of

the real signal that have been drawn on discrete-time instances, a process which is

known as sampling [20]. The time between two samples taken by a signal is called

the sampling period and the inverse of the sampling period is called sampling

1MPEG - 7 is an international standard, proposed in 1997 and established in 2001, defining
descriptions and description systems for searching, identifying, filtering and browsing audiovisual
content.

- 36 -

Chapter 3 : Music Representation and Feature Extraction Techniques from Audio

frequency. This is usually notated as Fs and measured in Hertz (Hz). For example,

if the sampling frequency is 1000 Hz, this means that the sampling period is 1
1000

=

0.001s and therefore one sample is drawn every 0.001 seconds.

In this context, the sampling frequency is important; the higher it is, the closer

the digital file resembles the initial analog audio signal. On the other hand, there

is a lower bound for the sampling frequency, known as Nyquist rate, which is equal

to twice the signal’s maximum frequency. This rate ensures that the phenomenon

known as aliasing is avoided, and that the resulting audio quality is adequate.

3.2.2 Short Term Audio Processing

In addition to sampling, another technique that is very important when it comes

to raw audio manipulation and feature extraction is short-term processing. In this

process, the audio signal is broken into short-term windows (also known as frames)

which can be overlapping. The analysis is then done on a frame-by-frame basis,

which is a practical way of dealing with the non-stationarity of the audio signal,

which usually has abrupt changes over time.

The framing logic works both in the microscopic scale of the samples of the

signals, but also on the more abstract level of audio events, meaning that, as a

practice, it is also useful in order to extract information from small segments of

an audio file. In this context, the short term analysis can be seen as a compromise

between working on a per-sample basis - which would potentially entail huge memory

and computational loads - and a per-file basis - which would not take into account

these abrupt changes in the signal and lose too much information.

We formalize this process in the following equation:

xi(n) = x(n)w(n−mi), i = 0, . . . , K − 1 (3.1)

where K is the number of frames and mi is the shift lag, which is the number of

samples by which the window is shifted in order to yield the ith frame. The only

region of samples that yields non-zero frames has indices mi, . . . ,mi+WL−1, where

WL is the length of the moving window (in samples). The value of the mi depends

- 37 -

3.2 : Representations based on Audio Processing

on the hop size (or step) of the window, notated as WS. Specifically the value of mi

can be calculated with the formula:

mi = i ·WS · Fs i = 0, . . . , K − 1 (3.2)

In order to understand this, we include here an example from Giannakopoulos and

Pikrakis [20]: If the window is shifted by 10 ms at each step and the sampling

frequency Fs is 16 kHz, then mi = i · 0.01 · 16000 = i · 160 samples, i = 0, . . . , K− 1.

Furthermore, if WL = 300 samples, then the 5th frame (i = 4) starts at the sample

index 160 · 4 = 640 and ends at sample index 160 · 4 + 300− 1 = 939

With the above, we wanted to highlight the importance of the parameters WL

and WS, i.e. the length of the moving window and the hop size. According to [1],

while MPEG-7 doesn’t standardize the technique itself, a number of implementation

features are recommended, such as a WL of 30 ms and a WS of 10 ms.

The total number of short term windows K is computed by

K =
⌊N −WL

WS

⌋
+ 1 (3.3)

where WL,WS and N are defined above and b c is the floor operator.

3.2.3 Mid-Term Windows and Feature Extraction

In order to extract features from audio files, as was hinted in 3.2.2, we usually apply

another technique, named mid-term windowing. The audio signal is initially split

into mid-term segments (windows), typically one to ten seconds long (depending on

the application). Subsequently, the short-term processing stage is carried out as we

previously described. The product of this step is a sequence of features, which is then

used for computing feature statistics, e.g. the mean zero crossing rate of the window.

In the end, each mid-term segment is represented by a set of statistics. Our implicit

assumption in this process is that the mid-term windows exhibit uniform behavior

with respect to audio type, therefore extracting these statistics is reasonable.

The same process is extended to longer files, in order to capture salient features

- 38 -

Chapter 3 : Music Representation and Feature Extraction Techniques from Audio

and represent them in a single vector which acts as a representative of the whole

music signal. In these cases, After the short-term and mid-term steps produce a

vector of feature statistics per segment (e.g. 2 seconds long), these statistics are

then long-term averaged, in order to provide a single vector representation of the

whole signal. Through this process, temporal evolution details are sacrificed in

order to obtain the most notable features of the music signal. Despite this trade-off

it has been a widely accepted technique for music genre classification tasks and other

related problems (for example [21], [22], [23], and more recently [24]).

3.2.4 Time domain Representations and Features

3.2.4.1 Audio Waveform

The audio waveform (AWF) is the most direct representation of the raw audio sig-

nal. Essentially, it is a time series of the signal’s amplitude and it considers the

minimum and maximum samples within successive non-overlapping frames. Archi-

tectures that process the raw audio signal are sometimes referred to as end-to-end

architectures [25], and the main advantage is that they keep the raw material with

its full initial resolution. The disadvantage is the potentially huge computational

load, both in terms of processing power and memory required. An example of a

waveform visualisation can be seen in Figure 3.1

Figure 3.1: Example of a typical audio waveform

- 39 -

3.2 : Representations based on Audio Processing

3.2.4.2 Energy

If xi(n), n = 1, . . . ,WL is the sequence of audio samples of the ith frame, where WL

is the length of the frame, then the short-term energy is computed using Equation

3.4.

E(i) =

WL∑
n=1

|xi(n)|2 (3.4)

The power of the signal is obtained by dividing the energy by the length of the

frame, which would transform Equation 3.4 to:

E(i) =
1

WL

WL∑
n=1

|xi(n)|2 (3.5)

The terms energy and power are used interchangeably in [20], and in further para-

graphs we will use the term energy to refer to Equation 3.5

Short-term energy is a good feature to distinguish speech from music, as suc-

cessive speech frames are expected to exhibit high variation, alternating rapidly

between high energy states (while words are pronounced) and low energy states

(during the silence between phonemes). A mid-term statistic that is usually chosen

for classification tasks is the standard deviation σ2 of the energy, or the standard

deviation by mean value ratio σ2

µ

3.2.4.3 Zero-Crossing Rate

The Zero-Crossing Rate (ZCR) of an audio frame is the rate of sign-changes of the

signal, from positive to negative and vice versa, divided by the frame length. We

use Equation 3.6 to obtain it:

Z(i) =
1

2WL

WL∑
n=1

|sgn[xi(n)]− sgn[xi(n− 1)]| (3.6)

- 40 -

Chapter 3 : Music Representation and Feature Extraction Techniques from Audio

where sgn(·) is the sign function:

sgn[xi(n)] =


1, xi(n) ≥ 0

−1, otherwise

(3.7)

ZCR has usually higher values when the signal is noisy. It can, therefore, be inter-

preted as a crude measure of noisiness of a signal. This feature is easy to compute,

and seems to provide adequate results. It is therefore popular even in recent papers

that involve audio segmentation [26], [27], audio classification [28] and audio event

recognition [29], [30].

In terms of mid-term statistics, it is worth noting that beside the average ZCR,

the standard deviation of this feature over successive frames is higher for speech

signals than for music signals, as is demonstrated in [20]. Therefore for such tasks

it is preferable to the mean ZCR.

3.2.4.4 Energy Entropy

We can interpret the short-term entropy of energy as an indicator of sudden changes

in an audio signal’s energy, as its value is lower if there are abrupt changes in the

energy of the signal. It is computed by first dividing each short-term frame in K

sub-frames of fixed duration, and then calculating the energy of each sub-frame, j,

and dividing it by the total energy of the short-term frame, as is demonstrated in

Equations 3.8 and 3.9.

ej =
EsubFramej
EshortFramei

(3.8)

where

EshortFramei =
K∑
k=1

EsubFramek (3.9)

Finally, the entropy H(i) of the sequence ej is computed as follows:

H(i) =
K∑
j=1

ej · log2(ej) (3.10)

- 41 -

3.2 : Representations based on Audio Processing

Equation 3.8 helps us understand why energy entropy is lower if abrupt energy

changes exist in the signal. If we interpret the resulting value of 3.8 as a probability,

then whenever a sub-frame yields a high energy value, then one of the resulting

probabilities will be high, thus reducing the entropy of ej. This is therefore a

potentially useful feature in the context of sound event detection, e.g. [31], as

well as music genre detection [32].

3.2.5 Spectral Domain Representations and Features

3.2.5.1 Spectrogram

Transformed representations of audio are a way to compress the data and provide

information of a higher level, in exchange for some information loss and bias. The

most common transformation is the Discrete Fourier Transform (DFT). Ac-

cording to Giannakopoulos and Pikrakis [20] the majority of important features

used to analyze audio content, especially in more traditional settings, are defined

in the frequency domain. In order to compute the coefficients of DFT, an efficient

algorithm called Fast Fourier Transform (FFT) is used.

Given a discrete-time signal x(n), n = 0, . . . , N − 1, N samples long, its DFT

is defined as:

X(k) =
N−1∑
n=0

x(n) exp

(
−j 2π

N
kn

)
, k = 0, . . . , N − 1 (3.11)

where j ≡
√

(−1). The output of the transformation, notated here as X(k) is a

series of N coefficients, which are complex numbers.

The inverse DFT (IDFT) returns the original signal, given the DFT coefficients:

x(n) =
1

N

N−1∑
k=0

X(k) exp

(
j

2π

N
kn

)
, n = 0, . . . , N − 1 (3.12)

- 42 -

Chapter 3 : Music Representation and Feature Extraction Techniques from Audio

or, equivalently:

x(n) =
1

N

N−1∑
k=0

X(k)γk(n), n = 0, . . . , N − 1 (3.13)

where γk(n) = exp
(
j 2π
N
kn
)
, n = 0, . . . , N − 1. It is evident that the original signal

x(n) can be written as a weighted average of a family of fundamental signals, where

each signal γk(n) is a complex exponential and its weight is equal to the kth DFT

coefficient. The magnitude of the kth DFT coefficient, |X(k)|, can act as a measure

of intensity with which the corresponding frequency participates in the signal x(n).

It is worth noting that there is a trade-off between the resolution in the time and

frequency domains. The non-stationarity of the signal does not allow us to increase

the length of the time frame without constraints, and simultaneously, the shorter

the length, the higher the resolution in the frequency domain. This is derived from

equation 3.12 if we understand that the kth exponential in discrete-time corresponds

to ωk = k 2π
N

and the equivalent of that in terms of the analog frequency is fk = kFS

N
,

with FS being the sampling frequency that was used to obtain x(n). The implication

of this relationship is that, for a given sampling frequency, longer signals (i.e. larger

values of N) lead to a more dense sampling in the frequency axis, therefore by

increasing the length of the signal we produce a finer representation in the frequency

domain. This trade-off will become important as we consider a short-term windowing

approach later on.

Another important property of the DFT, is that for a signal of real values, the

DFT coefficients appear in conjugate pairs:

X(k) = X(N − k), k = 1, . . . , N − 1 (3.14)

Therefore the magnitude of the spectrum is symmetric and, thus, we only need the

first half of the DFT coefficients, i.e. those with indices k = 0, . . . , dN−1
2
e, where

de is the ceiling operator. This means that in practice we only need the frequencies

up to FS

2
, something that is also compatible with the Nyquist theorem, that we

described in paragraph 3.2.1.

- 43 -

3.2 : Representations based on Audio Processing

In order to make up for the trade-off between the resolution in the time and

frequency domains, the Short-Time Fourier Transform (STFT) has been introduced.

Its goal is to break the signal into possibly overlapping frames using a moving

window technique and compute the DFT at each frame, much in the way that

was discussed in paragraph 3.2.2. The length of the moving window is important,

as longer windows lead to better resolution in the frequency domain but worse

resolution in the time domain, given the sampling frequency. The MPEG-7 standard

recommends that it is a multiple of 10 ms.

A common visual representation of the spectrum is the spectrogram, where the

x axis represents time (in seconds), the y-axis represents the frequency (in kHZ) and

the color represents the intensity of the signal (in a logarithmic scale, known as db).

An example is shown in Figure 3.2.

Figure 3.2: The spectrogram of the audio track of Figure 3.1

3.2.5.2 Spectral Centroid and Spread

Two simple measures for spectral position and shape are the spectral centroid and

spectral spread, which correspond to the first and second central moments of the

spectrum. We calculate the spectral centroid, using Equation 3.15.

Ci =

∑WfL
k=1 kXi(k)∑WfL
k=1 Xi(k)

(3.15)

- 44 -

Chapter 3 : Music Representation and Feature Extraction Techniques from Audio

We calculate the spectral spread, using Equation 3.16.

Si =

√√√√∑WfL
k=1 (k − Ci)2Xi(k)∑WfL

k=1 Xi(k)
(3.16)

We interpret the spectral centroid as a measure of sonic brightness, while the spectral

spread measures how concentrated is the spectrum around the spectroid.

3.2.5.3 Spectral Entropy

In a way similar to Paragraph 3.2.4.4, we calculate the entropy in the frequency

domain. We first divide the spectrum of the short-term frame into L bins (sub-

bands). The energy Ef of the fth sub-band, f = 0, . . . , L− 1 is then normalised by

the total spectral energy:

nf =
Ef∑L−1
f=0 Ef

, f = 0, . . . , L− 1 (3.17)

The entropy of the normalised spectral energy is then computed with Equation 3.18.

H = −
L−1∑
f=0

nf · log2(nf) (3.18)

3.2.5.4 Spectral Flux

The spectral flux is a measure of change between two frames in the frequency domain.

It is calculated as the squared difference between the normalized magnitudes of the

spectra of the two successive short-term windows.

Fli,i−1 =

WfL∑
k=1

(ENi(k)− ENi−1(k))2 (3.19)

where

ENi(k) =
Xi(k)∑Wfl
l=1 Xi(l)

(3.20)

Equation 3.20 defines the kth normalised DFT coefficient of the ith frame.

- 45 -

3.2 : Representations based on Audio Processing

3.2.5.5 Spectral Rolloff

Spectral rolloff is the Cth percentile of the magnitude distribution of the spectrum.

If the mth DFT coefficient corresponds to the spectral rolloff of the ith frame, then

it should stand that:
m∑
k=1

Xi(k) = C

WfL∑
k=1

Xi(k) (3.21)

where C is the adopted percentile and is defined by the user (usually around 90%).

According to Giannakopoulos and Pikrakis [20] the spectral rolloff is usually

normalized by dividing it with WfL so that it takes values between 0 and 1, with 1

being the maximum frequency of the signal. It is used as a descriptor of the spectral

shape of the audio signal, and can be used for classification, e.g. [33], and clustering

tasks, e.g. [34], [35].

3.2.5.6 Mel-Frequency Cepstrum Coefficients

The mel-frequency cepstrum coefficients (MFCCs) has been a very popular feature

vector in speech recognition [36] and music classification tasks [37], [38]. Generating

these features relies on the notion of cepstrum, as introduced by Bogert [39], which

is the result of computing the inverse Fourier transform (IFT) of the logarithm of

the estimated signal spectrum. The extraction of these co-efficients is depicted in

Figure 3.3

More specifically, MFCCs are based on the mel-scale. The mel is a transformation

of a unit of pitch. To convert a frequency f in hertz into its equivalent in mel, the

following formula is used:

Pitch(mel) = 1127.0148log(1 + freqf(Hz)700) (3.22)

The mel-scale is a scale of pitches judged by listeners to be equal in distance from

one another. As is described in [1], the reference point between this scale and

normal frequency measurement is defined by equating a 1000 Hz tone, 40 dB above

the listener’s threshold, with a pitch of 1000 mels. Below about 500 Hz the mel

and hertz scales coincide, while above that listeners perceive as equal ever-growing

- 46 -

Chapter 3 : Music Representation and Feature Extraction Techniques from Audio

pitch increments. In other words, the mel-scale is a way to formulate the observed

behaviour of the human ear to better distinguish pitch in lower frequencies.

In order to extract MFCCs from a frame, we first compute the DFT and apply on

it a series of L triangular filters that are based on the mel-scale. If Õk, k = 1, . . . , L

is the power at the output of the kth filter, then the resulting MFCCs are given by

the equation 3.23

cm =
L∑
k=1

(logÕk) cos
[
m
(
k − frac12

)π
L

]
, m = 1, . . . , L (3.23)

We can therefore interpret MFCCs as the discrete cosine transform coefficients of

the mel-scaled log-power spectrum.

3.2.5.7 Chromagram

A common variation on the spectrogram is the Chroma vector, which is a discretized

12-element representation of the spectral energy. We compute the chroma vector

by grouping the DFT coefficients of a short-term window into 12 bins, each one

representing one of the equal-tempered pitch classes of Western-type music, a.k.a.

semitones, independently of the octave position.

Each bin produces the mean of log-magnitudes of the respective DFT coefficients,

as shown in Equation 3.24.

vk =
∑
n∈Sk

Xi(n)

Nk

, k ∈ 0 . . . , 11 (3.24)

where Sk is a subset of the frequencies corresponding to teh DFT coefficients and Nk

is the cardinality of Sk. The chroma vectors of each short-term frame are grouped

in a matrix V , which acts as a matrix representation of chroma vectors commonly

known as the chromagram. An example is provided in Figure 3.4.

- 47 -

3.3 : Extracting Audio Features

Figure 3.3: The extraction process of the MFCC features, as described by Kim et al. [1]

3.3 Extracting Audio Features

Based on the aspects described in Chapter 3, we have chosen to utilize the

modules provided in the pyAudioAnalysis2 library in Python. We have created the

class AudioFeatureExtractor to extract a selection of features. We decided to

follow the recommendations of [40] a 2 second mid-term window with a 50% overlap,

combined with a short term window of 0.05 seconds and 50% overlap.

After calculating the mid-term features, we store long-term averaging statistics

2https://github.com/tyiannak/pyAudioAnalysis

- 48 -

Chapter 3 : Music Representation and Feature Extraction Techniques from Audio

Figure 3.4: (a) Musical score of a C-major scale. (b) Chromagram obtained from the
score. (c) Audio recording of the C-major scale played on a piano. (d) Chromagram
obtained from the audio recording. Reproduced from Meinard.mueller, CC BY-SA 3.0
“https://creativecommons.org/licenses/by-sa/3.0”, via Wikimedia Commons

for each feature, which include:

• Mean

• Standard Deviation

• Average Delta between frames

3.3.1 Beat Detection

In addition to what has been described in detail in the previous sections, we also

include the two features that pyAudioAnalysis calculates about beat detection.

The task of determining the rate of musical beats in time is a rather important task,

- 49 -

3.3 : Extracting Audio Features

especially for the case of music information retrieval applications. As is described

in [41] the implementation of this library is rather straightforward, as it adopts a

local maxima detection procedure, applied on a set of short-term feature sequences.

An aggregated histogram of the time distances between successive local maxima is

also computed and its maximum element corresponds to the most dominant time

distance between successive beats. Finally, this detected value is used to compute

the BPM rate. Apart from the BPM value itself, the ratio of the maximum histogram

value by the total sum of histogram values is used as a feature, corresponding to the

overall “dominance” of the detected beat rate.

3.3.2 Feature Overview

The features are summarised in Table 3.1 and given in detail in Table A.1 in Ap-

pendix A.

- 50 -

Chapter 3 : Music Representation and Feature Extraction Techniques from Audio

Table 3.1: Audio Feature Overview

Feature Name Feature Description

Zero Crossing Rate
The rate of sign-changes of the signal during
the duration of a particular frame (for more,
see section 3.2.4.3)

Energy
The sum of squares of the signal values, nor-
malized by the respective frame length (for
more, see section 3.2.4.2)

Entropy of Energy
The entropy of sub-frames’ normalized en-
ergies. It can be interpreted as a measure of
abrupt changes (for more, see section 3.2.4.4)

Spectral Centroid
The center of gravity of the spectrum (for
more, see section 3.2.5.2)

Spectral Spread
The second central moment of the spectrum
(for more, see section 3.2.5.2)

Spectral Entropy
Entropy of the normalized spectral energies
for a set of sub-frames (for more, see section
3.2.5.3)

Spectral Flux
The squared difference between the normal-
ized magnitudes of the spectra of the two suc-
cessive frames (for more, see section 3.2.5.4)

Spectral Rolloff
The frequency below which 90% of the mag-
nitude distribution of the spectrum is con-
centrated (for more, see section 3.2.5.5)

MFCCs

Mel Frequency Cepstral Coefficients form a
cepstral representation where the frequency
bands are not linear but distributed accord-
ing to the mel-scale (for more, see section
3.2.5.6)

Chroma Vector

A 12-element representation of the spectral
energy where the bins represent the 12 equal-
tempered pitch classes of western-type music
(for more, see section 3.2.5.7)

Chroma Deviation
The standard deviation of the 12 chroma co-
efficients (for more, see section 3.2.5.7)

Beat Detection

A local maxima detection procedure, applied
on a set of short-term feature sequences. An
aggregated histogram of the time distances
between successive local maxima is also com-
puted and its maximum element corresponds
to the most dominant time distance between
successive beats.

- 51 -

3.3 : Extracting Audio Features

- 52 -

Chapter 4

Symbolic Representations of

Music and Feature Extraction

Techniques

We will now shift our focus to symbolic representations of music. These types of

representations are not concerned with the audio as a signal, but instead are focused

on higher-level information concerning musical concepts (such as notes, chords etc.)

which we will briefly describe in the following sections. Our overview of the symbolic

representations draws mainly from the work of Briot et al. [25].

4.1 Representation Strategies

4.1.1 Fundamental Symbolic Aspects

4.1.1.1 Notes

A note is a symbolic unit of musical notation, which is defined by the following

characteristics:

• Pitch, as specified by

– frequency, in Hz

– vertical position (height) on a score, or

- 53 -

4.1 : Representation Strategies

– pitch notation, which combines a musical note name, such as C, C# etc.

(what we previously referred to as a pitch class in paragraph 3.2.5.7) and

a number, usually notated in subscript, identifying the octave, normally

belonging to the [-1, 9] discrete interval.

An example is A4 which corresponds to A440, which has a frequency of 440

Hz and serves as a general pitch tuning standard.

• Duration, as specified by

– absolute value, in milliseconds (ms), or

– relative value, notated as a division or a multiple of a reference note

duration. The reference point is usually the whole note ¯ , and examples

of its divisions are the quarter note ˇ “and the eighth note ˇ “(.

• Dynamics, as specified by

– absolute and quantitative value in decibels (dB), or

– qualitative value, an annotation on a score about how to perform the

note, belonging to the discrete set pppp, ppp, pp, p, mf, f, fp, sf, ff, fff,

ffff, sfz, sfzp, from pianissimo to fortissimo.

4.1.1.2 Rests

Rests are representations of intervals of silence in a musical score. They behave much

like notes, only they do not have pitch or dynamics components. The duration of a

rest can be specified by

• absolute value, in milliseconds (ms), or

• relative value, notated as a division or a multiple of a reference note duration.

The reference point is usually the whole rest <, which corresponds to the whole

note ¯ , and examples of its divisions are the quarter rest > and the eighth rest

? .

- 54 -

Chapter 4 : Symbolic Representations of Music and Feature Extraction Techniques

4.1.1.3 Intervals

The interval between two notes is their relative distance in terms of pitch, as quan-

tized in semitones (what we defined as pitch classes in 3.2.5.7. For example, the

major third interval means that two notes are four semitones apart, the minor third

means that two notes are three semitones apart and the perfect fifth means seven

semitones apart. Intervals are the building blocks to create chords, as will be ex-

plained in Paragraph 4.1.1.4.

Intervals can also be used as a means of representation. We can consider any

melody as a time-series of deviations from a starting note, as measured by intervals

between successive notes, in semitones. For example the melody C4 G4 BZ4 would

be C4 +7 +3. This technique was introduced by Todd [42], and its main advantage

is that it is not bound by pitch range, and it’s independent of a given tonality. On

the other hands, as the author also points out, this second aspect could also prove to

be a drawback, as, in case the original tonality is somehow erroneously set, the error

would follow for the whole melodic line. Furthermore, this technique can only apply

when building monophonic melodies. Due to these limitations, this representation

is not used commonly in deep learning-based music generation architectures.

4.1.1.4 Chords

Chords are sets of at least three notes. While, conceptually, they are built by

combining intervals (e.g. the major chord is a combination of a major triad and a

perfect fifth), in terms of generative systems there are two possible representations:

• implicit and extensional, enumerating the exact notes composing it; or

• explicit and intensional, by using a chord symbol that combines the pitch class

of the root note and the type of the chord (e.g. major, minor, diminished etc.)

The extensional approach is more common in deep learning architectures, as it

disambiguates octave positioning and relative voicing of each note in the chord - the

notes of a chord are not always placed in the same way, but can also be inverted

- 55 -

4.1 : Representation Strategies

for more harmonious results. Nevertheless, some noteable architectures, such as the

MidiNet [43], use the intensional approach.

G ˇˇˇ ˇˇˇ ˇˇˇ

Figure 4.1: Three alternative positions (voicing inversions) for the C major chord

4.1.1.5 Rhythm

While rhythm is an indispensable aspect of music and its execution, it is quite hard

to define in pragmatic terms. For a conversation on the various definitions and

interpretations of rhythm, one can study the work of Fraisse [44]. This discussion

is beyond the scope of this thesis, and indeed is often overlooked by deep learning

music generation architectures, according to Briot et al. [25].

The basic unit of rhythm, or musical pulsation, is the beat. Groups of beats

are called measures and are separated by bars. The number of beats per measure

and the duration between successive beats constitute the rhythmic signature of the

measure, a.k.a. time signature or meter. Usually it is expressed as the fraction of

the number of beats within the measure to the beat duration, expressed as a division

of the duration of a whole note. Some frequent meters are 4
2
, 4

3
and 4

4
.

4.1.2 Format

As we are not dealing with signals in this type of representation, it is important

to state the various different formats with which those symbolic aspects will be

expressed in, in order to be parsed by a computer.

4.1.2.1 MIDI

MIDI stands for Musical Instrument Digital Interface, and it is a technical standard

that describes a protocol, a digital interface and connectors for interoperability be-

tween various electronic musical instruments. Using the MIDI protocol, up to sixteen

- 56 -

Chapter 4 : Symbolic Representations of Music and Feature Extraction Techniques

channels of information can be carried through a single link, between multiple in-

struments and computers. The MIDI messages contain both real-time performance

data and special control data. The protocol also defines a particular file type, the

Standard MIDI File (SMF), in which MIDI data can be stored and retrieved by

other systems. The protocol was first introduced in 1981 and standardised in 1983

by the MIDI Manufacturers Association who are maintaining and expanding upon

it to this date. [45]

MIDI messages are comprised of 8-bit “words” that are transmitted serially at

a rate of 31.25 kbit/s. The first bit of each “word” identifies whether it is a status

byte or a data byte, and is followed by seven bits of information. The two most

important messages for our concern (i.e. the expression and storing of music) are

the following:

• Note on which indicates that a note is played. This contains

– a channel number, indicating the instrument or track, specified by an

integer within the set {0,1, ..., 15}

– a MIDI note number, which indicates the pitch of the note, specified by

an integer within the set {0,1, ..., 127}

– a velocity, which indicates the dynamics of the note (as defined in para-

graph 4.1.1.1, specified by an integer within the set {0, 1, ..., 127}.

Therefore, the message “Note on, 0, 60, 50” means “On channel 1 start playing

a middle C with velocity 50”

• Note off which indicates that a note ends. In this context, velocity means

how fast the note is released. For example, the message “Note off, 0, 60, 20”

means “On channel 1 start playing a middle C with velocity 20”.

The note events are embedded into track chunks, which are data structures that

contain a delta-time value specifying the timing information and the event itself.

The delta-time value is usually a relative metrical time, which is the number of ticks

from the beginning. The number of ticks per quarter note are defined in a reference

in the file header.

- 57 -

4.1 : Representation Strategies

We give an example of a midi file, converted to readable ASCII and to standard

musical score, in Figures 4.2 and 4.3. The division is 480 ticks per quarter note. It

Figure 4.2: Excerpt from beginning of the song “Same Old Lang Syne” in MIDI format

has been argued in [46] that direct encoding of MIDI messages does not efficiently

preserve the notion of multiple notes being played at once through the use of multiple

tracks. Due to the nature of their experiment, where they concatenated tracks end-

to-end, they conclude that it would be harder for such a model to learn vertical

relationships across different tracks. They opted for a piano roll format instead,

which comes with its own limitations.

4.1.2.2 Piano Roll

This representation is inspired by the automated pianos of the 19th century, a

continuous roll of paper with holes punched into it. Each hole represents a piece

of note control information to trigger a specific note on the piano. The length of

the hole corresponds to the duration of the note, while its location in the other

dimension corresponds to the pitch. Its digital counterpart has pretty much the

same logic, and an example is shown in Figure 4.4. The y-axis is the pitch, and the

- 58 -

Chapter 4 : Symbolic Representations of Music and Feature Extraction Techniques

Figure 4.3: Excerpt from beginning of the song “Same Old Lang Syne” in musical score

x-axis is the time.

Figure 4.4: A piano-roll representation, as exported from a Digital Audio Workstation

The piano roll is quite common in Deep Learning architectures, as it makes it

easier to encode polyphony across multiple instruments [25]. Nevertheless, it has

a major limitation compared to MIDI, as there is no note-off information. This

makes it impossible to distinguish between a long note and many small notes played

repeatedly.

- 59 -

4.1 : Representation Strategies

There are multiple solutions to this conundrum. The most straight-forward is

to use a special hold symbol “ ” in place of a note to specify when a previous note

is held, which has been used in the DeepBach system [47]. Another is to divide

the size of the time step, which is the unit of time granularity in a deep learning

system - and typically is defined as the shortest note duration in the data set - by

two, and mark a note ending with a special tag. This approach has been followed

in [48]. Alternatively, the new note beginning can be marked instead of the ending,

as in [42]. Finally it is possible to introduce a hold/replay representation as a dual

representation of the sequence of notes, a method used in [49] where a replay matrix

is introduced.

It seems that the approach followed by Hadjeres et al. [47] has a few advan-

tages over the other solutions, as it is simple and there is no need to tamper with

time granularity and complex notations. The authors also state that this represen-

tation technique is the principal reason for their good results. Nevertheless there

is a limitation, as this can only be applied to monophonic melodies, which implies

that the representation of polyphony should be split to multiple tracks in order to

accommodate this.

4.1.2.3 Melody as Text

A common example of melody as a text is the ABC notation, which was designed

primarily for folk and traditional tunes of Western European origin (such as En-

glish, Irish and Scottish) which can be written on one stave in standard classical

notation [50]. The main idea is to use tokens instead of notes, applying the following

conventions:

• A letter is used for each pitch class of a note (e.g. A for La)

• The pitch is encoded with the following convention: A corresponds to A4 and

a to an A one octave up. Lower octaves are reached by using commas and

higher octaves are written using apostrophes; each extra comma/apostrophe

lowers/raises the note by an octave.

• The duration of a note is encoded by simply putting a multiplier or a divider

- 60 -

Chapter 4 : Symbolic Representations of Music and Feature Extraction Techniques

after the letter. These should be used in conjunction with the default note

length, marked at the top of the file. If no multiplier or divider is provided,

than the default length should be used. Thus if the unit note length is 1/8, A

is an eighth note, A2 a quarter note, A/2 a sixteenth note etc.

• measures are separated by “|”

An example of a song encoded in ABC notation is provided in Figure 4.5, while

it’s score can be seen in Figure 4.6

Figure 4.5: The traditional tune Speed the Plough in ABC Notation

Figure 4.6: The traditional tune Speed the Plough as standard score

The main drawback of this system is that it is very hard to encode polyphonic

melodies. According to [50] multi-voice music is under active review, and is intended

that the syntax will be finalised in abc 2.2.

4.1.2.4 Chords as Text

While the usual way to represent chords extensively is through simultaneous notes in

a (vertical) vector, an alternative, named Chord2Vec, has been proposed by Mad-

jiheurem et al. [51] which inverts the representation to a horizontal sequence of

- 61 -

4.1 : Representation Strategies

constituent notes. The chords are then separated by a special symbol, similar to

sentence markers in a natural language processing context. This representation has

been used to develop a new architecture named RNN Encoder-Decoder.

4.1.2.5 Markup Language

Another type of text-based representation for music is based on markup languages

like XML. The open standard MusicXML [52] is a markup language designed to

support interchange between musical notation, performance, analysis, and retrieval

applications, and is intended for common western musical notation from the sev-

enteenth century onward, including both classical and popular music. This type

of representation is mostly aiming towards the interoperability of musical software,

and it is therefore quite rich and verbose.

According to Briot et al. [25] this verbosity makes it inappropriate for machine

learning tasks as it would create too much overhead and bias. Nevertheless, accord-

ing to Cuthbert et al. [53], the biggest obstacle to moving beyond MIDI has been the

lack of feature extraction software that can read these formats and use their added

information. They, therefore, have created a feature extraction toolkit for symbolic

music representations named music21 in [54]. Indeed Giraldo and Ramirez [55] have

proposed an algorithm that generates expressive jazz performances from inexpressive

music scores, using scores in MusicXML format.

4.1.2.6 Lead Sheet

The lead sheet is a very common format of representation for popular music (jazz,

pop, blues etc.). A typical lead sheet is usually one or two pages long and includes

the score of the song’s melody and the corresponding chord progression in an inten-

sional (or explicit) notation. Additionally, some further metadata, such as lyrics,

performer, composer, style and tempo are usually present. Variations of the lead

sheet have been utilised in some deep architectures, such as the MidiNet [43] and

the work on Blues generation by Eck and Schmidhuber [48], and a notable collection

of lead sheets for jazz music has been assembled by the Flow Machines project [56].

- 62 -

Chapter 4 : Symbolic Representations of Music and Feature Extraction Techniques

4.1.3 Temporal Scope and Granularity

In order to transcribe music in any symbolic representation, it is very important to

make some considerations on the aspect of time. The most fundamental one is the

temporal scope, i.e. the way the data will be interpreted by the model with respect

to time:

• Global, wherein the temporal scope is the whole musical piece. The model

processes the input and produces the output in a single step.

• Time Step, wherein the temporal scope is a local time slice of the musical

piece, corresponding to a specific temporal moment. The granularity of the

processing by the model is a time step and generation is iterative, as this is the

most common choice for recurrent neural networks. The time step is usually

set to the shortest note duration, but it may be larger.

• Note Step, wherein there is no fixed time step, and the granularity of the model

is the note. This approach was proposed by Mozer [57] and was also later used

by Walder [58]

It is worth noting that in the case of a global temporal scope, the musical content

would have a fixed length, while in the other two choices the output has an arbitrary

length, because generation is iterative.

When either a global or time step temporal scope is used, the granularity of

the time step must be defined. Usually, the time step is set to a relative duration,

which typically is the smallest duration of a note in the corpus. This ensures that

all notes will be represented at their proper duration, with a whole number of time

steps. On the other hand, this also increases the number of time steps that need to

be processed, regardless of the duration of actual notes. Another strategy is setting

the time step to a fixed absolute duration (e.g. 15 milliseconds). This allows for

more expressiveness when capturing human performances [59]. As we identify in

section 4.2.1, the feature extraction library that we used has some difficulty parsing

the time step granularity.

- 63 -

4.1 : Representation Strategies

4.1.4 Encoding Strategies

Having described in detail the formatting issues of symbolic representations in sec-

tion 4.1.2, it is important to also describe the possible encoding strategies and

challenges when mapping the representation into a set of inputs.

Possible types of a variable in this context include continuous (e.g. the frequency

pitch in Hertz), discrete (e.g. the pitch of a note as a MIDI note number) and

Boolean variables (e.g. a note end indication). The most straightforward way to

encode any of these, is to directly encode them as a scalar in the real number domain.

This strategy is called value encoding.

The above strategy can’t work in the case of categorical variables (e.g. the

instrument that is used in the track). In that case, we usually encode these variables

as vectors, with a cardinality equal to the set of possible values. The value of the

corresponding element in the vector is set to 1, and all other values to 0. This

strategy is called one-hot encoding. This strategy is often used to encode discrete

integer variables, such as MIDI note numbers.

A challenge of one-hot encoding is handling polyphony. Ideally, one would prefer

that a line in the input would correspond to a single time step. Nevertheless, if one-

hot-encoding was employed, it would only be possible to encode one note at a time.

In the case of polyphony, one would have to consider:

• many-hot encoding where all elements of the vector corresponding to the notes

of the time step are set to 1.

• multi-one-hot encoding where different tracks are considered and a one-hot

encoding is used for each different track

• multi-many-hot encoding which is a multi-voice representation with simulta-

neous notes for at least one or all of the voices.

In some contexts, it might even be preferable to use binning techniques to trans-

form a continuous variable into the discrete domain. Such techniques involve divid-

ing the domain in smaller intervals (bins) and replacing each bin (and its values) by

- 64 -

Chapter 4 : Symbolic Representations of Music and Feature Extraction Techniques

a value representative, which is often the central value. The same technique can be

used to reduce the cardinality of the discrete domain as well.

According to Briot et al. [25] one-hot encoding is the most common strategy

for symbolic representation, and value encoding is used very rarely. The advantage

of value encoding is its compact representation at the cost of sensibility because

of numerical operations. The advantage of one-hot encoding is its robustness (due

to the fact that it’s in the discrete domain), at the cost of high cardinality and

therefore a potentially higher number of inputs. It is also common that one-hot

encoding is also used in the output of generative architectures, as it makes it easier

to use a softmax activation function, corresponding to a classification task between

the possible values of the categorical value.

4.2 Symbolic Feature Extraction

Having described in detail the symbolic representation and encoding strategies

in the previous sections, we now shift our focus toward the extraction of features.

While the encoding techniques are mostly useful for generative tasks, in the context

of classification it is most common to extract even higher-level features. We turn to

Cuthbert et al. [54] and the music21 package1

4.2.1 Caveats on Symbolic Feature Extraction with music21

In our feature extraction process, we use the music21 Python package to parse

and translate MIDI files to MusicXML. This parsing process often results in errors,

mostly in regards to temporal synchronisation and part instrumentation. It is often

the case that the MIDI files that exist freely in the Web contain corrupt sections, or

do not have the proper numbering system for instrument selection. Given the fact

that we are using music21 in conjunction with MuseScore 32 for MusicXML

compiling, we realised that in order to resolve this error, we had to make consid-

erable changes to the way that the library is handling multi-track midi files. We

1http://web.mit.edu/music21/
2https://musescore.org/en

- 65 -

4.2 : Symbolic Feature Extraction

communicated with the people from Cuthbert Lab who maintain this library, but

the refactor could not be completed at the time of writing this.

In the following sections, the feature extraction process is described and designed

in order to work around this issue. We have decided to do our best to minimize

these shortcomings from our end, without altering any code from the library itself,

and let the models decide which features carried meaningful information.

Another issue with the library is that it is not optimised for speed, making the

extraction process take a lot of time. We have calculated that it took around 6

minutes per MIDI file in our machine, which made the feature extraction process

quite expensive in terms of computational time.

4.2.2 Extracting Symbolic Features

While the basis for our extraction process is the music21 library for computational

musicology, we have created a wrapper around it, in order to expose all the necessary

classes, functions and parameters that we needed for our own implementation. We

named this class SymbolicFeatureExtractor.

4.2.2.1 Parsing the MIDI data

As we found problems with the implementation of MIDI parsing with music21,

we decided to assist the process by doing some pre-processing using the mido3

library. We have identified that the main library had an issue with non-tuned

percussion instruments, as they were interpreted as regular tuned instruments, and

their messages counted as pitches, essentially destroying all the melodic interval

features. We therefore removed them from each midi file, by parsing the track

names with mido.

3https://mido.readthedocs.io/en/latest/

- 66 -

Chapter 4 : Symbolic Representations of Music and Feature Extraction Techniques

4.2.2.2 Combining Feature Extraction classes

The music21 library has two main groups of feature extractors. One is based

on jSymbolic4, a Java-based program for computational musicology. The other

group is native feature extractors, developed in Python for music21.

The categories of features of jSymbolic are described in the following para-

graphs, drawing from the original publications of McKay et al. [60]. The native

group of feature extractors contains a small collection of handcrafted features that

mostly fall into the same categories as jSymbolic. Some of them, like Quality

Feature improve upon jSymbolic’s implementation of the same concept. In these

cases, we accept the native class by default, and skip the jSymbolic version of the

feature.

For an overview of all the feature categories, please consult Table 4.1. The full

list of features is given in Table A.2 in Appendix A.

Table 4.1: Symbolic Feature Overview

Feature Name Feature Description

Pitch Statistics
Pitch variety and tonality of a piece (for
more, see paragraph 4.2.2.2)

Melodies and Horizon-
tal Intervals

Melodic variation of a piece (for more, see
paragraph 4.2.2.2)

Chords and Vertical
Intervals

Harmonic movement and chord building (for
more, see paragraph 4.2.2.2)

Rhythm
Rhythmic patterns, measures and rhythmic
changes (for more, see paragraph 4.2.2.2)

Instrumentation
Choice and prevalence of instruments, not in-
cluded in our implementation (for more, see
paragraph 4.2.2.2)

Texture
Voice independence (for more, see paragraph
4.2.2.2)

Miscellaneous Fea-
tures

Features based on corpus metadata or oth-
erwise not falling within the other categories
(for more, see paragraph 4.2.2.2)

4http://jmir.sourceforge.net/

- 67 -

4.2 : Symbolic Feature Extraction

Pitch Statistics These features describe the amount of co-occurrence between

various pitches, in terms of both absolute pitches and pitch classes. Through these,

they also flag the amount of tonality in a piece (how much it follows rules of tonal

music), the range of pitches in the piece and how much variety in pitch there is.

Melodies and Horizontal Intervals These features examine the kinds of melodic

intervals that are present, as well as the amount of melodic variation of the piece.

Furthermore the melodic contours are measured, as well as common phrases.

Chords and Vertical Intervals These features concentrate on vertical intervals,

the types of chords they represent, as well as the presence and velocity of harmonic

movement.

Rhythm These features are calculated based on the time intervals between note

attacks and the duration of individual notes, in order to identify rhythmic patterns

and variations. It contains features about rhythm measure, both on a musical piece

level and on a bar-by-bar level, for more complex pieces.

Instrumentation These features are, in theory, relevant to the types of instru-

ments that are present, and the emphasis that is given to each instrument. In

our implementation we found these features to be weaker, as they are dependent on

accurately parsing track meta-data from the MIDI files, which we have already iden-

tified as problematic. We have therefore chosen to exclude them from the feature

extraction process

Texture These features compute the level of polyphony within the piece. They

also measure the amount of interaction between those voices, identifying voice inde-

pendence or equality.

Miscellaneous Features The native classes also include some features based on

the metadata of the musical piece, such as Composer Popularity and Language

Feature, as well as a few features specific to classical music, such as Landini Cadence.

- 68 -

Chapter 5

Video representation and Feature

Extraction Techniques

In this chapter we focus on the third and final modality of interest for the task at

hand, which is video. We provide the necessary definitions concerning video as a

sequence of images, and we describe the fundamental concepts that are necessary

to extract features for our task. We start from more basic features, such as color

statistics, and proceed to more complex ones, based on spectral and filtered rep-

resentations of the signal, and finally we incorporate some deep features based on

pre-trained models for object and face detection.

5.1 Video Processing Fundamentals

5.1.1 Video Signals and Images

A video signal is defined in [2] as a one-dimensional analog or digital signal varying

over time, whose spatiotemporal contents represent a sequence of images (or frames)

according to a predefined scanning convention. Scanning is a method that converts

optical images into electrical signals. An analog video signal refers to a 1D electrical

signal f(t) obtained by sampling the original optical signal f(x, y, t) in the vertical

and temporal dimensions, whereas a digital video signal is also sampled along the

horizontal axis of each frame, as depicted in Figure 5.1. According to [61], digital

- 69 -

5.1 : Video Processing Fundamentals

video is obtained either by sampling an analog video signal f(t) or by directly

sampling the three-dimensional space–time intensity distribution that is incident on

a sensor. In either case, what results is a time sequence of two-dimensional spatial

intensity arrays or equivalently a three-dimensional space–time array.

Getting into details on the scanning process, and the distinctions between analog

and digital signals is beyond the scope of this Thesis, but we will briefly present some

fundamentals, in order to establish a common language for the features that will be

explained in the following sections. For our convenience we will assume that we are

dealing only with digital signals, either directly from a digital camera, or through

sampling a raster scan and performing analog-to-digital conversion (ADC) (to be

explained in paragraphs 5.1.1.1) and 5.1.1.3. We will also assume batch processing,

instead of streams, i.e. the video signal is known in advance in its entirety.

Figure 5.1: Sampling in the horizontal, vertical and temporal dimensions [2]

5.1.1.1 Scanning, Frame & Refresh Rate

Scanning is the most basic method of conversion of optical images to electrical

signals, and is common within all video systems. The camera’s electronic sensor is

moving across the image, in a pattern known as raster and converts the differences

in brightness to differences in voltage. A complete scan of the image is called a

frame.

There are two main ways to perform scanning, progressive and interlaced scan-

ning, with their main difference being the way that the sensor returns to the edge

of the frame, i.e. the retrace of the sensing spot. The nuances between those two

- 70 -

Chapter 5 : Video representation and Feature Extraction Techniques

methods are beyond the scope of analysis, but it suffices to say that progressive scan

is a more natural way of scanning that is most common in recent video systems,

whereas interlaced scanning was introduced to accommodate limitations of early

television [2].

The rate at which the image is scanned is called frame rate and is measured in

frames per second (fps). In order for a series of images to be perceived as continuous

by the human eye, the frame rate needs to be higher than what is called critical

flicker frequency. In order to further optimize this “illusion” for the human eye,

the period during which the reproduced image is absent from the display needs to

be minimized. To that end, the image is flashed at a rate that is higher than the

one necessary. This rate is called flash, or refresh rate. Typically for progressive

scan systems this is equal to the frame rate, whereas in interlaced scan systems it

is double the frame rate.

5.1.1.2 Aspect Ratio

Aspect Ratio is the ratio of frame width to height. In digital videos, this is usually

defined in terms of pixels (e.g. 640 x 480 or 1920 x 1200).

5.1.1.3 Digital Videos and Analog-to-Digital Conversion

When the video originates from a digital camera, there is no need for a conversion

from analog to digital, as it is performed at the imager. If, however, the video is

captured by an analog camera (such is the case in most films) an Analog-to-Digital

Conversion (ADC) step is necessary. For the scope of this thesis, it suffices to say

that it includes an antialiasing (low-pass) filter, a sampling step (which samples

pixel values along a horizontal line), a quantizing step and an encoding step.

As explained by Marques [2] a digital video signal can be characterized by

• The frame rate (fs,t)

• The line number (fs,y)

• The number of samples per line fs,x

- 71 -

5.1 : Video Processing Fundamentals

From the above quantities, we can find

• The temporal sampling interval or frame interval ∆t = 1
fs,t

• The vertical sampling interval ∆y = PH
fs,y

, where PH is the picture height

• The horizontal sampling interval ∆x = PW
fs,x

where PW is the picture width

Another important factor is the number of bits used to represent a pixel value,

Nbl. For each color component, 8 bits are needed. Therefore, a regular RGB (Red

Green Blue, see section 5.1.2) representation requires Nb = 24.

Based on the above, the data rate of a digital video, R, can be determined as

R = fs,t · fs,y · fs,x ·Nb (5.1)

Therefore a typical video using RGB (24 bits per pixel), with an aspect ratio of

1920x1080 (FullHD) and a frame rate of 50 fps, will result to a data rate of 2.5 GB

per second. In order to decrease that, further compression techniques are applied.

5.1.2 Color

It is beyond the scope of this Thesis to touch upon the complexities and challenges

of color encoding during the early days of video. There are three principal quantities

that play a role in the encoding of video:

• Intensity : the amount of energy that flows from the light source, measured in

watts.

• Luminance: the amount of information perceived by an observer of a light

source, measured in lumen.

• Brightness : the subjective perception of luminous intensity.

For the purposes of data acquisition and feature extraction, it suffices to understand

the two common ways of representing color (Color Models):

- 72 -

Chapter 5 : Video representation and Feature Extraction Techniques

• The RGB color model, which is based on a Cartesian coordinate system, whose

axes represent the three primary colors of light (Red, Green and Blue), nor-

malised to the [0,1] range. When images are stored using the RGB model

three values per sample are needed, one for each of the three colors. The

combinations can be seen in Figure 5.2.

• The HSV color model, which is based on the human perception of color. Its

foundation is the psychophysics of color, and is obtained by looking at the RGB

color cube along its main diagonal. The name of the model stems from Hue-

Saturation-Value, with Hue being the color tone, Saturation being the purity

of the color, and Value being the intensity of light reflected from objects. If

viewed as a cylinder, such as the one in Figure 5.3 hue represents the angle on

the cylinder’s circumference, saturation is the distance from the central axis

of the cylinder, and value is the position on the vertical axis. The advantage

of this way of representing color is that it is closer to the human perception.

Figure 5.2: The RGB color model.
Courtesy of Wikimedia Commons

Figure 5.3: The HSV color model.
Courtesy of Wikimedia Commons

In video encoding, another way of representing is used; Y’CrCb needs three values

per sample: one value (Y’) represents luma, i.e. the gamma-corrected luminance of

the pixel, one value (Cr) is the difference between the red component and a reference

value, and the third value (Cb) is the difference between the blue component and

a reference value. The advantage of Y’CrCb over RGB, according to [2] is that it

is less sensitive to changes in color than in luminance, therefore is more suitable for

sub-sampling and compression, without sacrificing much in terms of quality.

- 73 -

5.2 : Flow Features and Shot Detection

5.2 Flow Features and Shot Detection

The pattern of apparent motion of the objects in an image between two consec-

utive frames, is named Optical Flow. This perception of motion can either stem

from the movement of the object itself within the 2D frame, or from the movement

of the camera.

In order to understand the mathematical definition of optical flow [62], let us

consider a pixel I(x, y, t) in the first frame, which moves by distance (dx, dy) in the

next frame, which is taken after dt time. If the pixel is exactly the same, and its

intensity has not changed, we can claim that

I(x, y, t) = I(x+ dx, y + dy, t+ dt) (5.2)

If we then take the Taylor series approximation of the right-hand side, remove the

common terms and divide by dt, we get the following equation, which is called

Optical Flow equation:

fxu+ fyv + ft = 0 (5.3)

where

fx =
∂f

∂x
; fy =

∂f

∂y
;u =

dx

dt
; v =

dy

dt
(5.4)

To extract the features, the implementation of OpenCV that was used, is based

on the Lucas-Kanade method of solving the above equation. The method, pro-

posed in [63], is using a 3x3 area around the point, and makes the assumption that

neighbouring pixels will have the same motion. The equation, after applying a least

square method, becomes:

u
v

 =

 ∑
i f

2
xi

∑
i fxifyi∑

i fxifyi
∑

i f
2
yi

−1 −∑i fxifti

−
∑

i fyifti

 (5.5)

In Figure 5.4 we demonstrate the flow features extracted from the frame of a film

in our data-set. Further to the Optical Flow features, we also utilise a threshold on

transformations of the frames, to detect large scale changes between frames. These

- 74 -

Chapter 5 : Video representation and Feature Extraction Techniques

Figure 5.4: The flow features extracted from a frame, using OpenCV

transformations include gray-scale versions of the frames, optical flow and color

value changes. These changes are interpreted as changes of the shot, and kept as

Shot Detection features. The thresholds are applied in the order shown in Listing

5.1.

Listing 5.1: Shot Detection function

1 def shot_change(mean_value_of_angles,

2 grayscale_difference,

3 color_diff,

4 current_shot_duration):

5 count = 0

6 if ((mean_value_of_angles > 0.08)):

7 count += 1

8 if (grayscale_difference > 0.65):

9 count += 1

10 if (color_diff[-1] > 0.02):

11 count += 1

12

13 if (count>=2) and (current_shot_duration > 1.1):

14 return True

15 else:

16 return False

5.3 Object Detection

Another subset of the features that have been included in our feature library, are

related to the detection of objects. We briefly describe the methods that have been

- 75 -

5.3 : Object Detection

applied in the following sections.

5.3.1 Face Detection

A pre-trained Machine Learning model called Haar Cascade Classifier is used to

detect faces. It is based on a method proposed in [64] and extracts Haar features

by subtracting the sum of pixels for areas of the image, as shown in Figure 5.5. The

classification algorithm is based on Adaptive Boosting (AdaBoost), which calculates

the weighted sum of many weak classifiers.

Figure 5.5: Haar Cascade Features

The “cascading” part of the model’s name is owed to the fact that features are

extracted in groups and the classification is applied in sequence, only if the first

classifier fails.

5.3.2 Single Shot MultiBox Detector

In order to detect objects within frames, we made use of a pre-trained Deep Learning

model. Based on the method described in [65] a pre-trained Convolutional Neural

Network is used to detect objects of 92 classes. The implementation that we used is

derived from a ResNet-50 model (instead of the VGG applied in the paper), which

is trained on the COCO data-set1 . The code for applying the model, as well as an

1A popular data-set for object detection, containing photos of multiple objects from multiple
angles. More information can be found in the official website, at https://cocodataset.org/

- 76 -

Chapter 5 : Video representation and Feature Extraction Techniques

explanation on the specifics of the model, are found in PyTorch Hub2. An example

of the model’s prediction for a particular frame containing an airplane, is shown in

Figure 5.6.

Figure 5.6: Single Shot MultiBox Detector for object detection using PyTorch

5.4 Extracting Video Features

Based on the aspects described in this chapter , we have used the modules

found in the multimodal movie analysis3 library in Python, which in turn

is based in openCV4 and pyTorch5, to extract a selection of features. The library

is an extension of the work that was done for [66]. In order to use this in our

own context, we have created the class VideoFeatureExtractor which wraps

around this module to extract features. The features are summarised in Table 5.1

and given in detail in Table A.3 in Appendix A.

2https://pytorch.org/hub/nvidia_deeplearningexamples_ssd/
3https://github.com/tyiannak/multimodal_movie_analysis
4https://github.com/opencv/opencv
5https://pytorch.org/

- 77 -

5.4 : Extracting Video Features

Table 5.1: Video Feature Overview

Feature Name Feature Description

Color Histograms
Histograms for both RGB and HSV color
schemes(for more, see section 5.1.2)

Flow Features
Angle changes, movements of objects and
shot detection (for more, see section 5.2)

Object Detection and
Face Detection

Application of SSD and Haar Cascade clas-
sifiers (for more, see section 5.3)

- 78 -

Chapter 6

A Classification Experiment

In the previous chapters, we discussed in depth the nature of each of the three

modalities that are relevant to our task. We reviewed the properties of each one,

and explained our feature extraction process. Further to that, we described in

detail our proposed method for a data collection pipeline, as well as our specific

implementation and its results. Having collected the data, we will now put them to

the test, by experimenting with building a classifiers.

In the following sections, we will first describe the data-set we worked with, our

methodology for cross validation and train-test splits, and a baseline classifier. We

will then experiment with a few dimensionality reduction strategies and different

data pre-processing techniques. Finally, we will perform hyper-parameter tuning to

the most promising settings, and experiment with a voting ensemble.

All experimentation is done using Python and sklearn.

6.1 Exploring the data-set

6.1.1 Dimensions

The data-set is comprised of 136 data points in total. These points are split in

two classes “match” and “no-match”, depending on whether they are real exam-

ples of video soundtracks that come from the process described in section 2.5 or

hand-picked mismatched examples (as described in paragraph 2.5.2.5). The goal

- 79 -

6.1 : Exploring the data-set

Table 6.1: Statistics for clips per film and the percentage clips that belong to the positive
class per film

Positive Rate

per Film

of Clips

per Film

of Positives

per Film

mean 0.523232 4.121212 2.060606

std 0.182333 3.846732 1.951592

median 0.500000 3.000000 2.000000

of the classifier is to discriminate the matching soundtracks from the mismatched,

constructed examples.

Overall, the data-set is balanced, as there are 68 matches and 68 fake examples.

In Figure 6.1 we demonstrate the distribution of clips per video, and how the positive

class is allocated within each video. We notice that, while the unweighted mean in

the data-set is exactly 50%, if we group the clips by originating film, the baseline

is slightly increased. Nevertheless, Table 6.1 demonstrates that the median number

of clips per film is 3, and that the mean rate of positive clips per film is 52%.

Therefore, the method of cross-validation by leaving one film out each time seems

to make sense, and our baseline threshold against pure chance (within the sample

of data that is available) is 52%.

Figure 6.1: The distribution of classes and clips per film

The feature extraction process that was described in sections 3.3, 4.2.2 and 5.4

results in 455 attributes per data point. More specifically there are:

• 138 features from the audio content

• 73 features from the symbolic content (MIDI)

- 80 -

Chapter 6 : A Classification Experiment

• 244 features from the visual content

6.1.2 Attribute Completeness and Scaling

In order to be able to apply further statistical tests, we first test the completeness

of the features. It seems that there is no serious issue with data completeness, as

there are no columns with more than 10% empty values, and only three features

that had 5% of empty values. They all come from the symbolic modality:

• AverageTimeBetweenAttacksForEachVoiceFeature

• AverageVariabilityOfTimeBetweenAttacksForEachVoiceFeature

• InitialTimeSignatureFeature

The completeness issue is mild enough that we will only use a simple imputation

technique, using the mean value of the column. We wouldn’t expect to greatly affect

the classification results by using more complex imputation techniques.

The maximum value in the data-set is 8105.1424, while the minimum value is

-28.57613. The mean value in the data-set is 10.0. This shows us that there are big

outliers and potential scaling issues in our dataset. We address this issue for the

test that ensue, by applying a simple scaling method1 which brings each feature in

the [0,1] range:

Xscaled = (X −Xmin)/(Xmax −Xmin) (6.1)

There are 10 columns whose values are all zero. They come from mostly from

the set of object detection features, therefore we expect that to be volatile to the

diversity of the visual content. As expected, there are also three columns from the

symbolic domain, and these mostly concern MIDI file metadata, which is probably

connected to the issues we identified with how music21 parses these. The full list

is as follows:

• delta chroma 8 mean

1sklearn.preprocessing.MinMaxScaler

- 81 -

6.1 : Exploring the data-set

• QuintupleMeterFeature

• ComposerPopularity

• LanguageFeature

• outdoor freq

• sports freq

• outdoor mean confidence

• sports mean confidence

• outdoor mean area ratio

• sports mean area ratio

6.1.3 Attribute Relevance

We run a Spearman correlation test, which is a non-parametric test for statistical

dependence between two variable, between all the features and the class. We sort

that list based on the absolute value of the correlation, and collect the 20 features

which rank the highest. We collect these in Table 6.2. It is worth noting that

although the visual features are much more than those from the other two modalities

combined, none of them belong in the top 5% of features with the highest monotonic

correlation with the target variable. While this is not a definitive measure of feature

importance, this observation could perhaps lead to further improvements in the data

extraction process in the future.

We also performed a mutual information test between each (scaled) feature

and the target variable, using a method2 that relies on nonparametric methods

based on entropy estimation from k-nearest neighbors distances. This test yielded

162 features with non-zero mutual information with the target. Out of these,

only nine are from the visual modality, and they all come from the object de-

tection group: accessory freq, sports freq, appliance freq, outdoor mean confidence,

2sklearn.feature selection.mutual info classif

- 82 -

Chapter 6 : A Classification Experiment

Table 6.2: Features with the highest absolute value of Spearman’s correlation coefficient
with the target variable.

Feature Name Absolute Spearman Correlation

chroma 7 std 0.268402

delta chroma 7 std 0.248361

RelativeStrengthOfTopPitchClassesFeature 0.247611

chroma 7 mean 0.234875

delta energy entropy mean 0.228958

delta chroma std std 0.200790

delta chroma 10 std 0.194607

VariabilityOfNoteDurationFeature 0.185802

RelativeStrengthOfTopPitchesFeature 0.184303

mfcc 3 mean 0.182805

chroma std mean 0.182245

delta chroma 3 mean 0.172250

chroma 9 mean 0.170820

chroma 3 mean 0.165761

MinorTriadSimultaneityPrevalence 0.163337

beat conf 0.161266

delta chroma 9 std 0.160145

MelodicTritonesFeature 0.159452

chroma std std 0.154717

DiminishedTriadSimultaneityPrevalence 0.152955

kitchen mean confidence, furniture mean confidence, electronic mean confidence, in-

door mean area ratio, appliance mean confidency.

This is a bit worrying, as these features are very specific to the videos that were

used, and we would expect them to be volatile to the types of video clips that were

extracted during our collection process. If in the future a larger and more diverse

data-set is collected, we would expect the lower-level visual features (such as color

histograms) or flow features to also become more important.

6.2 Train-Test Split Methodology

Given the length of our data-set, we would need some form of cross validation

in order to get the best possible results from this small set of data. At the same

time, we want to avoid the danger of overfitting, by including clips extracted from

- 83 -

6.3 : Models tested

the same video source in train-test splits. We therefore decided to create splits that

always include all clips that come from the same film in either the training set, or

the test set.

Ideally we would hold out videos from a few movies, in order to create a final

held-out test set. As the video clips are originated from only 33 films, there were

only 33 possible folds that we could create, so holding some of these films for a

final test set was not possible. Knowing that this is not the best solution, we

decided to instead use the relevant method3 in sklearn, create the folds and store

the predicted class, the probability of the prediction and the real value. We then

computed the metrics of interest using all the validation set predictions. Scaling,

imputation and decomposition techniques were fitted to the training set of each fold.

An issue that we identified with this method is that whenever the held-out film

has a lot of relevant clips, the results are significantly affected. We would expect

this volatility to decrease as the data-set size increases.

In order to perform hyper-parameter tuning, we took the most promising settings

and compared them against each other, using the Leave-One-Group-Out method on

the whole data.

6.3 Models tested

We tested a few classification algorithms, from various model families. Given

the length of the data-set, neural network algorithms were deemed inappropriate.

The default settings of each algorithm are described below:

• Decision Tree (DT): maximum depth = 4, criterion = gini

• Logistic Regression (LR): solver = liblinear

• k Nearest Neighbors (kNN): number of neighbors = 3, weights = uniform

• Support Vector Machines (SVM): kernel = RBF, C = 1, gamma = auto

• Random Forest (RandF): number of trees = 100, maximum depth = 1

3sklearn.model selection.LeaveOneGroupOut

- 84 -

Chapter 6 : A Classification Experiment

• Bagged Trees (BTr): base estimator = Decision Tree with maximum depth

= 1 and criterion = gini

• AdaBoost (AdaB): base estimator = Decision Tree with maximum depth =

1 and criterion = gini

• XGBoost (XGB): all parameters were left to their automatic default values.

• Näıve Bayes (NB): no hyper-parameters were tuned

• Extra Trees (ExTrees): no hyper-parameters were tuned

• Gradient Boosting Ensemble (GradBoost) no hyper-parameters were tuned

6.4 Baseline Results

Before attempting any optimisation, we test the algorithms in their default set-

tings. Imputation and scaling are done using the simple imputation and scaling

techniques described in section 6.1.2. The Näıve Bayes classifier is the winner with

57% mean average and 66% f1 measure. The results are summed up in Table 6.3

and Figure 6.2.

Table 6.3: Baseline Results

DT LR kNN SVM RandF BTr AdaBoost XGBoost GradB ExTr NB

accuracy 0.5 0.43 0.53 0.41 0.46 0.42 0.56 0.49 0.53 0.51 0.57

precision
0 0.5 0.43 0.53 0.43 0.47 0.43 0.56 0.49 0.52 0.51 0.65

1 0.5 0.43 0.53 0.38 0.46 0.41 0.56 0.48 0.54 0.53 0.55

recall
0 0.6 0.43 0.54 0.56 0.53 0.49 0.56 0.60 0.66 0.72 0.32

1 0.4 0.44 0.51 0.26 0.40 0.35 0.56 0.37 0.40 0.31 0.82

f1 - measure
0 0.55 0.43 0.54 0.49 0.50 0.46 0.56 0.54 0.58 0.60 0.43

1 0.44 0.44 0.52 0.31 0.43 0.38 0.56 0.42 0.46 0.39 0.66

6.5 Experiments with scaling

In the following sections, we conduct a series of experiments around feature

scaling, and compare the results to the baseline MinMax scaling technique.

- 85 -

6.5 : Experiments with scaling

Figure 6.2: Baseline Results: ROC curve, Precision Recall Curve, Confusion Matrix

6.5.1 Standardisation

In this setting we used the Standard Scaler4 of Scikit, which removes the mean and

divides with the standard deviation of each feature. We notice that this deteriorates

the performance of most classifiers, giving the first place to AdaBoost, with 56%

accuracy and f1-measure. We summarise the results in Table 6.4 and Figure 6.3.

Table 6.4: Scaling Setting 1: Using the StandardScaler

DT LR kNN SVM RandF BTr AdaBoost XGBoost GradB ExTr NB

accuracy 0.5 0.46 0.49 0.47 0.46 0.42 0.56 0.49 0.53 0.51 0.55

precision
0 0.5 0.46 0.49 0.48 0.47 0.43 0.56 0.49 0.52 0.51 0.62

1 0.5 0.46 0.49 0.46 0.46 0.41 0.56 0.48 0.54 0.53 0.53

recall
0 0.6 0.49 0.47 0.63 0.53 0.49 0.56 0.60 0.66 0.72 0.26

1 0.4 0.44 0.51 0.31 0.40 0.35 0.56 0.37 0.40 0.31 0.84

f1 - measure
0 0.55 0.47 0.48 0.54 0.50 0.46 0.56 0.54 0.58 0.60 0.43

1 0.44 0.45 0.50 0.37 0.43 0.38 0.56 0.42 0.46 0.39 0.65

6.5.2 Normalization Using the L2 norm

In this setting, we use sklearn’s implementation 5 of a per-sample normalisation.

Each row is rescaled independently so that its L2 norm is equal to one. The results

this time significantly reduce the performance of all classifiers. The results are given

in Table 6.5 and Figure 6.4.

4sklearn.preprocessing.StandardScaler()
5sklearn.preprocessing.Normalizer()

- 86 -

Chapter 6 : A Classification Experiment

Figure 6.3: Scaling Setting 1: ROC curve, Precision Recall Curve, Confusion Matrix

Table 6.5: Scaling Setting 2: Applying Normalization

DT LR kNN SVM RandF BTr AdaBoost XGBoost GradB ExTr NB

accuracy 0.48 0.51 0.48 0.43 0.45 0.48 0.51 0.47 0.51 0.48 0.54

precision
0 0.48 0.51 0.48 0.44 0.44 0.48 0.51 0.47 0.51 0.48 0.53

1 0.47 0.53 0.48 0.40 0.45 0.48 0.51 0.47 0.52 0.48 0.64

recall
0 0.56 0.75 0.43 0.57 0.41 0.47 0.49 0.49 0.54 0.47 0.88

1 0.40 0.28 0.53 0.28 0.49 0.49 0.53 0.46 0.49 0.49 0.21

f1 - measure
0 0.52 0.61 0.45 0.50 0.43 0.47 0.50 0.48 0.53 0.47 0.66

1 0.43 0.37 0.50 0.33 0.47 0.48 0.52 0.46 0.50 0.48 0.31

6.6 Experiments with Dimensionality Reduction

From our experiments with scaling in section 6.5, we decide to keep the MinMax

scaling method for future experiments, unless standardisation is explicitly required

by any of the methods that we put to the test (e.g. PCA). In the following sec-

tions we experiment with different strategies of feature selection and dimensionality

reduction.

For the custom feature selection techniques, we create a custom transformation

class, building upon the base classes for transforming data in sklearn. We depict

this class in Listing 6.1.

Listing 6.1: Our custom feature selection class

1 import pandas as pd

2 import numpy as np

3 from sklearn.base import BaseEstimator, TransformerMixin

4

5 class MyDimRed(BaseEstimator, TransformerMixin):

6 def __init__(self, names, mode= ’mild’):

- 87 -

6.6 : Experiments with Dimensionality Reduction

Figure 6.4: Scaling Setting 2: ROC curve, Precision Recall Curve, Confusion Matrix

7 self.names = names

8 self.mode = mode

9 self.keep = []

10 self.singles = []

11 self.drops = []

12 self.empty = []

13

14 def fit(self, X, y = None):

15 X = pd.DataFrame(X, columns=self.names)

16 self.empty_cols = [col for col in X.columns if (X[col] == 0).all()]

17 corr = X.corr(method=’pearson’)

18 corr_a = corr.abs()

19 s = corr_a.unstack().sort_values(kind="quicksort")

20 pairs = set(s[s > 0.7].index)

21 clean_pairs = set([tuple(sorted(i)) for i in pairs if i[0] != i[1]])

22 # only keep one for each pair of highly correlated features.

23 for pair in sorted(clean_pairs):

24 if pair[1] not in self.drops:

25 self.drops.append(pair[1])

26 if pair[0] not in self.drops and pair[0] not in self.singles:

27 self.singles.append(pair[0])

28 self.keep = [col for col in X.columns if col in self.singles or col not in self.drops]

29 return self

30

31 def transform(self, X, y = None, names=[]):

32 X = pd.DataFrame(X, columns=self.names)

33 if self.mode == ’extreme’:

34 cols_to_keep = [col for col in self.singles if col not in self.empty_cols]

35 elif self.mode == ’mild’:

36 cols_to_keep = [col for col in self.keep if col not in self.empty_cols]

37 else:

38 raise ValueError

39 X = X[cols_to_keep]

40 X = X.to_numpy()

41 return X

- 88 -

Chapter 6 : A Classification Experiment

6.6.1 Correlation-based feature selection

We remove from the data-set columns that only contain the value zero. We perform

a Pearson correlation test for cross-correlation between features, and identify 1057

pairs with at least 80% correlation. For this setting, we keep the first element of

each pair. We also keep the columns that have no correlation with other columns.

Näıve Bayes is still the winner, though the results are still worse on average to the

baseline. The results are presented in Table 6.6 and Figure 6.5.

Table 6.6: Dimensionality Reduction Setting 1: Correlation-based feature selection

DT LR kNN SVM RandF BTr AdaBoost XGBoost GradB ExTr NB

accuracy 0.56 0.43 0.55 0.40 0.43 0.35 0.43 0.42 0.44 0.54 0.56

precision
0 0.58 0.43 0.56 0.39 0.45 0.36 0.44 0.44 0.45 0.53 0.68

1 0.55 0.43 0.54 0.42 0.42 0.34 0.40 0.39 0.42 0.58 0.54

recall
0 0.43 0.43 0.46 0.32 0.54 0.40 0.56 0.54 0.56 0.76 0.22

1 0.69 0.44 0.65 0.49 0.32 0.31 0.29 0.29 0.32 0.32 0.90

f1 - measure
0 0.49 0.43 0.50 0.35 0.49 0.38 0.49 0.48 0.50 0.63 0.33

1 0.61 0.44 0.59 0.45 0.36 0.32 0.34 0.34 0.37 0.42 0.67

Figure 6.5: Dimensionality Reduction Setting 1: ROC curve, Precision Recall Curve,
Confusion Matrix

6.6.2 Correlation-based Extreme Dimensionality Reduction

In our second experiment we only keep the features that participate in high corre-

lation pairs. This time kNN is the better algorithm, with 55% average accuracy,

and 55% average f1 measure. So far the baseline experiment still yields the best

outcome. The results are presented in 6.7 and Figure 6.6

- 89 -

6.6 : Experiments with Dimensionality Reduction

Table 6.7: Dimensionality Reduction Setting 2: Correlation-based Extreme Dimension-
ality Reduction

DT LR kNN SVM RandF BTr AdaBoost XGBoost GradB ExTr NB

accuracy 0.50 0.43 0.55 0.41 0.45 0.41 0.37 0.51 0.53 0.51 0.51

precision
0 0.50 0.42 0.57 0.42 0.45 0.42 0.39 0.51 0.52 0.51 0.51

1 0.50 0.43 0.54 0.41 0.44 0.40 0.33 0.51 0.54 0.52 0.50

recall
0 0.65 0.41 0.44 0.44 0.51 0.46 0.47 0.62 0.68 0.69 0.26

1 0.35 0.44 0.66 0.38 0.38 0.37 0.26 0.40 0.38 0.34 0.75

f1 - measure
0 0.56 0.42 0.50 0.43 0.48 0.44 0.43 0.56 0.59 0.59 0.35

1 0.41 0.43 0.60 0.39 0.41 0.38 0.30 0.45 0.45 0.41 0.60

Figure 6.6: Dimensionality Reduction Setting 2: ROC curve, Precision Recall Curve,
Confusion Matrix

6.6.3 Mutual Information-based Dimensionality Reduction

In the third setting we select the top 200 features based on mutual information with

the target value. The calculation is fitted only on the training set, for every fold.

We notice that this deteriorates the performance of almost all the models, and the

winner is once again Näıve Bayes. The results are presented in 6.8 and Figure 6.7

Table 6.8: Dimensionality Reduction Setting 3: Mutual Information

DT LR kNN SVM RandF BTr AdaBoost XGBoost GradB ExTr NB

accuracy 0.42 0.49 0.53 0.38 0.41 0.40 0.41 0.49 0.51 0.50 0.58

precision
0 0.43 0.49 0.53 0.36 0.42 0.42 0.41 0.49 0.51 0.50 0.67

1 0.41 0.48 0.53 0.39 0.41 0.39 0.41 0.48 0.52 0.50 0.55

recall
0 0.49 0.54 0.49 0.31 0.44 0.47 0.43 0.63 0.65 0.76 0.32

1 0.35 0.43 0.57 0.44 0.38 0.34 0.40 0.34 0.38 0.24 0.84

f1 - measure
0 0.46 0.51 0.51 0.33 0.43 0.44 0.42 0.55 0.57 0.60 0.44

1 0.38 0.45 0.55 0.41 0.39 0.36 0.40 0.40 0.44 0.32 0.67

- 90 -

Chapter 6 : A Classification Experiment

Figure 6.7: Dimensionality Reduction Setting 3: ROC curve, Precision Recall Curve,
Confusion Matrix

6.6.4 Dimensionality Reduction with PCA

In a final dimensionality reduction experiment, we perform Principal Component

Analysis (PCA) on the training set of each fold. We use the implementation in

scikit, with the solver ’arpack’, which truncates the Singular Value Decomposition

keeping components based on the following rule:

ncomponents = min(nsamples, nfeatures)− 1 (6.2)

In order to apply PCA, we swap the MinMax scaling function with the Standard-

Scaler of section 6.5.1. This time, Extra Trees is the winning model with 54%

accuracy and f1-measure. This is consistent with the results in section 6.5.1, where

the Decision Tree had an improved performance. While on average this setting is

better than the baseline, it is less robust, as the standard deviation of the accuracy

is much larger. The results are summarised in Table 6.9 and Figure 6.8

Table 6.9: Dimensionality Reduction Setting 4: PCA with arpack solver

DT LR kNN SVM RandF BTr AdaBoost XGBoost GradB ExTr NB

accuracy 0.46 0.46 0.49 0.51 0.40 0.46 0.49 0.46 0.51 0.54 0.50

precision
0 0.46 0.46 0.49 0.51 0.41 0.46 0.49 0.46 0.52 0.56 0.00

1 0.46 0.46 0.49 0.55 0.38 0.45 0.48 0.46 0.51 0.54 0.50

recall
0 0.46 0.49 0.47 0.87 0.46 0.51 0.54 0.44 0.49 0.43 0.00

1 0.46 0.44 0.51 0.16 0.34 0.40 0.43 0.49 0.54 0.66 1.00

f1 - measure
0 0.46 0.47 0.48 0.64 0.43 0.49 0.51 0.45 0.50 0.48 0.00

1 0.46 0.45 0.50 0.25 0.36 0.42 0.45 0.47 0.53 0.59 0.67

- 91 -

6.7 : Model Optimisations

Figure 6.8: Dimensionality Reduction Setting 4: ROC curve, Precision Recall Curve,
Confusion Matrix

6.7 Model Optimisations

After all the experimentation in previous sections, we have three candidate

pipelines. These include a scaling stage, a dimensionality reduction stage, and an

estimator stage. All three candidate pipelines belong to different families of clas-

sifiers. The parameters checked, as well as the results are demonstrated in Table

6.10:

Table 6.10: Estimator Tuning

Pipeline Parameter Values Accuracy Macro f1 score

Standard Scaling,

PCA,

Extra Trees

Number of

Estimators

50 0.49 0.48

100 0.54 0.54

150 0.60 0.58

200 0.58 0.56

MinMax Scaling,

Mutual Information Dimensionality Reduction,

Näıve Bayes

Number of

Features Kept

50 0.43 0.42

100 0.48 0.45

150 0.54 0.49

200 0.51 0.47

MinMax Scaling,

Custom Dimensionality Reduction,

kNN

Number of

Neighbors

1 0.53 0.53

2 0.51 0.49

3 0.53 0.53

4 0.48 0.46

The winning pipeline is Standard Scaling, PCA and Extra Trees, with an ac-

curacy of 60% and macro-average f1-measure of 58%. The complete classification

report is given in Table 6.11 and Figure 6.9. Both the area under the ROC curve

- 92 -

Chapter 6 : A Classification Experiment

and the area under the Precision-Recall curve indicate that the classifier, although

not ideal, is better than random choice. By examining the confusion matrix, we

notice that the recall in the positive class is high, and the precision is adequate.

The trade-off between precision and recall, as shown by the shape of the Precision-

Recall Curve, seems to indicate that the operation point chosen is the best balance

between the two.

Table 6.11: Classification report for winning estimator

0 1 Macro Avg

Precison 0.64 0.57 0.61

Recall 0.43 0.76 0.60

F1 Measure 0.51 0.65 0.58

Accuracy 0.60

Figure 6.9: Winning Estimator: ROC curve, Precision Recall Curve, Confusion Matrix

The exact parameters of the winning algorithm are presented in Listing 6.2.

Listing 6.2: Parameters of the Selected Estimation Pipeline

1 from sklearn import preprocessing

2 from sklearn.impute import SimpleImputer

3 from sklearn.decomposition import PCA

4 from sklearn.ensemble import ExtraTreesClassifier

5 from sklearn.pipeline import Pipeline

6

7 pipe_PCA_ET_150 = Pipeline([

8 # PCA with Extra Trees, using min samples leaf = 1 etc.

9 (’impute’, SimpleImputer(missing_values=np.NaN, strategy=’mean’)),

10 (’scaling’, preprocessing.StandardScaler(copy=True, with_mean=True, with_std=True)),

11 (’reduce_dim’, PCA(copy=True, random_state=seed, svd_solver=’arpack’)),

12 (’classify’, ExtraTreesClassifier(random_state=seed, n_jobs=-1, n_estimators=150))

13])

- 93 -

6.8 : Results Discussion

6.8 Results Discussion

We attempted to approach our methodology in a way that would reduce bias,

while taking advantage of the limited data set as much as possible. This latter

constraint stopped us from using a held out set of films in order to estimate how

well the models generalise. Given that we only had samples from 33 films, removing

any of them from the set would have a big impact in the learning process. The

limitations of the data-set also stopped us from testing deep architectures.

Furthermore, the mediocre results of algorithms, such as SVM, that usually

perform well, indicate that probably more data is needed in order for the classifier

to learn the relationships between so many variables. This makes sense, given the

original dimensions that we are working with. It is also worth noting that the mutual

information and Spearman correlation tests performed in section 6.1.3 scored the

visual features quite low. Perhaps this is an indication that the model doesn’t have

enough data yet, in order to determine the association between visual features and

music. To determine if this is a valid assumption, we would need to perform some

tests by isolating pairs of modalities, but time would not allow for this to happen.

Despite those challenges, a fine-tuned pipeline including a scaling, a dimensional-

ity reduction and a classification step achieved results that were better than chance.

We believe that this is a promising indication that more data would allow a future

researcher to build a much more robust model. This being a proof of concept, we

consider the results adequate enough to conclude our own research. While, overall,

the model would not be suitable for cases where high precision matters, at this stage

it could serve as an initial filtering classifier for a soundtrack retrieval system.

- 94 -

Chapter 7

Extensions and Future Work

We have now reached the end of our experiments on the domain of video soundtracks

and machine learning. In the previous chapters, we proposed a data collection and

feature extraction pipeline, for data of all relevant modalities (audio, MIDI and

video). We also created a classification model using the data that we collected,

and performed hyper-parameter tuning in order to get results that were statistically

better than chance, even though the data-set that we collected was quite small.

In this final chapter, we will propose some ideas for improving most aspects of our

work, by addressing the caveats and challenges described in sections 4.2.1, 2.4.4.2

and 2.5.2. Further to that, we will also attempt to point towards some potential

extensions, use-cases and areas of further research.

7.1 Improvements in the Data Collection Pipeline

Due to the nature of the task, most of our work revolved around building up the

data-set. Despite our best efforts, the issues that we identified in sections 2.4.4.2

and 2.5.2 made it especially hard to gather a large enough data-set in terms of

data points. Furthermore, as we described in section 2.5.2.5, we had to manually

intervene in the pipeline in two cases, which is a major opportunity for improvement.

In the following sections, we propose some ideas to address these issues.

- 95 -

7.1 : Improvements in the Data Collection Pipeline

7.1.1 Expanding the Collection

As we mentioned in section 2.7, the way that the pipeline is built, allows for boot-

strapping more data from the community, without sharing any of the raw underlying

content. While the robustness of the process in other computer set-ups (especially

set-ups that are not Ubuntu Linux) has not been tested, we believe that if this

project was to be given to the wider Data Science community, the crowd-source

element would make it possible to amass much larger volumes of data.

7.1.2 Data Quality

Another issue that we identified in both sections 2.4.4.2 and 2.5.2.4 was that often

the actual content of a file was not the same as what the filename would suggest.

This problem is very important, as slight errors in labelling can lead to errors in

matching, and essentially create severe issues in later stages of the pipeline. Each of

the file types had its own types of data corruption, which we will attempt to address

in the following paragraphs.

7.1.2.1 Audio Files

The most common issue with the audio files was the existence of live performances or

covers of songs in the data-set. Even though we tried to impose some filtering in the

initial parsing and cataloging of the data, when we were reviewing the final catalog

we came across plenty of mislabeled files. We propose some possible solutions:

• Filter out folders using a wider range of relevant keywords. This could be a

much faster and effective alternative to clean up the data at a very early stage.

• Use the metadata stored within the file, using ffmpeg. A lot of files, especially

when stored in MP3 form, have quite comprehensive metadata, such as album

name, song name, artist, composer etc. This metadata could be compared

against the name of the file and, when available, used to improve the query

that is made to the external knowledge base (Spotify).

- 96 -

Chapter 7 : Extensions and Future Work

• Try other knowledge bases, other than Spotify, to retrieve a proper ID for the

file.

7.1.2.2 MIDI Files

MIDI files were a particularly problematic data source in this pipeline. Most usually,

this type of file exists for mobile phone ringtones or karaoke applications. The files

that are freely available on the Web and belong to pop, rock or jazz genres, are

often of very low quality. The choice of instruments is rarely correct, and it is

not uncommon that the notes are incorrect or the file is corrupt. Furthermore, the

naming conventions are inconsistent, and the existence of metadata, like artist name

or song name, within the file, is very rare. Some possible alternative approaches

include:

• Use the “Lakh MIDI Dataset” by Raffel [67]. This is an open-source data set

that contains plenty of clean, tested MIDI files, that have been matched to

songs that exist in the “Million Song Database”. In our own implementation,

while the data existed within the files that we had access to, we failed to find

the database that contains all the essential clean names until much later in the

process. The hash-based naming convention that the file system has, made it

impossible to use the files without the clean name lookup tables.

• Attempt to parse the files with a library like mido in order to identify the

instrument names and the playback duration of the file, and storing those

in the appropriate table. This would allow running some diagnostics on the

health of the file, and throw away corrupt files at an early stage.

• Improve the text cleaning rules that are applied on the names of the files,

before performing a query in an external knowledge base.

• Try different knowledge bases, other than Spotify, to retrieve a proper ID for

the file.

- 97 -

7.1 : Improvements in the Data Collection Pipeline

7.1.2.3 Audio-MIDI Matching Methods

When it came to matching audio with MIDI files, we used a simple inner join on

the song name retrieved from our external knowledge base (Spotify). This method

is as good as the identification methods for each modality, therefore we expect

our proposals in sections 7.1.2.1 and 7.1.2.2 to greatly improve the quality of the

matching. Further to that, it is possible to increase the precision of the matching,

by joining on more than one fields (such as artist or album).

7.1.2.4 Video Files

The video files were mostly consistent, in terms of quality. The biggest improvement

would be to use a more sophisticated cleanup method to get better file names, and

compare that to an external knowledge base, such as iMDB in order to get more

metadata, or lists of soundtracks.

7.1.3 Scalability

7.1.3.1 Reducing Manual Interventions

We explained in section 2.5.2.5 that there were two tasks that called for manual

intervention in this process. If this pipeline was to scale, some additional module

should be devised in order to automate, or accelerate this process.

In the task of validating the song detection in the videos, the invalid mode flag

in the audio video matches table could be used to filter out invalid matches.

We found that the precision of the matching process is close to 100%, while recall

was close to 80%, so in a larger scale, this should not be a problem.

In the task of creating samples for the negative class, the quickest and easiest

solution could be to use the the same invalid mode flag and assume that all these

examples are mismatches. This comes at the risk of misguiding the classifier, in the

cases where the audio and visual content is actually compatible.

- 98 -

Chapter 7 : Extensions and Future Work

7.1.3.2 Storage volume

As we identified in section 2.5.2.2 the fingerprint table can become massive, depend-

ing on the settings of the fingerprinting algorithm. There is a trade-off between

saving storage size and achieving a high matching accuracy. A future work should

determine the best balance point for these settings, but the time needed to complete

an end to end experiment made it impossible to conduct within the time constraints

of delivering a master thesis.

7.1.3.3 Efficiency and Speed

There are a few points in the pipeline that could benefit from some speeding up.

The most time-consuming element during our own experiments, as we described in

section 2.5.2.1 was the bottleneck of inserting hundreds of thousands of lines per

song in the fingerprint table. A big part of this bottleneck has to do with rebuilding

the index on the primary key, after each batch insert, as well as the integrity checks

on the foreign key, that follow each insert. In an attempt to increase the speed, we

tried to remove these constraints and build them once in the end of the fingerprint

creation process, but this didn’t seem to have significant positive results in efficiency.

Perhaps some tuning in the InnoDB settings of MySQL server is also necessary in

order to optimise the table for inserts.

Further to that, running the part of the pipeline that concerns song detection in

videos also took a lot of time. The process should be easy to modify so that it can

take run in a distributed way, which would probably be an easy win to reduce the

time between experiments.

Another time consuming task was feature extraction, especially for the symbolic

features. We have identified a few problems with the underlying library that we

used, but it should not be too hard to modify our extractor class so that it runs

more than one feature extraction at the same time.

- 99 -

7.1 : Improvements in the Data Collection Pipeline

7.1.4 Reducing Bias

In section 2.5.2.6 our reflection on the process revealed some design choices that

introduce bias to the classifier, in a number of ways. We attempt to mitigate some

of these, in the following paragraphs.

7.1.4.1 Data Diversity

The lack of diversity in our data manifests itself in a number of ways. Some of the

factors that could be addressed are:

• Better handling of UTF-8 characters in our script, so that audio and midi files

that have non-ASCII characters in their title can be fed to the knowledge-base

query in a robust way.

• Use an external knowledge-base that has song names in their original language.

• Crowd-source the process, so that people of more diverse aesthetic and cultural

background bring their own taste in film and music into the raw data-set.

7.1.4.2 Fake Example Creation

The manual creation of fake examples should be dropped in favor of some automated

or semi-automated process. Some kind of bootstrapping method could be applied,

but the specifics of such a method could be the object of another study.

7.1.5 Song Detection in Videos

We consider the length of the resulting data-set to be the biggest shortcoming in

this work. In the following sections we propose some possible solutions that could

improve on the song detection aspect of the pipeline.

7.1.5.1 Using External Knowledge Bases

Increasing the precision and recall of our method is important, but before that, we

should first be able to calculate these measures. This is not currently possible, as

- 100 -

Chapter 7 : Extensions and Future Work

we do not have an accurate idea of how many songs that exist in our database also

exist in each film. In order to find this out, one could use an external knowledge

base, such as iMDB, in order to get the names of the songs that are present in each

film. Furthermore, this would also help in the video clip curation process, as it could

serve as a ground truth for a process to accept or reject what the song detection

script yields as result.

In our case this would require some extra effort, as the names of the files that

contained the films were not clean enough for the API of iMDB to return accurate

results. Unfortunately there was not enough time for us to make the necessary

changes, at the time of writing this.

7.1.5.2 Fingerprint Alignment

An important issue that we have identified in section 2.5.2.3 is that a common

practice in films is alter the playback speed (and therefore the pitch) of a song, so

that it can better fit the rhythm of the scene. This is detrimental for the success of

the fingerprint algorithm, as it is based on the spectrogram of the sound, therefore

the dependency of frequency and time. When these are altered, the peaks of the

spectrogram are in different frequencies and at different timestamps.

Solving this problem could be the object of a future study, as it would probably

mean that other, more robust algorithms, in comparison to the implementation of

pyDejavu, should be tested. Other proposed algorithms exist, such as [68] which

uses auto-correlation, [69] that uses wavelets, and more recently [70].

7.1.6 More Modalities

Another potential field of extending this method, would be to add additional modal-

ities for the participating content, such as text, in the form of lyrics or subtitles. It

would be interesting to research whether there are semantic or topic-related similar-

ities between the lyrics of a song and the lines of dialogue that are uttered during

the scene.

Furthermore, another potentially interesting direction would be to add metadata

- 101 -

7.2 : Improvements in Model Selection

about the scene, perhaps using the results of a classifier that labels scene content as

features. Some examples of this are [71] and [72].

7.2 Improvements in Model Selection

Given the dimensionality of the data-set, we would argue that the acquisition

of more and better data is much more important than building more sophisticated

algorithms. Nevertheless, in the following sections, we present some potentially

interesting experiments could perhaps yield better results.

7.2.1 Voting Ensembles

Our experiments led to three classification settings that included different scaling

and dimensionality reduction techniques, as well as classifiers from different families.

We performed some tuning of their basic hyper-parameters in order to choose the

best possible model. Unfortunately time didn’t allow for us to try combining all three

into a Voting ensemble. Theoretically, this could improve the overall accuracy and

robustness of the model, if each of the participating classifiers is behaving differently,

in different subsets of the data.

7.2.2 Deep Architectures

While testing models, we ruled out Deep architectures, due to the size of the data

that was available for training and testing. Neural Networks are commonly used

for large data-sets, in order to avoid the danger of over-fitting. If future research

accomplishes to solve the data availability issue, the large number of features that

are extracted would make this a suitable setting for experimentation with Neural

Networks.

7.2.3 Classifier by modality combination

One of our biggest concerns around the classifier’s performance, is what exactly it is

learning. The Mutual Information tests that we applied in section 6.1 show that the

- 102 -

Chapter 7 : Extensions and Future Work

visual content features have significantly lower mutual information with the target

variable than the features of the other modalities. We have hypothesized that this is

due to the lack of diversity in the visual content, and the small size of the data-set.

If more data were collected, this hypothesis should be put to the test in future work.

7.3 Conclusion

In this thesis, we got involved with the task of video soundtrack evaluation. We

proposed an end-to-end data collection and feature extraction pipeline, which takes

raw video, audio and MIDI files as its input, matches them using text processing and

audio fingerprinting, and creates a multimodal feature library of features. To our

knowledge, this is the first attempt to combine these three modalities. We managed

to create a small proof of concept using some limited data, and built a classifier

with the task of discriminating between real and fake soundtracks. The results of

this classifier were adequate, as the resulting accuracy is better than random choice,

though we believe that the performance could be improved by assembling a larger

data-set. Overall, the model would not be suitable for cases where high precision

matters, but at this stage could serve as an initial filtering classifier for a soundtrack

retrieval system. Finally, we explored some solutions to the various challenges and

problems of both the data collection process and of the resulting classifier, and

presented some interesting directions for future research.

- 103 -

7.3 : Conclusion

- 104 -

Appendix A

The Complete Feature Library

Table A.1: Audio Feature Overview

Feat.

ID
Feat. Class Feat. Name Section

1 Time Domain zcr mean 3.2.4.3

2 Time Domain energy mean 3.2.4.2

3 Time Domain energy entropy mean 3.2.4.4

4 Spectral Domain spectral centroid mean 3.2.5.2

5 Spectral Domain spectral spread mean 3.2.5.2

6 Spectral Domain spectral entropy mean 3.2.5.3

7 Spectral Domain spectral flux mean 3.2.5.4

8 Spectral Domain spectral rolloff mean 3.2.5.5

9 Cepstral Domain mfcc 1 mean 3.2.5.6

10 Cepstral Domain mfcc 2 mean 3.2.5.6

11 Cepstral Domain mfcc 3 mean 3.2.5.6

12 Cepstral Domain mfcc 4 mean 3.2.5.6

13 Cepstral Domain mfcc 5 mean 3.2.5.6

14 Cepstral Domain mfcc 6 mean 3.2.5.6

15 Cepstral Domain mfcc 7 mean 3.2.5.6

16 Cepstral Domain mfcc 8 mean 3.2.5.6

- 105 -

Feat.

ID
Feat. Class Feat. Name Section

17 Cepstral Domain mfcc 9 mean 3.2.5.6

18 Cepstral Domain mfcc 10 mean 3.2.5.6

19 Cepstral Domain mfcc 11 mean 3.2.5.6

20 Cepstral Domain mfcc 12 mean 3.2.5.6

21 Cepstral Domain mfcc 13 mean 3.2.5.6

22 Chroma Coefficients chroma 1 mean 3.2.5.7

23 Chroma Coefficients chroma 2 mean 3.2.5.7

24 Chroma Coefficients chroma 3 mean 3.2.5.7

25 Chroma Coefficients chroma 4 mean 3.2.5.7

26 Chroma Coefficients chroma 5 mean 3.2.5.7

27 Chroma Coefficients chroma 6 mean 3.2.5.7

28 Chroma Coefficients chroma 7 mean 3.2.5.7

29 Chroma Coefficients chroma 8 mean 3.2.5.7

30 Chroma Coefficients chroma 9 mean 3.2.5.7

31 Chroma Coefficients chroma 10 mean 3.2.5.7

32 Chroma Coefficients chroma 11 mean 3.2.5.7

33 Chroma Coefficients chroma 12 mean 3.2.5.7

34 Chroma Coefficients chroma std mean 3.2.5.7

35 Time Domain delta zcr mean 3.2.4.3

36 Time Domain delta energy mean 3.2.4.2

37 Time Domain delta energy entropy mean 3.2.4.4

38 Spectral Domain delta spectral centroid mean 3.2.5.2

39 Spectral Domain delta spectral spread mean 3.2.5.2

40 Spectral Domain delta spectral entropy mean 3.2.5.3

41 Spectral Domain delta spectral flux mean 3.2.5.4

42 Spectral Domain delta spectral rolloff mean 3.2.5.5

43 Cepstral Domain delta mfcc 1 mean 3.2.5.6

44 Cepstral Domain delta mfcc 2 mean 3.2.5.6

- 106 -

Chapter A : The Complete Feature Library

Feat.

ID
Feat. Class Feat. Name Section

45 Cepstral Domain delta mfcc 3 mean 3.2.5.6

46 Cepstral Domain delta mfcc 4 mean 3.2.5.6

47 Cepstral Domain delta mfcc 5 mean 3.2.5.6

48 Cepstral Domain delta mfcc 6 mean 3.2.5.6

49 Cepstral Domain delta mfcc 7 mean 3.2.5.6

50 Cepstral Domain delta mfcc 8 mean 3.2.5.6

51 Cepstral Domain delta mfcc 9 mean 3.2.5.6

52 Cepstral Domain delta mfcc 10 mean 3.2.5.6

53 Cepstral Domain delta mfcc 11 mean 3.2.5.6

54 Cepstral Domain delta mfcc 12 mean 3.2.5.6

55 Cepstral Domain delta mfcc 13 mean 3.2.5.6

56 Chroma Coefficients delta chroma 1 mean 3.2.5.7

57 Chroma Coefficients delta chroma 2 mean 3.2.5.7

58 Chroma Coefficients delta chroma 3 mean 3.2.5.7

59 Chroma Coefficients delta chroma 4 mean 3.2.5.7

60 Chroma Coefficients delta chroma 5 mean 3.2.5.7

61 Chroma Coefficients delta chroma 6 mean 3.2.5.7

62 Chroma Coefficients delta chroma 7 mean 3.2.5.7

63 Chroma Coefficients delta chroma 8 mean 3.2.5.7

64 Chroma Coefficients delta chroma 9 mean 3.2.5.7

65 Chroma Coefficients delta chroma 10 mean 3.2.5.7

66 Chroma Coefficients delta chroma 11 mean 3.2.5.7

67 Chroma Coefficients delta chroma 12 mean 3.2.5.7

68 Chroma Coefficients delta chroma std mean 3.2.5.7

69 Time Domain zcr std 3.2.4.3

70 Time Domain energy std 3.2.4.2

71 Time Domain energy entropy std 3.2.4.4

72 Spectral Domain spectral centroid std 3.2.5.2

- 107 -

Feat.

ID
Feat. Class Feat. Name Section

73 Spectral Domain spectral spread std 3.2.5.2

74 Spectral Domain spectral entropy std 3.2.5.3

74 Spectral Domain spectral flux std 3.2.5.4

75 Spectral Domain spectral rolloff std 3.2.5.5

76 Cepstral Domain mfcc 1 std 3.2.5.6

77 Cepstral Domain mfcc 2 std 3.2.5.6

78 Cepstral Domain mfcc 3 std 3.2.5.6

79 Cepstral Domain mfcc 4 std 3.2.5.6

80 Cepstral Domain mfcc 5 std 3.2.5.6

81 Cepstral Domain mfcc 6 std 3.2.5.6

82 Cepstral Domain mfcc 7 std 3.2.5.6

83 Cepstral Domain mfcc 8 std 3.2.5.6

83 Cepstral Domain mfcc 9 std 3.2.5.6

84 Cepstral Domain mfcc 10 std 3.2.5.6

85 Cepstral Domain mfcc 11 std 3.2.5.6

86 Cepstral Domain mfcc 12 std 3.2.5.6

87 Cepstral Domain mfcc 13 std 3.2.5.6

88 Chroma Coefficients chroma 1 std 3.2.5.7

89 Chroma Coefficients chroma 2 std 3.2.5.7

90 Chroma Coefficients chroma 3 std 3.2.5.7

91 Chroma Coefficients chroma 4 std 3.2.5.7

92 Chroma Coefficients chroma 5 std 3.2.5.7

93 Chroma Coefficients chroma 6 std 3.2.5.7

94 Chroma Coefficients chroma 7 std 3.2.5.7

95 Chroma Coefficients chroma 8 std 3.2.5.7

96 Chroma Coefficients chroma 9 std 3.2.5.7

97 Chroma Coefficients chroma 10 std 3.2.5.7

98 Chroma Coefficients chroma 11 std 3.2.5.7

- 108 -

Chapter A : The Complete Feature Library

Feat.

ID
Feat. Class Feat. Name Section

99 Chroma Coefficients chroma 12 std 3.2.5.7

100 Chroma Coefficients chroma std std 3.2.5.7

101 Time Domain delta zcr std 3.2.4.3

102 Time Domain delta energy std 3.2.4.2

103 Time Domain delta energy entropy std 3.2.4.4

104 Spectral Domain delta spectral centroid std 3.2.5.2

105 Spectral Domain delta spectral spread std 3.2.5.2

106 Spectral Domain delta spectral entropy std 3.2.5.3

107 Spectral Domain delta spectral flux std 3.2.5.4

108 Spectral Domain delta spectral rolloff std 3.2.5.5

109 Cepstral Domain delta mfcc 1 std 3.2.5.6

110 Cepstral Domain delta mfcc 2 std 3.2.5.6

111 Cepstral Domain delta mfcc 3 std 3.2.5.6

112 Cepstral Domain delta mfcc 4 std 3.2.5.6

113 Cepstral Domain delta mfcc 5 std 3.2.5.6

114 Cepstral Domain delta mfcc 6 std 3.2.5.6

115 Cepstral Domain delta mfcc 7 std 3.2.5.6

116 Cepstral Domain delta mfcc 8 std 3.2.5.6

117 Cepstral Domain delta mfcc 9 std 3.2.5.6

118 Cepstral Domain delta mfcc 10 std 3.2.5.6

119 Cepstral Domain delta mfcc 11 std 3.2.5.6

120 Cepstral Domain delta mfcc 12 std 3.2.5.6

121 Cepstral Domain delta mfcc 13 std 3.2.5.6

122 Chroma Coefficients delta chroma 1 std 3.2.5.7

123 Chroma Coefficients delta chroma 2 std 3.2.5.7

124 Chroma Coefficients delta chroma 3 std 3.2.5.7

125 Chroma Coefficients delta chroma 4 std 3.2.5.7

126 Chroma Coefficients delta chroma 5 std 3.2.5.7

- 109 -

Feat.

ID
Feat. Class Feat. Name Section

127 Chroma Coefficients delta chroma 6 std 3.2.5.7

128 Chroma Coefficients delta chroma 7 std 3.2.5.7

129 Chroma Coefficients delta chroma 8 std 3.2.5.7

130 Chroma Coefficients delta chroma 9 std 3.2.5.7

131 Chroma Coefficients delta chroma 10 std 3.2.5.7

132 Chroma Coefficients delta chroma 11 std 3.2.5.7

133 Chroma Coefficients delta chroma 12 std 3.2.5.7

134 Chroma Coefficients delta chroma std std 3.2.5.7

135 Tempo beat 3.3.1

136 Tempo beat conf 3.3.1

Table A.2: Symbolic Feature Overview

Feat.

ID

Feat.

Class
Feat. Name

Feature

Category

1 jSymbolic AverageMelodicIntervalFeature

Melodies and

Horizontal

Intervals

2 jSymbolic MostCommonMelodicIntervalFeature

Melodies and

Horizontal

Intervals

3 jSymbolic DistanceBetweenMostCommonMelodicIntervalsFeature

Melodies and

Horizontal

Intervals

4 jSymbolic MostCommonMelodicIntervalPrevalenceFeature

Melodies and

Horizontal

Intervals

5 jSymbolic RelativeStrengthOfMostCommonIntervalsFeature

Melodies and

Horizontal

Intervals

- 110 -

Chapter A : The Complete Feature Library

Feat.

ID

Feat.

Class
Feat. Name

Feature

Category

6 jSymbolic NumberOfCommonMelodicIntervalsFeature

Melodies and

Horizontal

Intervals

7 jSymbolic AmountOfArpeggiationFeature

Melodies and

Horizontal

Intervals

8 jSymbolic RepeatedNotesFeature

Melodies and

Horizontal

Intervals

9 jSymbolic ChromaticMotionFeature

Melodies and

Horizontal

Intervals

10 jSymbolic StepwiseMotionFeature

Melodies and

Horizontal

Intervals

11 jSymbolic MelodicThirdsFeature

Melodies and

Horizontal

Intervals

12 jSymbolic MelodicFifthsFeature

Melodies and

Horizontal

Intervals

13 jSymbolic MelodicTritonesFeature

Melodies and

Horizontal

Intervals

14 jSymbolic MelodicOctavesFeature

Melodies and

Horizontal

Intervals

15 jSymbolic DirectionOfMotionFeature

Melodies and

Horizontal

Intervals

- 111 -

Feat.

ID

Feat.

Class
Feat. Name

Feature

Category

16 jSymbolic DurationOfMelodicArcsFeature

Melodies and

Horizontal

Intervals

17 jSymbolic SizeOfMelodicArcsFeature

Melodies and

Horizontal

Intervals

18 jSymbolic MostCommonPitchPrevalenceFeature
Pitch

Statistics

19 jSymbolic MostCommonPitchClassPrevalenceFeature
Pitch

Statistics

20 jSymbolic RelativeStrengthOfTopPitchesFeature
Pitch

Statistics

21 jSymbolic RelativeStrengthOfTopPitchClassesFeature
Pitch

Statistics

22 jSymbolic IntervalBetweenStrongestPitchesFeature
Pitch

Statistics

23 jSymbolic IntervalBetweenStrongestPitchClassesFeature
Pitch

Statistics

24 jSymbolic NumberOfCommonPitchesFeature
Pitch

Statistics

25 jSymbolic PitchVarietyFeature
Pitch

Statistics

26 jSymbolic PitchClassVarietyFeature
Pitch

Statistics

27 jSymbolic RangeFeature
Pitch

Statistics

28 jSymbolic MostCommonPitchFeature
Pitch

Statistics

- 112 -

Chapter A : The Complete Feature Library

Feat.

ID

Feat.

Class
Feat. Name

Feature

Category

29 jSymbolic PrimaryRegisterFeature
Pitch

Statistics

30 jSymbolic ImportanceOfBassRegisterFeature
Pitch

Statistics

31 jSymbolic ImportanceOfMiddleRegisterFeature
Pitch

Statistics

32 jSymbolic ImportanceOfHighRegisterFeature
Pitch

Statistics

33 jSymbolic MostCommonPitchClassFeature
Pitch

Statistics

34 jSymbolic NoteDensityFeature Rhythm

35 jSymbolic AverageNoteDurationFeature Rhythm

36 jSymbolic VariabilityOfNoteDurationFeature Rhythm

37 jSymbolic MaximumNoteDurationFeature Rhythm

38 jSymbolic MinimumNoteDurationFeature Rhythm

39 jSymbolic StaccatoIncidenceFeature Rhythm

40 jSymbolic AverageTimeBetweenAttacksFeature Rhythm

41 jSymbolic VariabilityOfTimeBetweenAttacksFeature Rhythm

42 jSymbolic AverageTimeBetweenAttacksForEachVoiceFeature Rhythm

43 jSymbolic AverageVariabilityOfTimeBetweenAttacksForEachVoiceFeature Rhythm

44 jSymbolic InitialTempoFeature Rhythm

45 jSymbolic InitialTimeSignatureFeature Rhythm

46 jSymbolic CompoundOrSimpleMeterFeature Rhythm

47 jSymbolic TripleMeterFeature Rhythm

48 jSymbolic QuintupleMeterFeature Rhythm

49 jSymbolic ChangesOfMeterFeature Rhythm

50 jSymbolic DurationFeature Rhythm

51 jSymbolic MaximumNumberOfIndependentVoicesFeature Texture

- 113 -

Feat.

ID

Feat.

Class
Feat. Name

Feature

Category

52 jSymbolic AverageNumberOfIndependentVoicesFeature Texture

53 jSymbolic VariabilityOfNumberOfIndependentVoicesFeature Texture

54 native QualityFeature Texture

55 native TonalCertainty Texture

56 native UniqueNoteQuarterLengths Texture

57 native MostCommonNoteQuarterLength Texture

58 native MostCommonNoteQuarterLengthPrevalence Texture

59 native RangeOfNoteQuarterLengths Texture

60 native UniquePitchClassSetSimultaneities

Chords and

Vertical

Intervals

61 native UniqueSetClassSimultaneities

Chords and

Vertical

Intervals

62 native MostCommonPitchClassSetSimultaneityPrevalence

Chords and

Vertical

Intervals

63 native MostCommonSetClassSimultaneityPrevalence

Chords and

Vertical

Intervals

64 native MajorTriadSimultaneityPrevalence

Chords and

Vertical

Intervals

65 native MinorTriadSimultaneityPrevalence

Chords and

Vertical

Intervals

66 native DominantSeventhSimultaneityPrevalence

Chords and

Vertical

Intervals

- 114 -

Chapter A : The Complete Feature Library

Feat.

ID

Feat.

Class
Feat. Name

Feature

Category

67 native DiminishedTriadSimultaneityPrevalence

Chords and

Vertical

Intervals

68 native TriadSimultaneityPrevalence

Chords and

Vertical

Intervals

69 native DiminishedSeventhSimultaneityPrevalence

Chords and

Vertical

Intervals

70 native IncorrectlySpelledTriadPrevalence

71 native ComposerPopularity
Miscellaneous

Features

72 native LandiniCadence
Miscellaneous

Features

73 native LanguageFeature
Miscellaneous

Features

Table A.3: Video Feature Overview

Feat.

ID
Feat. Class Feat. Name Section

1 Color Features mean hist r0 5.1.2

2 Color Features mean hist r1 5.1.2

3 Color Features mean hist r2 5.1.2

4 Color Features mean hist r3 5.1.2

5 Color Features mean hist r4 5.1.2

6 Color Features mean hist r5 5.1.2

7 Color Features mean hist r6 5.1.2

8 Color Features mean hist r7 5.1.2

- 115 -

Feat.

ID
Feat. Class Feat. Name Section

9 Color Features mean hist g0 5.1.2

10 Color Features mean hist g1 5.1.2

11 Color Features mean hist g2 5.1.2

12 Color Features mean hist g3 5.1.2

13 Color Features mean hist g4 5.1.2

14 Color Features mean hist g5 5.1.2

15 Color Features mean hist g6 5.1.2

16 Color Features mean hist g7 5.1.2

17 Color Features mean hist b0 5.1.2

18 Color Features mean hist b1 5.1.2

19 Color Features mean hist b2 5.1.2

20 Color Features mean hist b3 5.1.2

21 Color Features mean hist b4 5.1.2

22 Color Features mean hist b5 5.1.2

23 Color Features mean hist b6 5.1.2

24 Color Features mean hist b7 5.1.2

25 Color Features mean hist v0 5.1.2

26 Color Features mean hist v1 5.1.2

27 Color Features mean hist v2 5.1.2

28 Color Features mean hist v3 5.1.2

29 Color Features mean hist v4 5.1.2

30 Color Features mean hist v5 5.1.2

31 Color Features mean hist v6 5.1.2

32 Color Features mean hist v7 5.1.2

33 Color Features mean hist rgb0 5.1.2

34 Color Features mean hist rgb1 5.1.2

35 Color Features mean hist rgb2 5.1.2

36 Color Features mean hist rgb3 5.1.2

- 116 -

Chapter A : The Complete Feature Library

Feat.

ID
Feat. Class Feat. Name Section

37 Color Features mean hist rgb4 5.1.2

38 Color Features mean hist s0 5.1.2

39 Color Features mean hist s1 5.1.2

40 Color Features mean hist s2 5.1.2

41 Color Features mean hist s3 5.1.2

42 Color Features mean hist s4 5.1.2

43 Color Features mean hist s5 5.1.2

44 Color Features mean hist s6 5.1.2

45 Color Features mean hist s7 5.1.2

46 Flow Features mean frame value diff 5.2

47 Flow Features mean frontal faces num 5.3

48 Flow Features mean fronatl faces ratio 5.3

49 Flow Features mean tilt pan confidences 5.2

50 Flow Features mean mag mean 5.2

51 Flow Features mean mag std 5.2

52 Flow Features mean shot durations 5.2

53 Color Features std hist r0 5.1.2

54 Color Features std hist r1 5.1.2

55 Color Features std hist r2 5.1.2

56 Color Features std hist r3 5.1.2

57 Color Features std hist r4 5.1.2

58 Color Features std hist r5 5.1.2

59 Color Features std hist r6 5.1.2

60 Color Features std hist r7 5.1.2

61 Color Features std hist g0 5.1.2

62 Color Features std hist g1 5.1.2

63 Color Features std hist g2 5.1.2

64 Color Features std hist g3 5.1.2

- 117 -

Feat.

ID
Feat. Class Feat. Name Section

65 Color Features std hist g4 5.1.2

66 Color Features std hist g5 5.1.2

67 Color Features std hist g6 5.1.2

68 Color Features std hist g7 5.1.2

69 Color Features std hist b0 5.1.2

70 Color Features std hist b1 5.1.2

71 Color Features std hist b2 5.1.2

72 Color Features std hist b3 5.1.2

73 Color Features std hist b4 5.1.2

74 Color Features std hist b5 5.1.2

75 Color Features std hist b6 5.1.2

76 Color Features std hist b7 5.1.2

77 Color Features std hist v0 5.1.2

78 Color Features std hist v1 5.1.2

79 Color Features std hist v2 5.1.2

80 Color Features std hist v3 5.1.2

81 Color Features std hist v4 5.1.2

82 Color Features std hist v5 5.1.2

83 Color Features std hist v6 5.1.2

84 Color Features std hist v7 5.1.2

85 Color Features std hist rgb0 5.1.2

86 Color Features std hist rgb1 5.1.2

87 Color Features std hist rgb2 5.1.2

88 Color Features std hist rgb3 5.1.2

89 Color Features std hist rgb4 5.1.2

90 Color Features std hist s0 5.1.2

91 Color Features std hist s1 5.1.2

92 Color Features std hist s2 5.1.2

- 118 -

Chapter A : The Complete Feature Library

Feat.

ID
Feat. Class Feat. Name Section

93 Color Features std hist s3 5.1.2

94 Color Features std hist s4 5.1.2

95 Color Features std hist s5 5.1.2

96 Color Features std hist s6 5.1.2

97 Color Features std hist s7 5.1.2

98 Flow Features std frame value diff

99 Flow Features std frontal faces num 5.3

100 Flow Features std fronatl faces ratio 5.3

101 Flow Features std tilt pan confidences

102 Flow Features std mag mean

103 Flow Features std mag std

104 Flow Features std shot durations

105 Color Features stdmean hist r0 5.1.2

106 Color Features stdmean hist r1 5.1.2

107 Color Features stdmean hist r2 5.1.2

108 Color Features stdmean hist r3 5.1.2

109 Color Features stdmean hist r4 5.1.2

110 Color Features stdmean hist r5 5.1.2

111 Color Features stdmean hist r6 5.1.2

112 Color Features stdmean hist r7 5.1.2

113 Color Features stdmean hist g0 5.1.2

114 Color Features stdmean hist g1 5.1.2

115 Color Features stdmean hist g2 5.1.2

116 Color Features stdmean hist g3 5.1.2

117 Color Features stdmean hist g4 5.1.2

118 Color Features stdmean hist g5 5.1.2

119 Color Features stdmean hist g6 5.1.2

120 Color Features stdmean hist g7 5.1.2

- 119 -

Feat.

ID
Feat. Class Feat. Name Section

121 Color Features stdmean hist b0 5.1.2

122 Color Features stdmean hist b1 5.1.2

123 Color Features stdmean hist b2 5.1.2

124 Color Features stdmean hist b3 5.1.2

125 Color Features stdmean hist b4 5.1.2

126 Color Features stdmean hist b5 5.1.2

127 Color Features stdmean hist b6 5.1.2

128 Color Features stdmean hist b7 5.1.2

129 Color Features stdmean hist v0 5.1.2

130 Color Features stdmean hist v1 5.1.2

131 Color Features stdmean hist v2 5.1.2

132 Color Features stdmean hist v3 5.1.2

133 Color Features stdmean hist v4 5.1.2

134 Color Features stdmean hist v5 5.1.2

135 Color Features stdmean hist v6 5.1.2

136 Color Features stdmean hist v7 5.1.2

137 Color Features stdmean hist rgb0 5.1.2

138 Color Features stdmean hist rgb1 5.1.2

139 Color Features stdmean hist rgb2 5.1.2

140 Color Features stdmean hist rgb3 5.1.2

141 Color Features stdmean hist rgb4 5.1.2

142 Color Features stdmean hist s0 5.1.2

143 Color Features stdmean hist s1 5.1.2

144 Color Features stdmean hist s2 5.1.2

145 Color Features stdmean hist s3 5.1.2

146 Color Features stdmean hist s4 5.1.2

147 Color Features stdmean hist s5 5.1.2

148 Color Features stdmean hist s6 5.1.2

- 120 -

Chapter A : The Complete Feature Library

Feat.

ID
Feat. Class Feat. Name Section

149 Color Features stdmean hist s7 5.1.2

150 Flow Features stdmean frame value diff 5.2

151 Flow Features stdmean frontal faces num 5.3

152 Flow Features stdmean fronatl faces ratio 5.3

153 Flow Features stdmean tilt pan confidences 5.2

154 Flow Features stdmean mag mean 5.2

155 Flow Features stdmean mag std 5.2

156 Flow Features stdmean shot durations 5.2

157 Color Features mean10top hist r0 5.1.2

158 Color Features mean10top hist r1 5.1.2

159 Color Features mean10top hist r2 5.1.2

160 Color Features mean10top hist r3 5.1.2

161 Color Features mean10top hist r4 5.1.2

162 Color Features mean10top hist r5 5.1.2

163 Color Features mean10top hist r6 5.1.2

164 Color Features mean10top hist r7 5.1.2

165 Color Features mean10top hist g0 5.1.2

166 Color Features mean10top hist g1 5.1.2

167 Color Features mean10top hist g2 5.1.2

168 Color Features mean10top hist g3 5.1.2

169 Color Features mean10top hist g4 5.1.2

170 Color Features mean10top hist g5 5.1.2

171 Color Features mean10top hist g6 5.1.2

172 Color Features mean10top hist g7 5.1.2

173 Color Features mean10top hist b0 5.1.2

174 Color Features mean10top hist b1 5.1.2

175 Color Features mean10top hist b2 5.1.2

176 Color Features mean10top hist b3 5.1.2

- 121 -

Feat.

ID
Feat. Class Feat. Name Section

177 Color Features mean10top hist b4 5.1.2

178 Color Features mean10top hist b5 5.1.2

179 Color Features mean10top hist b6 5.1.2

180 Color Features mean10top hist b7 5.1.2

181 Color Features mean10top hist v0 5.1.2

182 Color Features mean10top hist v1 5.1.2

183 Color Features mean10top hist v2 5.1.2

184 Color Features mean10top hist v3 5.1.2

185 Color Features mean10top hist v4 5.1.2

186 Color Features mean10top hist v5 5.1.2

187 Color Features mean10top hist v6 5.1.2

188 Color Features mean10top hist v7 5.1.2

189 Color Features mean10top hist rgb0 5.1.2

190 Color Features mean10top hist rgb1 5.1.2

191 Color Features mean10top hist rgb2 5.1.2

192 Color Features mean10top hist rgb3 5.1.2

193 Color Features mean10top hist rgb4 5.1.2

194 Color Features mean10top hist s0 5.1.2

195 Color Features mean10top hist s1 5.1.2

196 Color Features mean10top hist s2 5.1.2

197 Color Features mean10top hist s3 5.1.2

198 Color Features mean10top hist s4 5.1.2

199 Color Features mean10top hist s5 5.1.2

200 Color Features mean10top hist s6 5.1.2

201 Color Features mean10top hist s7 5.1.2

202 Flow Features mean10top frame value diff

203 Flow Features mean10top frontal faces num 5.3

204 Flow Features mean10top fronatl faces ratio 5.3

- 122 -

Chapter A : The Complete Feature Library

Feat.

ID
Feat. Class Feat. Name Section

205 Flow Features mean10top tilt pan confidences 5.2

206 Flow Features mean10top mag mean 5.2

207 Flow Features mean10top mag std 5.2

208 Flow Features mean10top shot durations 5.2

209 Object Detection person freq 5.3

210 Object Detection vehicle freq 5.3

211 Object Detection outdoor freq 5.3

212 Object Detection animal freq 5.3

213 Object Detection accessory freq 5.3

214 Object Detection sports freq 5.3

215 Object Detection kitchen freq 5.3

216 Object Detection food freq 5.3

217 Object Detection furniture freq 5.3

218 Object Detection electronic freq 5.3

219 Object Detection appliance freq 5.3

220 Object Detection indoor freq 5.3

221 Object Detection person mean confidence 5.3

222 Object Detection vehicle mean confidence 5.3

223 Object Detection outdoor mean confidence 5.3

224 Object Detection animal mean confidence 5.3

225 Object Detection accessory mean confidence 5.3

226 Object Detection sports mean confidence 5.3

227 Object Detection kitchen mean confidence 5.3

228 Object Detection food mean confidence 5.3

229 Object Detection furniture mean confidence 5.3

230 Object Detection electronic mean confidence 5.3

231 Object Detection appliance mean confidence 5.3

232 Object Detection indoor mean confidence 5.3

- 123 -

Feat.

ID
Feat. Class Feat. Name Section

233 Object Detection person mean area ratio 5.3

234 Object Detection vehicle mean area ratio 5.3

235 Object Detection outdoor mean area ratio 5.3

236 Object Detection animal mean area ratio 5.3

237 Object Detection accessory mean area ratio 5.3

238 Object Detection sports mean area ratio 5.3

239 Object Detection kitchen mean area ratio 5.3

240 Object Detection food mean area ratio 5.3

241 Object Detection furniture mean area ratio 5.3

242 Object Detection electronic mean area ratio 5.3

243 Object Detection appliance mean area ratio 5.3

244 Object Detection indoor mean area ratio 5.3

- 124 -

References

[1] Hyoung-Gook Kim, Nicolas Moreau, and Thomas Sikora. MPEG-7 audio and

beyond: Audio content indexing and retrieval. John Wiley & Sons, 2006.

[2] Oge Marques. Practical image and video processing using MATLAB. John

Wiley & Sons, 2011.

[3] Marcus Du Sautoy. The Creativity Code: Art and Innovation in the Age of AI.

Harvard University Press, 2020.

[4] Tim Ingold. Beyond art and technology: the anthropology of skill. Anthropo-

logical perspectives on technology, pages 17–31, 2001.

[5] Ludwig Wittgenstein. Philosophical investigations, trans. GEM Anscombe, 261:

49, 1953.

[6] Stephen Davies. Defining art and artworlds. The Journal of Aesthetics and Art

Criticism, 73(4):375–384, 2015.

[7] Jon McCormack. Art and the mirror of nature. Digital Creativity, 14(1):3–22,

2003.

[8] Margaret A Boden and Ernest A Edmonds. What is generative art? Digital

Creativity, 20(1-2):21–46, 2009.

[9] Margaret A Boden. AI: Its nature and future. Oxford University Press, 2016.

[10] Ronald H Sadoff. The role of the music editor and the’temp track’as blueprint

for the score, source music, and scource music of films. Popular Music, pages

165–183, 2006.

- 125 -

References

[11] Yi Yu, Zhijie Shen, and Roger Zimmermann. Automatic music soundtrack gen-

eration for outdoor videos from contextual sensor information. In Proceedings of

the 20th ACM international conference on Multimedia, pages 1377–1378, 2012.

[12] Rajiv Ratn Shah, Yi Yu, and Roger Zimmermann. Advisor: Personalized video

soundtrack recommendation by late fusion with heuristic rankings. In Proceed-

ings of the 22nd ACM international conference on Multimedia, pages 607–616,

2014.

[13] Rajiv Ratn Shah, Yi Yu, and Roger Zimmermann. User preference-aware music

video generation based on modeling scene moods. In Proceedings of the 5th

ACM Multimedia Systems Conference, pages 156–159, 2014.

[14] Jen-Chun Lin, Wen-Li Wei, James Yang, Hsin-Min Wang, and Hong-Yuan Mark

Liao. Automatic music video generation based on simultaneous soundtrack rec-

ommendation and video editing. In Proceedings of the 25th ACM international

conference on Multimedia, pages 519–527, 2017.

[15] Tilman Herberger and Titus Tost. System and method of automatically creating

an emotional controlled soundtrack, July 13 2010. US Patent 7,754,959.

[16] Jen-Chun Lin, Wen-Li Wei, and Hsin-Min Wang. Emv-matchmaker: emotional

temporal course modeling and matching for automatic music video generation.

In Proceedings of the 23rd ACM international conference on Multimedia, pages

899–902, 2015.

[17] Haruki Sato, Tatsunori Hirai, Tomoyasu Nakano, Masataka Goto, and Shigeo

Morishima. A soundtrack generation system to synchronize the climax of a

video clip with music. In 2016 IEEE International Conference on Multimedia

and Expo (ICME), pages 1–6. IEEE, 2016.

[18] Pedro Cano, Eloi Batlle, Ton Kalker, and Jaap Haitsma. A review of audio

fingerprinting. Journal of VLSI signal processing systems for signal, image and

video technology, 41(3):271–284, 2005.

[19] Will Drevo, Nov 2013. URL https://willdrevo.com/

fingerprinting-and-audio-recognition-with-python/.

- 126 -

References

[20] Theodoros Giannakopoulos and Aggelos Pikrakis. Introduction to Audio Anal-

ysis: a MATLAB® approach. Academic Press, 2014.

[21] Nicolas Scaringella, Giorgio Zoia, and Daniel Mlynek. Automatic genre classi-

fication of music content: a survey. IEEE Signal Processing Magazine, 23(2):

133–141, 2006.

[22] Anders Meng, Peter Ahrendt, and Jan Larsen. Improving music genre classi-

fication by short time feature integration. In Proceedings.(ICASSP’05). IEEE

International Conference on Acoustics, Speech, and Signal Processing, 2005.,

volume 5, pages v–497. IEEE, 2005.

[23] George Tzanetakis and Perry Cook. Musical genre classification of audio signals.

IEEE Transactions on speech and audio processing, 10(5):293–302, 2002.

[24] Eya Mezghani, Maha Charfeddine, Chokri Ben Amar, and Henri Nicolas. Mul-

tifeature speech/music discrimination based on mid-term level statistics and

supervised classifiers. In 2016 IEEE/ACS 13th International Conference of

Computer Systems and Applications (AICCSA), pages 1–8. IEEE, 2016.

[25] Jean-Pierre Briot, Gaëtan Hadjeres, and François-David Pachet. Deep learning

techniques for music generation–a survey. arXiv preprint arXiv:1709.01620,

2017.

[26] Ke Chen, Weilin Zhang, Shlomo Dubnov, Gus Xia, and Wei Li. The effect of

explicit structure encoding of deep neural networks for symbolic music genera-

tion. In 2019 International Workshop on Multilayer Music Representation and

Processing (MMRP), pages 77–84. IEEE, 2019.

[27] Gen-Fang Chen and Ya-Dong Wu. Segmentation of singing, speech and in-

struments in kunqu audio based on zero-crossing rate. In 2019 12th Inter-

national Symposium on Computational Intelligence and Design (ISCID), vol-

ume 1, pages 270–273. IEEE, 2019.

[28] Feng Rong. Audio classification method based on machine learning. In 2016

International conference on intelligent transportation, big data & smart city

(ICITBS), pages 81–84. IEEE, 2016.

- 127 -

References

[29] Anastasios Vafeiadis, Konstantinos Votis, Dimitrios Giakoumis, Dimitrios Tzo-

varas, Liming Chen, and Raouf Hamzaoui. Audio-based event recognition sys-

tem for smart homes. In 2017 IEEE SmartWorld, Ubiquitous Intelligence &

Computing, Advanced & Trusted Computed, Scalable Computing & Communi-

cations, Cloud & Big Data Computing, Internet of People and Smart City Inno-

vation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pages 1–8.

IEEE, 2017.

[30] Theodoros Giannakopoulos and Georgios Siantikos. A ros framework for audio-

based activity recognition. In Proceedings of the 9th ACM International Con-

ference on PErvasive Technologies Related to Assistive Environments, pages

1–4, 2016.

[31] Noor Almaadeed, Muhammad Asim, Somaya Al-Maadeed, Ahmed Bouridane,

and Azeddine Beghdadi. Automatic detection and classification of audio events

for road surveillance applications. Sensors, 18(6):1858, 2018.

[32] Tina Raissi, Alessandro Tibo, and Paolo Bientinesi. Extended pipeline for

content-based feature engineering in music genre recognition. In 2018 IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 2661–2665. IEEE, 2018.

[33] Chandanpreet Kaur and Ravi Kumar. Study and analysis of feature based

automatic music genre classification using gaussian mixture model. In 2017 In-

ternational Conference on Inventive Computing and Informatics (ICICI), pages

465–468. IEEE, 2017.

[34] Aisha Gemala Jondya and Bambang Heru Iswanto. Indonesian’s traditional

music clustering based on audio features. Procedia computer science, 116:174–

181, 2017.

[35] Cj Carr and Zack Zukowski. Curating generative raw audio music with dome.

In IUI Workshops, 2019.

[36] Chadawan Ittichaichareon, Siwat Suksri, and Thaweesak Yingthawornsuk.

Speech recognition using mfcc. In International Conference on Computer

Graphics, Simulation and Modeling, pages 135–138, 2012.

- 128 -

References

[37] Jesper Højvang Jensen, Mads Græsbøll Christensen, Manohar N Murthi, and

Søren Holdt Jensen. Evaluation of mfcc estimation techniques for music simi-

larity. In 2006 14th European Signal Processing Conference, pages 1–5. IEEE,

2006.

[38] Arijit Ghosal, Rudrasis Chakraborty, Bibhas Chandra Dhara, and Sanjoy Ku-

mar Saha. Music classification based on mfcc variants and amplitude variation

pattern: a hierarchical approach. International Journal of Signal Processing,

Image Processing and Pattern Recognition, 5(1):131–150, 2012.

[39] Bruce P Bogert. The quefrency alanysis of time series for echoes; cepstrum,

pseudo-autocovariance, cross-cepstrum and saphe cracking. Time series analy-

sis, pages 209–243, 1963.

[40] Dabbabi Karim, Cherif Adnen, and Hajji Salah. An optimization of audio

classification and segmentation using gasom algorithm. INTERNATIONAL

JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS,

9(4):143–157, 2018.

[41] Theodoros Giannakopoulos. pyaudioanalysis: An open-source python library

for audio signal analysis. PLOS ONE, 10(12):1–17, 12 2015. doi: 10.

1371/journal.pone.0144610. URL https://doi.org/10.1371/journal.

pone.0144610.

[42] Peter M Todd. A connectionist approach to algorithmic composition. Computer

Music Journal, 13(4):27–43, 1989.

[43] Li-Chia Yang, Szu-Yu Chou, and Yi-Hsuan Yang. Midinet: A convolutional

generative adversarial network for symbolic-domain music generation. arXiv

preprint arXiv:1703.10847, 2017.

[44] Paul Fraisse. Rhythm and tempo. The psychology of music, 1:149–180, 1982.

[45] Official midi specifications, 1996. URL https://www.midi.org/

specifications/item/the-midi-1-0-specification. Accessed:

2020-11-07.

[46] Allen Huang and Raymond Wu. Deep learning for music. arXiv preprint

arXiv:1606.04930, 2016.

- 129 -

References

[47] Gaëtan Hadjeres, François Pachet, and Frank Nielsen. Deepbach: a steerable

model for bach chorales generation. In International Conference on Machine

Learning, pages 1362–1371. PMLR, 2017.

[48] Douglas Eck and Juergen Schmidhuber. A first look at music composition using

lstm recurrent neural networks. Istituto Dalle Molle Di Studi Sull Intelligenza

Artificiale, 103:48, 2002.

[49] Huanru Henry Mao, Taylor Shin, and Garrison Cottrell. Deepj: Style-specific

music generation. In 2018 IEEE 12th International Conference on Semantic

Computing (ICSC), pages 377–382. IEEE, 2018.

[50] Chris Walshaw. About abc notation, 2009. URL http://abcnotation.

com/about. Accessed: 2020-11-07.

[51] Sephora Madjiheurem, Lizhen Qu, and Christian Walder. Chord2vec: Learn-

ing musical chord embeddings. In Proceedings of the constructive machine

learning workshop at 30th conference on neural information processing systems

(NIPS2016), Barcelona, Spain, 2016.

[52] Michael Good. Musicxml for notation and analysis. The virtual score: repre-

sentation, retrieval, restoration, 12:113–124, 2001.

[53] Michael Scott Cuthbert, Chris Ariza, Jose Cabal-Ugaz, Beth Hadley, and Neena

Parikh. Hidden beyond midi’s reach: Feature extraction and machine learning

with rich symbolic formats in music21. In Proc. of the NIPS 2011 Workshop

on Music and Machine Learning, 2011.

[54] Michael Scott Cuthbert, Christopher Ariza, and Lisa Friedland. Feature ex-

traction and machine learning on symbolic music using the music21 toolkit. In

Ismir, pages 387–392, 2011.

[55] Sergio Giraldo and Rafael Ramirez. A machine learning approach to orna-

mentation modeling and synthesis in jazz guitar. Journal of Mathematics and

Music, 10(2):107–126, 2016.

[56] François Pachet, Jeff Suzda, and Dani Martinez. A comprehensive online

database of machine-readable lead-sheets for jazz standards. In ISMIR, pages

275–280, 2013.

- 130 -

References

[57] Michael C Mozer. Neural network music composition by prediction: Exploring

the benefits of psychoacoustic constraints and multi-scale processing. Connec-

tion Science, 6(2-3):247–280, 1994.

[58] Christian Walder. Modelling symbolic music: Beyond the piano roll. In Asian

Conference on Machine Learning, pages 174–189, 2016.

[59] Ian Simon and Sageev Oore. Performance rnn: Generating music with ex-

pressive timing and dynamics. Magenta Blog: https://magenta. tensorflow.

org/performancernn, 2017.

[60] Cory McKay, Tristano Tenaglia, and Ichiro Fujinaga. jsymbolic2: Extracting

features from symbolic music representations. In Late-Breaking Demo Session

of the 17th International Society for Music Information Retrieval Conference,

2016.

[61] Alan C Bovik. Handbook of image and video processing. Academic press, 2010.

[62] Anshuman Agarwal, Shivam Gupta, and Dushyant Kumar Singh. Review of

optical flow technique for moving object detection. In 2016 2nd International

Conference on Contemporary Computing and Informatics (IC3I), pages 409–

413. IEEE, 2016.

[63] Bruce D Lucas, Takeo Kanade, et al. An iterative image registration technique

with an application to stereo vision. Proceedings of Imaging Understanding

Workshop, pages 121–130, 1981.

[64] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade

of simple features. In Proceedings of the 2001 IEEE computer society conference

on computer vision and pattern recognition. CVPR 2001, volume 1, pages I–I.

IEEE, 2001.

[65] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,

Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In

European conference on computer vision, pages 21–37. Springer, 2016.

[66] Konstantinos Bougiatiotis and Theodore Giannakopoulos. Multimodal con-

tent representation and similarity ranking of movies. arXiv preprint

arXiv:1702.04815, 2017.

- 131 -

References

[67] Colin Raffel. Learning-based methods for comparing sequences, with applications

to audio-to-midi alignment and matching. PhD thesis, Columbia University,

2016.

[68] Jaap Haitsma and Ton Kalker. Speed-change resistant audio fingerprinting

using auto-correlation. In 2003 IEEE International Conference on Acous-

tics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP’03)., volume 4,

pages IV–728. IEEE, 2003.

[69] Shumeet Baluja and Michele Covell. Waveprint: Efficient wavelet-based audio

fingerprinting. Pattern recognition, 41(11):3467–3480, 2008.

[70] Shanshan Yao, Baoning Niu, and Jianquan Liu. Enhancing sampling and count-

ing method for audio retrieval with time-stretch resistance. In 2018 IEEE

Fourth International Conference on Multimedia Big Data (BigMM), pages 1–5.

IEEE, 2018.

[71] Theodoros Giannakopoulos, Alexandros Makris, Dimitrios Kosmopoulos,

Stavros Perantonis, and Sergios Theodoridis. Audio-visual fusion for detect-

ing violent scenes in videos. In Hellenic conference on artificial intelligence,

pages 91–100. Springer, 2010.

[72] Ba Tu Truong, Svetha Venkatesh, and Chitra Dorai. Scene extraction in motion

pictures. IEEE Transactions on Circuits and Systems for Video Technology, 13

(1):5–15, 2003.

- 132 -

