
Εθνικο Μετσοβιο Πολυτεχνειο
Σχολη Ηλεκτρολογων Μηχανικων και Μηχανικων Υπολογιστων

Τοµεας Τεχνολογιας Πληροφορικης και Υπολογιστων

Lyrics and Vocal Melody Generation

conditioned on Accompaniment

a symbolic music approach

using Deep Learning and Natural Language Processing techniques

∆ιπλωµατικη Εργασια
του

ΜΕΛΙΣΤΑ ΘΩΜΑ

Επιβλέποντες: Αλέξανδρος Ποταµιάνος Θεόδωρος Γιαννακόπουλος
Αναπληρωτής Καθηγητής Ερευνητής Β, ΕΚΕΦΕ ∆ηµόκριτος

Αθήνα, Μάρτιος 2021

Εθνικο Μετσοβιο Πολυτεχνειο

Σχολη Ηλεκτρολογων Μηχανικων και Μηχανικων Υπολογιστων

Τοµεας Τεχνολογιας Πληροφορικης και Υπολογιστων

Lyrics and Vocal Melody Generation conditioned on

Accompaniment

a symbolic music approach

using Deep Learning and Natural Language Processing techniques

∆ιπλωµατικη Εργασια
του

ΜΕΛΙΣΤΑ ΘΩΜΑ

Επιβλέποντες: Αλέξανδρος Ποταµιάνος Θεόδωρος Γιαννακόπουλος
Αναπληρωτής Καθηγητής Ερευνητής Β, ΕΚΕΦΕ ∆ηµόκριτος

Εγκρίθηκε από την τριµελή εξεταστική επιτροπή την 12η Μαρτίου 2021.

(Υπογραφή) (Υπογραφή) (Υπογραφή)

. .
Αλέξανδρος Ποταµιάνος Γιώργος Στάµου Θεόδωρος Γιαννακόπουλος
Αναπληρωτής Καθηγητής Αναπληρωτής Καθηγητής Ερευνητής Β, ΕΚΕΦΕ ∆ηµόκριτος

Αθήνα, Μάρτιος 2021

Εθνικο Μετσοβιο Πολυτεχνειο

Σχολη Ηλεκτρολογων Μηχανικων και Μηχανικων Υπολογιστων

Τοµεας Τεχνολογιας Πληροφορικης και Υπολογιστων

Copyright © – All rights reserved. Με την επιφύλαξη παντός δικαιώµατος.
Θωµάς Μελίστας, 2021.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανοµή της παρούσας εργασίας, εξ ολοκλήρου
ή τµήµατος αυτής, για εµπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανο-
µή για σκοπό µη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής ϕύσης, υπό την προϋπόθεση
να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν µήνυµα.

Το περιεχόµενο αυτής της εργασίας δεν απηχεί απαραίτητα τις απόψεις του Τµήµατος, του
Επιβλέποντα, ή της επιτροπής που την ενέκρινε.

∆ΗΛΩΣΗ ΜΗ ΛΟΓΟΚΛΟΠΗΣ ΚΑΙ ΑΝΑΛΗΨΗΣ ΠΡΟΣΩΠΙΚΗΣ ΕΥΘΥΝΗΣ

Με πλήρη επίγνωση των συνεπειών του νόµου περί πνευµατικών δικαιωµάτων, δηλώνω ενυ-
πογράφως ότι είµαι αποκλειστικός συγγραφέας της παρούσας Πτυχιακής Εργασίας, για την
ολοκλήρωση της οποίας κάθε ϐοήθεια είναι πλήρως αναγνωρισµένη και αναφέρεται λεπτο-
µερώς στην εργασία αυτή. ΄Εχω αναφέρει πλήρως και µε σαφείς αναφορές, όλες τις πηγές
χρήσης δεδοµένων, απόψεων, ϑέσεων και προτάσεων, ιδεών και λεκτικών αναφορών, είτε
κατά κυριολεξία είτε ϐάσει επιστηµονικής παράφρασης. Αναλαµβάνω την προσωπική και
ατοµική ευθύνη ότι σε περίπτωση αποτυχίας στην υλοποίηση των ανωτέρω δηλωθέντων στοι-
χείων, είµαι υπόλογος έναντι λογοκλοπής, γεγονός που σηµαίνει αποτυχία στην Πτυχιακή
µου Εργασία και κατά συνέπεια αποτυχία απόκτησης του Τίτλου Σπουδών, πέραν των λοιπών
συνεπειών του νόµου περί πνευµατικών δικαιωµάτων. ∆ηλώνω, συνεπώς, ότι αυτή η Πτυ-
χιακή Εργασία προετοιµάστηκε και ολοκληρώθηκε από εµένα προσωπικά και αποκλειστικά
και ότι, αναλαµβάνω πλήρως όλες τις συνέπειες του νόµου στην περίπτωση κατά την οποία
αποδειχθεί, διαχρονικά, ότι η εργασία αυτή ή τµήµα της δεν µου ανήκει διότι είναι προϊόν
λογοκλοπής άλλης πνευµατικής ιδιοκτησίας.

(Υπογραφή)

. .
Θωµάς Μελίστας

12 Μαρτίου 2021

Περίληψη

Θέµα της παρούσας διπλωµατικής εργασίας είναι η αυτόµατη παραγωγή στίχων και
ϕωνητικής µελωδίας ϐάσει της µουσικής υπόκρουσης. Πρόκειται για ένα ανεξερεύνητο
µέχρι στιγµής πρόβληµα. Τα τελευταία χρόνια υπάρχει ένα ολοένα αυξανόµενο ενδιαφέρον
για την παραγωγή στίχων µε γλωσσικά µοντέλα, λαµβάνοντας υπόψιν τις ιδιαιτερότητες στην
δοµή και το περιεχόµενο. Παράλληλα, έχει υπάρξει ενδιαφέρον για τη συσχέτιση στίχων και
ϕωνητικής µελωδίας, ενώ έχουν αναπτυχθεί µοντέλα που µπορούν να προβλέπουν ϕωνητικές
µελωδίες ϐάσει στίχων και το αντίστροφο.

Ενώ η έρευνα σε αυτόν τον τοµέα ϕαίνεται αρκετά υποσχόµενη µέχρι στιγµής, απο-
τυγχάνει να λάβει υπόψιν της το γενικότερο µουσικό πλαίσιο. Στη σύγχρονη µουσική, το
τραγούδι συνυπάρχει µαζί µε την ορχηστρική µουσική και έχει δύο ϐασικές λειτουργίες.
Προσθέτει µια µελωδία η οποία ταιριάζει µε την µουσική, και ενδύει στιχουργικά ένα κοµ-
µάτι λέγοντας µια ιστορία και προκαλώντας συναισθήµατα. Επίσης, η προηγούµενη έρευνα
αρκείται στο να µελετάει τη συσχέτιση µιας ή µερικών προτάσεων στίχων και δεν αναλύει την
δοµή των στίχων και της µελωδίας σε ολόκληρα κοµµάτια και τα µοτίβα που προκύπτουν.

Η παρούσα εργασία µοντελοποιεί το παραπάνω ως ένα πρόβληµα µετάφρασης ουσιαστι-
κά από µία ακολουθία (µουσική) σε µια άλλη (ϕωνητικά), χρησιµοποιώντας για πρώτη ϕορά
µοντέλα µε µηχανισµούς προσοχής γραµµικής πολυπλοκότητας, τα οποία έχουν εκπαιδευτεί
σε αναπαραστάσεις συµβολικής µουσικής. Χρησιµοποιούµε µουσικοθεωρητική ανάλυση για
να µικρύνουµε το µέγεθος των ακολουθιών των δεδοµένων µας και να τα κάνουµε ανεξάρ-
τητα της µουσικής κλίµακας στην οποία είναι γραµµένα, πετυχαίνοντας έτσι πιο γρήγορη
εκπαίδευση και πιο εύρωστα µοντέλα. Επίσης, δηµιουργούµε και εφαρµόζουµε µια νέα
αρχιτεκτονική για να χωρίσουµε την παραγωγή των στίχων και της µελωδίας, προσφέρο-
ντας τη δυνατότητα να χρησιµοποιηθεί κάποιο προεκπαιδευµένο γλωσσικό µοντέλο, αλλά
και να χρησιµοποιηθούν δοσµένοι στίχοι, προαιρετικά. Τέλος, χρησιµοποιούµε ένα µοντέλο
σύνθεσης ϕωνής για να διεξάγουµε ποιοτική αξιολόγηση των αποτελεσµάτων.

Από όσο γνωρίζουµε, αυτή είναι η πρώτη απόπειρα να µελετηθεί ταυτόχρονα στιχουργι-
κά και µελωδικά η συσχέτιση τραγουδιού και µουσικής. Ο κώδικας και τα εκπαιδευµένα
µοντέλα αυτής της εργασίας µιµούνται τη διαδικασία που ακολουθεί ένας τραγουδιστής/τρα-
γουδοποιός για να προσθέσει ϕωνητικά σε ένα κοµµάτι και πιστεύουµε ότι µπορεί να προ-
σφέρει έµπνευση σε καλλιτέχνες και όχι µόνο.

Λέξεις Κλειδιά

δηµιουργία στίχων και µουσικής, ϐαθιά µάθηση, επεξεργασία ϕυσικής γλώσσας, µετα-
σχηµατιστές, αποδοτικοί µηχανισµοί προσοχής, γλωσσικά µοντέλα, µουσική ανάλυση

1

Περίληψη

2

Abstract

The purpose of this dissertation is to study the generation of lyrics and vocal melody
for a given instrumental music piece. It is a novel, previously unexplored task. During the
last few years, there has been increasing research interest over lyrics generation as a case
of language modelling with domain specific structure and attributes, as well as regarding
symbolic music generation. The correlation of lyrics and corresponding vocal melody has
also recently started gaining attention and a few models that are able to generate lyrics
conditioned on melody, and vice versa, have been developed.

While the above research directions are very promising, they fail to capture the general
musical context of the songwriting process. In the majority of contemporary music,
singing coexists with accompaniment and its function is to both provide a melodic line,
that is grounded on the instrumental part and advances it musically, as well as to promote
the unfolding of a story through lyrical imagery. Moreover, former research on the matter
has followed a proof-of-concept approach, working on the level of one or a few sentences,
which is insufficient for capturing the structure and the recurring musical and lyrical
themes present in a song.

Our work models lyrics and vocal melody generation for a given music piece as a
sequence-to-sequence task, using for the first time an efficient attention Transformer
architecture trained on text event sequences, that describe entire songs. We build a sym-
bolic music dataset, suitable for the described task, and we apply music theory analysis,
compressing successfully our training data and making them key-independent. As a re-
sult, our models become faster to train and more robust. Furthermore, we come up with
a novel architecture, that decouples lyric and melody generation, while also providing
the ability to use any pretrained language model and optional conditioning on predefined
lyrics. Finally, the output is used together with a singing voice synthesis model to create
and add vocals to instrumental tracks, which we use for qualitative evaluation.

To the best of our knowledge, this is the first attempt to study both the melodic and
lyrical content of singing in relation to the musical context it is found in, and through
that, automate the process a singer or songwriter would follow, when presented with an
instrumental music piece, in order to enrich it with vocals. We believe that our work can
fuel human creativity and provide interesting musical ideas.

Keywords

lyrics and symbolic music generation, deep learning, natural language processing,
transformers, efficient attention, language modeling, music analysis

3

Ευχαριστίες

Θα ήθελα καταρχάς να ευχαριστήσω τον καθηγητή κ. Αλέξανδρο Ποταµιάνο για την
επίβλεψη αυτής της διπλωµατικής εργασίας και για την ευκαιρία που µου έδωσε να την
εκπονήσω στο εργαστήριο Επεξεργασίας Φωνής και Φυσικής Γλώσσας. Οι γνώσεις και οι
συµβουλές του επί του αντικειµένου ήταν καθοριστικής σηµασίας για την παρούσα εργασία,
ενώ οι διαλέξεις του ήταν ένα απο τα ϐασικότερα ερεθίσµατα που µε ώθησαν να ασχοληθώ
µε τη Μηχανική Μάθηση.

Επίσης, ϑα ήθελα να ευχαριστήσω από καρδιάς και τον συνεπιβλέποντα της διπλωµατικής
µου εργασίας, κ. Θεόδωρο Γιαννακόπουλο, για την υποδειγµατική συνεργασία που είχαµε.
Χωρίς την καθοδήγηση, την υποστήριξη και το αµέριστο ενδιαφέρον του, η εκπόνηση αυτής
της εργασίας ϑα ήταν απείρως δυσκολότερη.

Σε αυτό το σηµείο, να ευχαριστήσω και τους υποψήφιους διδάκτορες Γιώργο Παρα-
σκευόπουλο και Ευθύµη Γεωργίου για την ϐοήθεια τους επί ερευνητικών και πρακτικών
Ϲητηµάτων καθώς και για τις χρήσιµες συµβουλές τους.

Θα ήταν αδύνατον να είχα ολοκληρώσει την διπλωµατική µου εργασία χωρίς την στήριξη
κάποιων ανθρώπων, που ήταν εκεί για µένα, ακόµα και σε αυτή τη δύσκολη περίοδο. ∆εν
ϑα πω πολλά, αυτοί γνωρίζουν καλύτερα.

Θέλω να ευχαριστήσω την κοπέλα µου για την στήριξη που µου παρείχε όλο αυτό το
διάστηµα και ϐοήθησε στο να περάσουν ευχάριστα οι τελευταίοι µήνες. Τους ϕίλους µου,
που µου προσέφεραν τη γνώµη τους και τα σχόλια τους και άκουγαν στοργικά την γκρίνια
µου. Τέλος, ϑα ήθελα να ευχαριστήσω τους γονείς και τα αδέρφια µου.

Αθήνα, Μάρτιος 2021

Θωµάς Μελίστας

5

Περιεχόµενα

Περίληψη 1

Abstract 3

Ευχαριστίες 5

Πρόλογος 17

0 Εκτεταµένη Ελληνική Περίληψη 19

0.1 Εισαγωγή . 19
0.2 Θεωρητικό Υπόβαθρο . 20
0.3 Τα δεδοµένα µας . 21
0.4 Αρχιτεκτονικές των Μοντέλων . 24
0.5 Πειράµατα και Αποτελέσµατα . 27
0.6 Συµπεράσµατα και Μελλοντικές Κατευθύνσεις 29

1 Introduction 31

1.1 Motivation and Originality of our Work . 31
1.2 Research Objective and Contributions . 33
1.3 Thesis outline . 34

2 Background 35

2.1 Introduction to Machine Learning . 35
2.1.1 A Short History of Artificial Intelligence 35
2.1.2 Machine Learning . 36
2.1.3 Basic Machine Learning Methods . 38

2.2 Basics of Deep Learning . 40
2.2.1 Feed Forward Neural Networks . 40
2.2.2 Activation Functions . 41
2.2.3 Training . 45

2.3 Deep Learning for Natural Language Processing 51
2.3.1 Overview of the Field . 51
2.3.2 Recurrent Neural Networks . 52
2.3.3 Sequence-to-Sequence Modelling . 56
2.3.4 The Attention Mechanism . 57
2.3.5 Transformer . 58

7

ΠΕΡΙΕΧΟΜΕΝΑ

2.4 Overcoming Memory Constraints . 62

2.4.1 The Pursuit for Efficient Attention . 62

2.4.2 Performer - FAVOR+ Attention . 62

2.4.3 Reversible Layers . 63

2.5 On Symbolic Music and Vocal Melody Generation 64

2.5.1 Symbolic Music - MIDI . 64

2.5.2 Music Theory . 65

2.5.3 Symbolic Music Generation . 66

2.5.4 Conditional Vocal Melody Generation 67

2.6 On Conditional Lyrics Generation . 67

2.7 Singing Voice Synthesis . 68

3 Building our Dataset 69

3.1 The Lakh MIDI Dataset . 69

3.2 Shaping the Dataset for our Task . 70

3.2.1 Drawbacks of the Existing Dataset 70

3.2.2 Creating a more Standardized Dataset 70

3.2.3 Text Event Format . 71

3.3 Applying Music Theory Analysis . 73

3.3.1 Chord Reduction . 73

3.3.2 Roman Numeral Analysis . 75

3.4 Decoupling Lyrics and Melody . 77

4 Model Architectures for Lyrics and

Vocal Melody Generation 79

4.1 Sequence to Sequence Modelling . 79

4.1.1 Formulation . 79

4.1.2 Enhancements . 81

4.1.3 Decoding Strategy . 82

4.2 Decoupled Modelling - Combining Multiple Input Sequences 83

4.2.1 Formulation . 83

4.2.2 Lyrics Language Model . 85

5 Experiments and Results 87

5.1 Experiments . 87

5.1.1 Model Hyperparameters . 87

5.1.2 Training Hyperparameters . 89

5.1.3 Dataset size and total steps . 89

5.1.4 Training and Inference Speed . 90

5.2 Regarding the Generation Evaluation Metrics 90

5.3 Comparison . 91

5.4 Qualitative Evaluation . 92

8

ΠΕΡΙΕΧΟΜΕΝΑ

6 Conclusions and Future Work 95

6.1 Conclusions . 95
6.2 Future Work . 96

Παραρτήµατα 99

Α Training, Validation and Generation Metrics for our three models:

Seq2Seq with Full Input,

Seq2Seq with Reduced Chords Input,

Decoupled with Reduced Chords Input 101

Α.1 Sequence-to-Sequence with Full Instrumental Input 101
Α.2 Sequence-to-Sequence with Reduced Chords Instrumental Input 103
Α.3 Decoupled with Reduced Chords Instrumental Input 104

B Examples of the Generated Sequences 105

Βιβλιογραφία 113

9

Κατάλογος Σχηµάτων

1 Ακολουθία ορχηστρικού µέρους. 22
2 Ακολουθία ϕωνητικού µέρους. Περιέχει στίχους και µελωδία ταυτόχρονα. . . 22
3 Η απλή sequence-to-sequence αρχιτεκτονική µε έναν κωδικοποιητή για το

ορχηστρικό (αριστερά) και ένα αποκωδικοποιητή για το ϕωνητικό µέρος (δεξιά) 24
4 Η διαχωρισµένη αρχιτεκτονική µας µε έναν κωδικοποιητή (κέντρο), έναν απο-

κωδικοποιητή για στίχους (αριστερά) και έναν αποκωδικοποιητή για ϕωνητική
µελωδία (δεξιά) µε δύο υπο-επίπεδα cross-attention. Ο κωδικοποιητής ϱυθ-
µίζει και τους δύο αποκωδικοποιητές, ενώ οι κωδικοποιήσεις του µοντέλου
στίχων ϱυθµίζουν τον αποκωδικοποιητή ϕωνητικής µελωδίας. 26

2.1 An illustration of the Perceptron with mathematical notation (right) and a
drawing of a biological neuron (left) to draw analogies and show the re-
searchers’ inspiration. (Source: [38]) . 38

2.2 An example of Support Vector Machines for classification. The red line is
the maximum-margin hyperplane. (Source: Wikipedia) 39

2.3 A 3-layer feed forward neural network with three inputs, two hidden layers
of 4 neurons each and one output layer. (Source: [38]) 40

2.4 A sigmoid non-linearity. All inputs are squashed in the range [0,1]. (Source:
[38]) . 42

2.5 A tanh non-linearity. All inputs are squashed in the range [-1,1]. (Source:
[38]) . 42

2.6 A ReLU non-linearity. Simply, zero when z < 0 and then linear with slope 1
when z > 0. (Source: [38]) . 43

2.7 A GELU non-linearity. (Source: PyTorch documentation) 44
2.8 The surface of a non-convex loss function. The arrow shows a path to reach

the global minimum. (Source: Medium) . 47
2.9 Using dropout during a training step. (Source: [7]) 49
2.10 A residual connection skipping two layers. (Source: [30]) 51
2.11 An RNN looping through time (left) and the same network unfolded over

time (right). (Source: Wikipedia) . 53
2.12 The architecture of an LSTM unit. (Source: Wikipedia) 54
2.13 The architecture of a GRU unit. (Source: Wikipedia) 56
2.14 The encoder-decoder framework. The RNN units are unfolded over time.

(Source: Github) . 57
2.15 The attention mechanism of the original paper. (Source:[2]) 58

11

https://en.wikipedia.org/wiki/Support-vector_machine
https://pytorch.org/docs/stable/generated/torch.nn.GELU.html
https://medium.com/swlh/non-convex-optimization-in-deep-learning-26fa30a2b2b3
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://github.com/sooftware/seq2seq

ΚΑΤΑΛΟΓΟΣ ΣΧΗΜΑΤΩΝ

2.16 The Transformer Encoder-Decoder Architecture. (Source: [86]) 59

2.17 Schematics of Scaled Dot-Product Attention (left) and Multi-Head Attention
with h attention heads (right). (Source: [86]) 60

2.18 The Performer Architecture - approximation via random features to avoid
computation of A (source: [17]) . 63

2.19 The forward (a) and reverse (b) computations on a reversible block (Source:
[26]) . 64

2.20 The piano roll representation of a MIDI file (Source: songaweek) 65

2.21 The chromatic 12-tone chromatic scale built on C4, with corresponding
frequencies. (Source: Wikipedia) . 65

2.22 The chord progression vi–ii–V–I in the key of C major, in standard notation
Am − Dm − Gmaj − Cmaj. (Source: Wikipedia) 66

3.1 Instrumental Text Events . 71

3.2 Vocal Text Events (phonemes) corresponding to the lyrics: cot-

ton sold in a marke(-e)t . 72

3.3 An example of two music measures before compressing them to chords and
annotating them using roman numeral analysis (illustration with MuseScore) 74

3.4 The same two music measures of Figure 3.3, but with generated chords
and their roman numeral representation. Notes are restricted in an octave
range (illustration with MuseScore). 75

3.5 Instrumental Text Events with Roman Numeral Chords, Rests, Downbeats
and Beats . 76

3.6 Vocal Text Events with Roman Numeral Notes 76

4.1 Our Simple Sequence-to-Sequence Architecture with an instrumental en-
coder (left) and a vocal melody/lyrics decoder (right) 80

4.2 Our Decoupled Architecture with an instrumental encoder (center), one
decoder for lyrics (left) and one decoder for vocal melody (right) with two
cross-attention sublayers. The encoder conditions both decoders, while the
encodings of the lyrics model condition the vocal melody decoder. 84

4.3 The Language Model that we finetune on lyrics, warm-starting with pre-
trained distilGPT-2 weights . 86

5.1 Rhythmical/Musical Quality according to our Qualitative Evaluation Study 93

5.2 Relation to the Music according to our Qualitative Evaluation Study 94

5.3 Lyrical Content according to our Qualitative Evaluation Study 94

Α.1 Train(orange) and Validation(blue) Loss for simple seq2seq architecture with
full input - training for 6 epochs . 101

Α.2 BLEU metric for simple seq2seq architecture with full input 102

Α.3 Valid Structure Metric of Vocal Melody sequence for simple seq2seq archi-
tecture with full input . 102

12

http://www.charliemccarron.com/songaweek/2011/09/week-3-pat-boerner-something-to-say/
https://en.wikipedia.org/wiki/Musical_note
https://en.wikipedia.org/wiki/Roman_numeral_analysis
https://musescore.org/en
https://musescore.org/en

ΚΑΤΑΛΟΓΟΣ ΣΧΗΜΑΤΩΝ

Α.4 Train(orange) and Validation(blue) Loss for simple seq2seq architecture with
reduced input - training for 6 epochs . 103

Α.5 BLEU metric for simple seq2seq architecture with reduced input 103
Α.6 Valid Structure Metric of Vocal Melody sequence for simple seq2seq archi-

tecture with reduced input . 104
Α.7 Train(orange) and Validation(blue) Loss for decoupled architecture with re-

duced input (sum of lyrics and melody losses) - training for 6 epochs . . . 104
Α.8 Valid Structure Metric of Vocal Melody sequence for decoupled architecture

with reduced input . 104

B.1 Generated examples of the distilGPT-2 language model finetuned on lyrics 105
B.2 Generated examples of the language model in the decoupled architecture . 106

13

Κατάλογος Πινάκων

1 Μεγέθη ορχηστρικών και ϕωνητικών ακολουθιών 23
2 Μεγέθη ορχηστρικής ακολουθίας µετά τη συµπίεση σε ακόρντα 23
3 Μέγεθος συνόλων δεδοµένων (90% για εκπαίδευσης), εποχές και συνολικά

ϐήµατα εκπαίδευσης και για τα τρία µοντέλα, καθώς και το Γλωσσικό Μοντέλο 27
4 Ταχύτητα εκπαίδευσης, συνολική διάρκεια εκπαίδευσης και ταχύτητα παρα-

γωγής για τα τρία µοντέλα (χρόνοι µετρηµένοι σε GPU NVIDIA Tesla T4) . . . 27

2.1 A summary table of popular attention mechanisms in chronological order . 58

3.1 Sequence Lengths for Instrumental and Vocal text event formats 73
3.2 Sequence Lengths and Percent Reduction of Instrumental Events 77

5.1 Model Hyperparameters for Sequence-to-Sequence with Full Instrumental
Input, Sequence-to-Sequence with Reduced Chords Instrumental Input and
Decoupled with Reduced Chords Instrumental Input. *language model . . 88

5.2 Model Hyperparameters for the Language Model that we finetune on Lyrics,
we warm-start (load weights) from a pretrained distilGPT-2 model 88

5.3 Training Hyperparameters for all three Instrumental to Vocals Models (Seq2Seq
(full), Seq2Seq (chords), Decoupled (chords)) and the finetuned on Lyrics
Language Model . 89

5.4 Size of Train and Validation Datasets (90/10 split), Epochs and Total Train-
ing Steps for all three Instrumental to Vocals Models (Seq2Seq (full), Seq2Seq
(chords), Decoupled (chords)) and the finetuned on Lyrics Language Model 90

5.5 Training speed, total training duration and inference speed for Sequence-
to-Sequence with Full Instrumental Input, Sequence-to-Sequence with Re-
duced Chords Instrumental Input and Decoupled with Reduced Chords
Instrumental Input (times measured in an NVIDIA Tesla T4 GPU) 90

5.6 Training speed and total training duration for the Language Model that we
finetune on Lyrics . 91

15

Πρόλογος

Η παρούσα διπλωµατική εργασία εκπονήθηκε στο εργαστήριο Επεξεργασίας Φωνής και
Φυσικής Γλώσσας (NTUA Speech And Language Processing Group) της σχολής Ηλεκτρο-
λόγων Μηχανικών και Μηχανικών Υπολογιστών του Εθνικού Μετσόβιου Πολυτεχνείου στην
Αθήνα, κατά το έτος 2020-2021.

Πίνακας εξωφύλλου: Wassily Kandinsky, Transverse Line, 1923

Ο Kandinsky όντας συναισθητικός, παροµοίαζε συχνά τη Ϲωγραφική µε τη µουσική, δανει-
Ϲόµενος όρους όπως αυτοσχεδιασµός ή σύνθεση όταν αναφερόταν στο έργο του και η ίδια του
η τέχνη µαρτυρούσε την αντίληψη του αυτή.

Colour is the keyboard, the eyes are the hammers,

the soul is the piano with many strings.

The artist is the hand which plays,

touching one key or another,

to cause vibrations in the soul.

Wassily Kandinsky

17

Κεφάλαιο 0

Εκτεταµένη Ελληνική Περίληψη

0.1 Εισαγωγή

Το αντικείµενο µε το οποίο ασχολείται η παρούσα διπλωµατική εργασία είναι η αυτόµατη
παραγωγή στίχων και ϕωνητικής µελωδίας ϐάσει της µουσικής υπόκρουσης. Πρόκειται
για ένα ανεξερεύνητο µέχρι στιγµής πρόβληµα. Ενώ έχει παρατηρηθεί ενδιαφέρον για τη
συσχέτιση στίχων και ϕωνητικής µελωδίας, η υπάρχουσα έρευνα δεν έχει λάβει υπόψιν της
το ορχηστρικό κοµµάτι των τραγουδιών. Η µοντέρνα µουσική ϐασίζεται πολύ στην συνύπαρξη
µουσικής και ϕωνητικών, τα οποία πρέπει να σχετίζονται και να στηρίζονται στη µουσική,
τόσο ϱυθµικά, όσο και αρµονικά. Ακόµα, οι στίχοι έχουν άµεση σχέση µε τη ϕωνητική
µελωδία και το περιεχόµενο τους σχετίζεται µε τη µουσική και το είδος της.

Συνεπώς, η συγκεκριµένη εργασία καλύπτει ένα σηµαντικό κενό στην σχετική έρευνα.
Ταυτόχρονα, το αντικείµενο αυτό, αποτελεί ένα περιβάλλον το οποίο διατίθεται για µελέτη
σχετικά µε τις δυνατότητες της τεχνητής ή αλλιώς υπολογιστικής δηµιουργικότητας, καθώς
και για την επίλυση δυσκολιών που προκύπτουν κατά την µοντελοποίηση µεγάλων και σύν-
ϑετων ακολουθιών.

Η παρούσα εργασία µοντελοποιεί το παραπάνω ως ένα πρόβληµα µετάφρασης ουσια-
στικά, από µία ακολουθία (µουσική) σε µια άλλη (ϕωνητικά). Σε αντίθεση µε προηγούµενες
προσπάθειες που αρκούνται στο να µελετούν τη συσχέτιση µιας ή µερικών προτάσεων στίχων,
η δουλειά µας αναλύει την δοµή των στίχων και της µελωδίας σε ολόκληρα κοµµάτια και
συνεπώς τα µοτίβα που προκύπτουν. Το παρόν έργο είναι η πρώτη προσπάθεια, από όσο
γνωρίζουµε, να παραχθούν τόσο στίχοι όσο και ϕωνητική µελωδία, για ένα ολόκληρο κοµ-
µάτι, χρησιµοποιώντας µια Transformer αρχιτεκτονική και χρησιµοποιώντας προηγούµενη
γνώση από γλωσσικά µοντέλα.

Οι σηµαντικότερες συνεισφορές µας στο σχετικό ερευνητικό πεδίο είναι οι εξής :

• Μελετάµε για πρώτη ϕορά την παραγωγή στίχων και ϕωνητικής µελωδίας ϐάσει της
µουσικής υπόκρουσης

• Χρησιµοποιούµε για πρώτη ϕορά την αρχιτεκτονική Transformer στο πλαίσιο της πα-
ϱαγωγής στίχων ή ϕωνητικής µελωδίας. Χρησιµοποιούµε έναν µηχανισµό προσοχής
γραµµικής πολυπλοκότητας, που µας επιτρέπει να εκπαιδεύουµε τα µοντέλα µας σε
ακολουθίες έως και 50 ϕορές µεγαλύτερες από το συνηθισµένο.

19

Κεφάλαιο 0. Εκτεταµένη Ελληνική Περίληψη

• Με χρήση τεχνικών µουσικής ανάλυσης, συµπιέζουµε τα δεδοµένα µας έως και 80%
και τα κάνουµε ανεξάρτητα από την κλίµακα στην οποία ϐρίσκονται, εκπαιδεύοντας
τα µοντέλα µας πιο γρήγορα

• Αναπτύσσουµε µια καινούρια ¨διαχωρισµένη¨ αρχιτεκτονική, που µας επιτρέπει να
παράξουµε ξεχωριστά στίχους και ϕωνητική µελωδία, λαµβάνοντας υπόψιν την αλλη-
λεξάρτησή τους. Αυτό µας δίνει τη δυνατότητα να χρησιµοποιήσουµε οποιοδήποτε
προεκπαιδευµένο γλωσσικό µοντέλο και προαιρετικά να χρησιµοποιήσουµε δικούς
µας στίχους.

Για να ερευνήσουµε τα παραπάνω:

• ∆ηµιουργούµε ένα σύνολο δεδοµένων που είναι κατάλληλο για το πρόβληµα, διαχω-
ϱίζοντας ϕωνητικά από µουσική και δηµιουργώντας ακολουθίες κειµένου που περι-
γράφουν το κάθε τραγούδι

• Εκπαιδεύουµε ένα γλωσσικό µοντέλο σε αγγλικούς στίχους και το χρησιµοποιούµε
στην αρχιτεκτονική µας για να ϐελτιώσουµε την ποιότητα των παραγόµενων στίχων

• Αναπτύσσουµε µια στρατηγική αποκωδικοποίησης, ειδικά για το πρόβληµα µας και
κάνουµε τη δηµιουργία πιο εύρωστη, επιβάλλοντας έγκυρη δοµή. Επίσης, σχεδιάζου-
µε µια µέθοδο αξιολόγησης µε ϐάση τη δοµή.

• Χρησιµοποιούµε ένα µοντέλο σύνθεσης ϕωνής για τη δηµιουργία ϕωνητικών. Στη
συνέχεια, το χρησιµοποιούµε, µαζί µε την υπόκρουση, για να πραγµατοποιήσουµε
µια ποιοτική µελέτη αξιολόγησης.

0.2 Θεωρητικό Υπόβαθρο

Ο Transformer [86] είναι µια αρχιτεκτονική ϐαθιάς µηχανικής µάθησης που εισήχθη
για να λύσει το πρόβληµα της αυτόµατης µετάφρασης. Είναι εµπνευσµένος από την επιτυχία
του µηχανισµού προσοχής και είναι σε ϑέση να επεξεργάζεται δεδοµένα παράλληλα. Αυτό
τον καθιστά πολύ γρήγορο, ενώ αποδίδει καλύτερα από άλλες αρχιτεκτονικές. Πρόκειται
για µια αρχιτεκτονική κωδικοποιητή-αποκωδικοποιητή ή οποίοι αποτελούνται από πολλά
στοιβαγµένα ίδια επίπεδα. Κάθε επίπεδο του κωδικοποιητή αποτελείται από υπο-επίπεδα
self-attention και feedfoward δικτύων. Ο αποκωδικοποιητής έχει την ίδια δοµή, µε την προ-
σθήκη ενός cross-attention υπο-επιπέδου. Το υπο-επίπεδο self-attention δηµιουργεί µια
αναπαράσταση της ακολουθίας µε ϐάση τα συµφραζόµενα, αναλύοντας την εξάρτηση µεταξύ
των µερών της. Το υπο-επίπεδο cross-attention είναι υπεύθυνο για την ανάλυση της εξάρ-
τησης µεταξύ των ακολουθιών εισόδου και εξόδου. Το αποτέλεσµα του τελευταίου επιπέδου
του αποκωδικοποιητή µετατρέπεται τελικά σε πιθανότητες συµβόλων, χρησιµοποιώντας έναν
γραµµικό µετασχηµατισµό και µια συνάρτηση softmax.

Ο µηχανισµός προσοχής είναι το ϐασικότερο κοµµάτι και δίνεται από τον εξής τύπο:

Attention(Q,K, V) = softmax(
QK>
√
dk

)V (1)

20

0.3 Τα δεδοµένα µας

όπου οι πίνακες K και V αναφέρονται στον κωδικοποιητή ενώ ο πίνακας Q στον απο-
κωδικοποιητή, στην περίπτωση του cross-attention, ενώ κατά το self-attention οι πίνακες
αφορούν το ίδιο µέρος του δικτύου. Στην πραγµατικότητα, ο µηχανισµός που χρησιµοποιε-
ίται είναι πιο σύνθετος, αλλά δεν ϑα προχωρήσουµε σε λεπτοµέρειες.

Από την εµφάνισή του, ο Transformer έχει ϕέρει επανάσταση στο ευρύτερο πεδίο της
Επεξεργασίας Φυσικής Γλώσσας και έχει γίνει η επιλεγόµενη αρχιτεκτονική για πολλά προ-
ϐλήµατα. Κάποιες παραλλαγές της αρχιτεκτονικής κρατάνε µόνο τον κωδικοποιητή [21] ή
τον αποκωδικοποιητή [69], εκπαιδεύοντας τους σε τεράστιο όγκο δεδοµένων και χρησιµοποι-
ώντας τους (και την γνώση που αποκοµίζουν) ως γλωσσικά µοντέλα για παραγωγή κειµένου
ή σε συνδυασµό µε επιπλέον επίπεδα για άλλα προβλήµατα.

΄Ενα σηµαντικό µειονέκτηµα του µηχανισµού προσοχής του Transformer είναι ότι είναι
αναποτελεσµατικός για µεγάλες ακολουθίες. Η χωρική και χρονική πολυπλοκότητα του είναι
τετραγωνική, καθιστώντας ανέφικτο το να χρησιµοποιηθεί για µεγάλες ακολουθίες πρακτικά.
Ο µηχανισµός προσοχής FAVOR+ [17] έρχεται να λύσει αυτό το πρόβληµα και να κάνει την
πολυπλοκότητα γραµµική, µε µια ικανοποιητική προσέγγιση.

΄Ενας ακόµα τρόπος να µειώσουµε τη χρήση µνήµης είναι τα αναστρέψιµα επίπεδα
(reversible layers) [26] µε τα οποία είναι απαραίτητο να κρατάµε την έξοδο µόνο του τε-
λευταίου επιπέδου. Αυτό επιτυγχάνεται κρατώντας ένα Ϲευγάρι εισόδου και εξόδου σε κάθε
επίπεδο αντί για µόνο µια τιµή.

0.3 Τα δεδοµένα µας

Η ϐάση του συνόλου δεδοµένου µας είναι το Lakh MIDI Dataset (LMD) [70]. Τα δε-
δοµένα αυτά ϐρίσκονται στην µορφή MIDI, η οποία είναι µια δυαδική µορφή συµβολικής
αναπαράστασης µουσικής. Σε αντίθεση µε την παρτιτούρα για παράδειγµα που περιέχει
µια ιεραρχική δοµή, τα αρχεία MIDI αποτελούνται από σύνολα ¨γεγονότων¨ που δηλώνουν
σε ποιο χρονικό σηµείο ξεκινάει να παίζει (ή σταµατάει) µια νότα ή και άλλα µεταδεδοµένα
όπως οι στίχοι. Από το παραπάνω σύνολο δεδοµένων, χρησιµοποιούµε 45,129 αρχεία τα
οποία ϕέρνουµε σε κατάλληλη µορφή ακολουθώντας την εξής διαδικασία :

• Ανίχνευσης γλώσσας, για τη διατήρηση µόνο αγγλικών στίχων.

• ∆ιατήρηση µόνο συγκεκριµένων χαρακτήρων

• Αντιστοίχιση στίχων στην πλησιέστερη νότα και επιλογή του οργάνου µε τις περισσότε-
ϱες αντιστοιχίσεις

• Φιλτράρισµα κοµµατιών µε λιγότερες από 50 συλλαβές στίχων.

• Περιορισµός όλων των νοτών σε εύρος οκάβων.

• Οµαδοποίηση όλων των οργάνων σε 8 κατηγορίες : Piano, Guitar, Bass, Strings, Wind,
Synth, Drums, Effects

21

Κεφάλαιο 0. Εκτεταµένη Ελληνική Περίληψη

Επίσης για να έχουµε µια συνεπή και αναστρέψιµη αντιστοίχιση στίχων σε νότες, εφαρ-
µόζουµε µια αυστηρή συλλαβοποίηση:

• Μετατρέπουµε κάθε λέξη σε ϕωνήµατα

• Χωρίζουµε τις λέξεις σε συλλαβές, ώστε η καθεµία να περιέχει ένα ϕωνήεν

• Αν µια νότα αντιστοιχεί σε n >1 συλλαβές, την χωρίζουµε σε n νότες ίσας διάρκειας

• Εάν µια συλλαβή εκτείνεται σε πάνω από n >1 νότες, την αντιστοιχίζουµε στην πρώτη
και αντιστοιχίζουµε τις επόµενες n - 1 νότες σε ένα ειδικό σύµβολο.

Μετά την παραπάνω διαδικασία έχουµε 8505 αρχεία. Από αυτά δηµιουργούµε ακο-
λουθίες της µορφής που ϕαίνεται στα Σχήµατα 1 και 2, για το ορχηστρικό και το ϕωνητικό
µέρος αντίστοιχα. Αυτές οι ακολουθίες αποτελούν τα δεδοµένα που χρησιµοποιούµε στην
εκπαίδευση.

Σχήµα 1: Ακολουθία ορχηστρικού µέρους.

Οι ακολουθίες αποτελούνται από γεγονότα των παρακάτω τύπων:

• wait time γεγονότα, µετράνε την παρέλευση του χρόνου (σε MIDI ticks)

• note on γεγονότα, δείχνουν ότι µια νότα (µε αυτόν τον αριθµό) ξεκινάει να παίζεται

• note off γεγονότα, δείχνουν ότι µια νότα (µε αυτόν τον αριθµό) σταµατάει να παίζεται

Σχήµα 2: Ακολουθία ϕωνητικού µέρους. Περιέχει στίχους και µελωδία ταυτόχρονα.

Οι ϕωνητικές ακολουθίες έχουν επίσης :

• syllable/phoneme γεγονότα που περιλαµβάνουν τα ϕωνήµατα που αντιστοιχούν στη
νότα που ακολουθεί

22

0.3 Τα δεδοµένα µας

• extension γεγονότα, όταν µια συλλαβή τραγουδιέται σε δύο ή περισσότερες νότες

• boundary γεγονότα, όπως κενό ή αλλαγή γραµµής, περιέχουν πληροφορία για τη
δοµή του κειµένου

Μεγέθη Ακολουθίας Ορχηστρικό Φωνητικά Φωνητικά (χωρίς συλλαβές)

µέγιστο 59120 6115 5065
διάµεσο 13041 1645 1373
ελάχιστο 575 310 256

Πίνακας 1: Μεγέθη ορχηστρικών και ϕωνητικών ακολουθιών

΄Οπως ϕαίνεται στον Πίνακα 1, τα µεγέθη των ακολουθιών είναι πάρα πολύ µεγάλα. Πα-
ϱόλο που χρησιµοποιούµε µια αρχιτεκτονική που αναπτύχθηκε για µοντελοποίηση µεγάλων
ακολουθιών, η συµπίεση των ακολουθιών χωρίς απώλεια σηµαντικής πληροφορίας είναι ε-
πιθυµητή. Η εκπαίδευση ϑα είναι ταχύτερη και µια πιο πυκνή αναπαράσταση µπορεί να
κάνει το µοντέλο µας πιο εύρωστο.

Χρησιµοποιώντας την ϐιβλιοθήκη music21 [19], εφαρµόζουµε µια µέθοδο συµπίεσης
χρησιµοποιώντας ακόρντα (σύνολα νοτών). Αυτή η µέθοδος συγχωνεύει όλα τα διαφορετικά
όργανα και κάθε νέα νότα οδηγεί σε ένα νέο ακόρντο. Με αυτόν τον τρόπο µπορούµε
να µειώσουµε µια πολύπλοκη αναπαράσταση σε µια απλή διαδοχή ακόρντων, χωρίς να
απορρίπτουµε πληροφορία και ταυτόχρονα την απλοποιούµε.

Μεγέθη Ακολουθίας Ορχηστρικό Μείωση

µέγιστο 11730 80.16%
διάµεσο 3220 75.31%
ελάχιστο 239 59.83%

Πίνακας 2: Μεγέθη ορχηστρικής ακολουθίας µετά τη συµπίεση σε ακόρντα

΄Οπως µπορούµε να δούµε στον Πίνακα 2, τα ακόρντα που δηµιουργούνται µειώνουν τα
µήκη της ορχηστρικής ακολουθίας κατά έναν µεγάλο παράγοντα, αλλά το να συµβολίσουµε
απλά κάθε ακόρντο µε τις νότες από τις οποίες αποτελείται, αυξάνει πολύ το µέγεθος των
πιθανών συµβόλων. Επίσης, αν το ίδιο ακριβώς τραγούδι, µετατοπιζόταν σε άλλο µουσικό
κλειδί ϑα αποτελούνταν από εντελώς διαφορετικά ακόρντα. Θα ήταν συνεπώς πιο χρήσιµο
να µπορούµε να συµβολίζουµε τις σχετικές ϑέσεις και τη λειτουργία των ακόρντων. Για να
λύσουµε αυτά τα Ϲητήµατα, χρησιµοποιούµε έναν τύπο µουσικής ανάλυσης που ονοµάζεται
ϱωµαϊκή αριθµητική ανάλυση και η ϐασική του ιδέα είναι ότι κάθε ακόρντο µπορεί να
αναπαρασταθεί από έναν ϐαθµό της µουσικής κλίµακας στην οποία ανήκει. Την ίδια διαδι-
κασία ακολουθούµε και για τη ϕωνητική µελωδία.

Τέλος, δηµιουργούµε και ένα σύνολο δεδοµένων όπως το παραπάνω, µε τη διαφορά ότι
δεν συµπεριλαµβάνουµε τα ϕωνήµατα στην ακολουθία της µελωδίας, αλλά κρατάµε το αρχι-
κό ολόκληρο κείµενο. ΄Ετσι έχουµε τρεις ακολουθίες, την ορχηστρική, τη ϕωνητική µελωδία
και τους στίχους σε µορφή κειµένου. Καθώς επιβάλλαµε τον διαχωρισµό σε συλλαβές που

23

Κεφάλαιο 0. Εκτεταµένη Ελληνική Περίληψη

εξηγήσαµε παραπάνω, είναι πολύ εύκολο να ϕτιάξουµε την ϕωνητική ακολουθία και αφού
παράξουµε χωριστά τους στίχους.

Επίσης, δηµιουργούµε ένα σύνολο δεδοµένων από σκέτους στίχους που ϐρίσκουµε στο
διαδίκτυο, ϕέρνοντας στους στη µορφή που εξηγήσαµε παραπάνω, για να προεκπαιδεύσουµε
ένα γλωσσικό µοντέλο, όπως δείχνουµε στη συνέχεια.

0.4 Αρχιτεκτονικές των Μοντέλων

Σε αυτό το σηµείο ϑα παρουσιάσουµε τις αρχιτεκτονικές των µοντέλων που ϑα χρησιµο-
ποιήσουµε στα πειράµατα µας. Πρόκειται για (α) µια απλή κωδικοποιητή-αποκωδικοποιητή
ή αλλιώς sequence-to-sequence αρχιτεκτονική που µοντελοποιεί την ϕωνητική µελωδία και
τους στίχους ως µέρος τη ίδιας ακολουθίας και (ϐ) µια ¨διαχωρισµένη¨ αρχιτεκτονική που
µοντελοποιεί ξεχωριστά την ϕωνητική µελωδία και τους στίχους, διατηρώντας την αλληλε-
ξάρτησή τους.

Self Attention

Feed Forward

Instrumental
Input

Embedding

Positional
Embedding

Layer Norm

Residual

Layer Norm

Residual

Masked Self Attention

Feed Forward

Vocal Melody/Lyrics
Input

Weight Sharing

Embedding

Positional
Embedding

Layer Norm

Residual

Layer Norm

Residual

Cross Attention

Feed Forward

Layer Norm

Residual

Layer Norm

Residual

Language Model
Head

Vocal Melody/Lyrics
Output

Nx

Nx

Σχήµα 3: Η απλή sequence-to-sequence αρχιτεκτονική µε έναν κωδικοποιητή για το ορχη-
στρικό (αριστερά) και ένα αποκωδικοποιητή για το ϕωνητικό µέρος (δεξιά)

Η απλή αρχιτεκτονική κωδικοποιητή-αποκωδικοποιητή ϐασίζεται στην αρχιτεκτονική
Transformer που παρουσιάσαµε παραπάνω, µε τη διαφορά της χρήσης του µηχανισµού
προσοχής γραµµικής πολυπλοκότητας, FAVOR+, καθώς και τη χρήση αναστρέψιµων επι-
πέδων για επιπλέον ελάττωση στη χρήση µνήµης. Κάποιες επιπλέον προσθήκες σε σχέση
µε την απλή αρχιτεκτονική Transformer είναι η χρήση feed-forward chunking [42] στα
feedforward υπο-επίπεδα, χρήση positional embedding τα ϐάρη των οποίων εκπαιδεύονται
µαζί µε το υπόλοιπο δίκτυο, αντί των τριγωνοµετρικών συναρτήσεων που χρησιµοποιούνταν

24

0.4 Αρχιτεκτονικές των Μοντέλων

προηγουµένως. Επίσης, το layer normalization [3] τοποθετείται πριν την είσοδο των υπολο-
ίπων υπο-επιπέδων, κάτι που έχει αποδειχθεί πειραµατικά και ϑεωρητικά να αποδίδει πολύ
καλύτερα [12] [59]. Τέλος, χρησιµοποιούµε τη Gaussian Error Linear Unit (GELU) [31]
ως συνάρτηση ενεργοποίησης στα feedforward υπο-επίπεδα. Η αρχιτεκτονική ϕαίνεται στο
Σχήµα 3.

Συνοπτικά, ϑεωρώντας X1:n την ακολουθία εισόδου και Y1:m την ακολουθία εξόδου και
τις παραµέτρους του κωδικοποιητή και του αποκωδικοποιητή θenc και θdec αντίστοιχα, το
πρόβληµα που ϑέλουµε να λύσουµε έχει την µορφή:

pθenc,θdec(Y1:m |X1:n) (2)

Ο κωδικοποιητής µοντελοποιεί τη συνάρτηση fθenc : X1:n → X1:n και η Εξίσωση 2 µπορεί
να γραφεί χρησιµοποιώντας τον κανόνα του Bayes ως :

pθenc,θdec(Y1:m |X1:n) = pθdec (Y1:m |X1:n) =

m∏
i=1

pθdec(yi |Y0:i−1,X1:n) (3)

Είναι εύκολο να διαπιστωθεί πως οι ακολουθίες που χρησιµοποιούµε έχουν µια συγκε-
κριµένη δοµή, ειδικά η ϕωνητική. Για παράδειγµα ένα σύνολο ϕωνηµάτων ακολουθείται
από ένα γεγονός note on, ή µετά από ένα note on ακολουθεί ένα wait time. Εκµεταλλευόµα-
στε αυτή την δοµή και την επιβάλλουµε κατά την παραγωγή της ακολουθίας, αναπτύσσοντας
έναν σχετικό αλγόριθµο. ΄Ετσι, ϐοηθάµε το µοντέλο να παράγει κάθε ϕορά σωστές ακολου-
ϑίες.

Η διαχωρισµένη αρχιτεκτονική που αναπτύσσουµε συνδέει τρεις ακολουθίες µεταξύ τους
και χρησιµοποιώντας την ϑέλουµε δύο από αυτές να είναι οι έξοδοι.

΄Οπως ϕαίνεται στο Σχήµα 4, διατηρούµε τον κωδικοποιητή αµετάβλητο και αντί για έναν
µόνο αποκωδικοποιητή, έχουµε έναν αποκωδικοποιητή για στίχους και έναν για ϕωνητική
µελωδία, στον οποίο προσθέτουµε ένα δεύτερο επίπεδο cross-attention. Αυτή η τεχνική
για τον συνδυασµό πολλαπλών εισόδων σε έναν αποκωδικοποιητή έχει µελετηθεί στο [47]
και έχει αποδειχθεί ότι αποδίδει πολύ καλά. Η έξοδος του κωδικοποιητή του ορχηστρικού
µέρους συµµετέχει τόσο στο cross-attention των στίχων όσο και στης ϕωνητικής µελωδίας,
ενώ η έξοδος του τελευταίου επιπέδου του αποκωδικοποιητή των στίχων συµµετέχει στο
δεύτερο υπο-επίπεδο cross-attention της µελωδίας.

Εκφράζοντας τα παραπάνω µε µαθηµατικούς όρους, δεδοµένου ότι οι στίχοι αποτελούν
την ακολουθία Z1:q και οι παράµετροι του αποκωδικοποιητή στίχων είναι θlm έχουµε την
πιθανότητα:

pθenc,θlm(Z1:q |X1:n) = pθlm (Z1:q |X1:n) =

q∏
i=1

pθlm(zi |Z0:i−1,X1:n) (4)

Η ακολουθία Z1:q πλέον κωδικοποιείται στην ακολουθία Z1:q, που εξαρτάται από τους
στίχους και το ορχηστρικό µέρος. ΄Ετσι, η πιθανότητα για την ϕωνητική µελωδία δίνεται από

25

Κεφάλαιο 0. Εκτεταµένη Ελληνική Περίληψη

Self Attention

Feed Forward

Instrumental
Input

Embedding

Positional
Embedding

Layer Norm

Residual

Layer Norm

Residual

Masked Self Attention

Feed Forward

Lyrics
Input

Weight Sharing

Embedding

Positional
Embedding

Layer Norm

Residual

Layer Norm

Residual

Cross Attention

Feed Forward

Layer Norm

Residual

Layer Norm

Residual

Masked Self Attention

Feed Forward

Vocal Melody
Input

Weight Sharing

Embedding

Positional
Embedding

Layer Norm

Residual

Layer Norm

Residual

Cross Attention

Feed Forward

Layer Norm

Residual

Layer Norm

Residual

Cross Attention

Feed Forward

Layer Norm

Residual

Layer Norm

Residual

Language Model
Head

Lyrics
Output

Vocal Melody
Output

Language Model
Head

Nx

Nx

Nx

Σχήµα 4: Η διαχωρισµένη αρχιτεκτονική µας µε έναν κωδικοποιητή (κέντρο), έναν αποκωδικο-
ποιητή για στίχους (αριστερά) και έναν αποκωδικοποιητή για ϕωνητική µελωδία (δεξιά) µε δύο
υπο-επίπεδα cross-attention. Ο κωδικοποιητής ϱυθµίζει και τους δύο αποκωδικοποιητές, ενώ
οι κωδικοποιήσεις του µοντέλου στίχων ϱυθµίζουν τον αποκωδικοποιητή ϕωνητικής µελωδίας.

τον τύπο:

pθenc,θlm,θdec(Y1:m |X1:nZ1:q) = pθdec (Y1:m |X1:n,Z1:q) =

m∏
i=1

pθdec(yi |Y0:i−1,X1:n,Z1:q) (5)

Το µοντέλο εκπαιδεύεται µε στόχο να ελαχιστοποιήσει το άθροισµα των cross-entropy
loss συναρτήσεων των δύο ακολουθιών.

΄Ενα γλωσσικό µοντέλο που αποτελείται µόνο από έναν αποκωδικοποιητή χρησιµοποιείται
για να ϐελτιώσει την ποιότητα των παραγόµενων στίχων. Χρησιµοποιούµε ένα προεκπαι-
δευµένο µοντέλο GPT-2 [69] σε αγγλικό κείµενο1, το οποίο εκπαιδεύουµε περαιτέρω σε
αγγλικούς στίχους ώστε να µάθει περισσότερα για τη δοµή και το περιεχόµενο τους. Αφο-
ύ το εκπαιδεύσουµε, το εισάγουµε στην παραπάνω αρχιτεκτονική, απλά προσθέτοντας ένα
υπο-επίπεδο cross-attention µε τυχαία αρχικοποίηση. Αυτό δεν επηρεάζει την απόδοση

1https://huggingface.co/distilgpt2

26

https://huggingface.co/distilgpt2

0.5 Πειράµατα και Αποτελέσµατα

του µοντέλου όπως ϐλέπουµε πειραµατικά. Αυτή η διαδικασία χρησιµοποιείται και σε άλλα
προβλήµατα µε επιτυχία όπως ϕαίνεται στην ϐιβλιογραφία [76].

0.5 Πειράµατα και Αποτελέσµατα

Σε αυτό το σηµείο ϑα περιγράψουµε εν συντοµία τα πειράµατά µας, και κάποια συµπε-
ϱάσµατα που εξάγουµε ϐάση αυτών, ενώ στη συνέχεια ϑα δούµε και τα αποτελέσµατα της
ποιοτικής µελέτης που διεξήγαµε. Ο κώδικας για όλη την παρούσα διπλωµατική εργασία
ϐρίσκεται στο GitHub2, όπως και ο κώδικας που ϐασίσαµε µέρος της αρχιτεκτονικής µας (σε
PyTorch)3. Χρησιµοποιήσαµε επίσης τη ϐιβλιοθήκη DeepSpeed [71] κατά την εκπαίδευση.
Ο αναγνώστης µπορεί να επισκεφτεί τα Παραρτήµατα για να δει σχετικές γραφικές παρα-
στάσεις από την εκπαίδευση των µοντέλων, καθώς και κάποια παραδείγµατα αποτελεσµάτων.

Εκπαιδεύουµε τρία µοντέλα συνολικά για παραγωγή στίχων και ϕωνητικής µελωδίας :
(α) µια απλή αρχιτεκτονική κωδικοποιητή-αποκωδικοποιητή σε ακολουθίες νοτών και (ϐ)

ακόρντων, καθώς και (γ) µια διαχωρισµένη αρχιτεκτονική σε ακολουθίες ακόρντων. Επίσης,
κάνουµε µια σύντοµη εκπαίδευση του γλωσσικού µοντέλου σε σκέτους στίχους.

Εκπαίδευση ΄Ολα τα Μοντέλα Μελωδίας/Στίχων Γλωσσικό Μοντέλο

∆είγµατα Εκπαίδευσης 7654 237299 (29663 παρτίδες)
∆είγµατα Αξιολόγησης 851 26367

Εποχές 6 1
Συνολικά Βήµατα 45923 33370

Πίνακας 3: Μέγεθος συνόλων δεδοµένων (90% για εκπαίδευσης), εποχές και συνολικά ϐήµατα
εκπαίδευσης και για τα τρία µοντέλα, καθώς και το Γλωσσικό Μοντέλο

Στον Πίνακα 3 ϕαίνονται στοιχεία για την εκπαίδευση όλων των µοντέλων, ενώ στον
Πίνακα 4 ϕαίνεται η ταχύτητα εκπαίδευσης, αλλά και παραγωγής αποτελεσµάτων, για τα τρία
µοντέλα. Παρατηρούµε ότι η συµπίεση της ακολουθίας των οργάνων είναι πολύ σηµαντική
και οδηγεί σε πολύ ταχύτερη εκπαίδευση (σχεδόν 3 ϕορές πιο γρήγορα). Να σηµειωθεί ότι
έχουµε µια µέση µείωση κατά 75% στο µήκος της ακολουθίας εισόδου (ϐλ. Πίνακα 2). Η
διαχωρισµένη αρχιτεκτονική είναι πιο αργή από την απλή όπως αναµενόταν, καθώς είναι
πιο περίπλοκη λόγω των επιπλέον υποστρωµάτων και του γλωσσικού µοντέλου. Ωστόσο, τα
µεγαλύτερα µήκη ακολουθίας επηρεάζουν περισσότερο την ταχύτητα.

Ταχύτητα/∆ιάρκεια Απλή (νότες) Απλή (ακόρντα) ∆ιαχωρισµένη (ακόρντα)

∆είγµατα/δευτερόλεπτο (µέση τιµή) 0.171 0.473 0.259
΄Ωρες εκπαίδευσης 74.59 26.96 49.25

Παραγόµενα µέρη/δευτερόλεπτο 5.89 6.71 9.09

Πίνακας 4: Ταχύτητα εκπαίδευσης, συνολική διάρκεια εκπαίδευσης και ταχύτητα παραγωγής
για τα τρία µοντέλα (χρόνοι µετρηµένοι σε GPU NVIDIA Tesla T4)

Ο αναγνώστης ϑα ϐρει στο Παράρτηµα Α και δύο µετρικές σχετικές µε τη δηµιουργία
2https://github.com/gulnazaki/thesis
3https://github.com/lucidrains/performer-pytorch

27

https://github.com/gulnazaki/thesis
https://github.com/lucidrains/performer-pytorch

Κεφάλαιο 0. Εκτεταµένη Ελληνική Περίληψη

των ακολουθιών. Η πρώτη µετρική είναι η Bilingual Evaluation Understudy (BLEU) και
χρησιµοποιείται κυρίως στην αυτόµατη µετάφραση. Λόγω του ότι η µετρική αυτή είναι πολύ
αυστηρή για το πρόβληµα µας, δεδοµένου ότι ακόµα και δύο άνθρωποι ϑα προσέθεταν πολύ
διαφορετικά ϕωνητικά σε ένα κοµµάτι, δεν µας δίνει πολύ χρήσιµα αποτελέσµατα. Για αυτόν
τον λόγο, αναπτύσσουµε µια πολύ πιο χαλαρή µετρική που την ονοµάζουµε Valid Struc-
ture Metric (VSM). Αυτή η µετρική µας πληροφορεί για τη δοµή της ακολουθίας και αν και
είναι αρκετά αδύναµη, δίνει µια καλή εκτίµηση για την πορεία της εκπαίδευσης. Φαίνεται
συγκεκριµένα, ότι χρησιµοποιώντας ακόρντα, η µετρική αυτή ϐρίσκεται πιο σταθερά κοντά
στη µονάδα (το µέγιστο).

Τέλος, ϑα συγκρίνουµε τα αποτελέσµατα των µοντέλων µας διεξάγοντας µια ποιοτική

αξιολόγηση. Ακολουθούµε την εξής διαδικασία :

• Επιλέγουµε τυχαία 5 MIDI αρχεία από το σύνολο δεδοµένων αξιολόγησης.

• Συνθέτουµε ήχο από τα ορχηστρικά µέρη του ΜΙ∆Ι, χρησιµοποιώντας µια σχετική
ϐιβλιοθήκη4 και το λογισµικό σύνθεσης FluidSynth5.

• Παράγουµε ϕωνητική µελωδία και στίχους µε τα τρία µοντέλα µας.

• Χρησιµοποιούµε την αρχιτεκτονική σύνθεσης ϕωνής Mellotron [85] για να δηµιουρ-
γήσουµε ϕωνητικά σε ηχητική µορφή από τα αποτελέσµατά µας.

• Αναµιγνύουµε το παραγόµενο τραγούδι µε το ορχηστρικό µέρος και λαµβάνουµε συ-
νολικά 15 αρχεία ήχου.

• Συµπεριλαµβάνουµε τους στίχους σε µορφή κειµένου.

Στη συνέχεια, Ϲητάµε από 15 άτοµα να συγκρίνουν τα αποτελέσµατα των 3 µοντέλων, για
καθένα από τα 5 κοµµάτια. Τους Ϲητάµε να τα συγκρίνουν ως προς τρεις άξονες :

1. Μελωδικότητα/Ρυθµικότητα: πόσο µουσικό ή ενδιαφέρον είναι το ϕωνητικό µέρος,
όσον αφορά τον ϱυθµό και τη µελωδία

2. Σχέση µε τη Μουσική: πόσο καλά ταιριάζει το ϕωνητικό µέρος µε τα όργανα, τόσο
από άποψη αρµονίας όσο και συγχρονισµού/ρυθµού

3. Περιεχόµενο Στίχων: ποιότητα των παραγόµενων στίχων

Συµπεραίνουµε ότι η διαχωρισµένη αρχιτεκτονική είναι σίγουρα καλύτερη όσον αφορά
τους στίχους, όπως αναµενόταν. Επίσης, ξεπερνά σηµαντικά την απλή αρχιτεκτονική, όσον
αφορά τη σχέση των ϕωνητικών µε τη µουσική. Τέλος, είναι ελαφρώς καλύτερη στην παραγω-
γή µελωδιών. Συγκρίνοντας τα δύο µοντέλα κωδικοποιητή-αποκωδικοποιητή, είναι αρκετά
παρόµοια, µε αυτό που χρησιµοποιεί ακόρντα να είναι λίγο καλύτερο όσον αφορά τη σχέση
των ϕωνητικών µε τη µουσική και λίγο χειρότερο στην ποιότητα της ϕωνητικής µελωδίας.

4https://github.com/craffel/pretty-midi
5https://www.fluidsynth.org

28

https://github.com/craffel/pretty-midi
https://www.fluidsynth.org

0.6 Συµπεράσµατα και Μελλοντικές Κατευθύνσεις

∆εδοµένου ότι έχουµε χρησιµοποιήσει σχετικά µικρό αριθµό κοµµατιών και συµµετεχόντων
στη µελέτη µας, δεν µπορούµε να καταλήξουµε σε κάποιο συµπέρασµα µε απόλυτη ϐεβαι-
ότητα.

0.6 Συµπεράσµατα και Μελλοντικές Κατευθύνσεις

Σε αυτή τη διατριβή διερευνούµε ένα πολύ ενδιαφέρον πρόβληµα, τη δηµιουργία στίχων
και ϕωνητικής µελωδίας για ένα συγκεκριµένο µουσικό κοµµάτι. Από όσο γνωρίζουµε, η
δουλειά µας είναι η πρώτη που ενσωµατώνει το ορχηστρικό κοµµάτι της συνοδείας κατά την
µελέτη στίχων και ϕωνητικής µελωδίας. Η έρευνά µας, και ο σχετικός κώδικας, καθιστούν
δυνατή τη δηµιουργία ϕωνητικών για οποιοδήποτε ορχηστρικό κοµµάτι.

Εστιάζουµε στη συµβολική µουσική και συγκεκριµένα στη µορφή MIDI. Προτείνουµε µια
αναπαράσταση σε µορφή κειµένου και εξερευνούµε δύο τύπων αρχιτεκτονικές που ϐασίζο-
νται στο µοντέλο του Transformer. Μια απλή αρχιτεκτονική κωδικοποιητή-αποκωδικοποιητή
και µια αρχιτεκτονική που µοντελοποιεί ξεχωριστά το µέρος των οργάνων, των στίχων και
της ϕωνητικής µελωδίας, την οποία ονοµάζουµε διαχωρισµένη. Ακολουθούµε ένα ϐήµα
συµπίεσης της ακολουθίας εισόδου (οργάνων) σε ακόρντα, πετυχαίνοντας µείωση 75%,
χρησιµοποιώντας µουσικοθεωρητική ανάλυση. Εκπαιδεύουµε τρία µοντέλα συνολικά για
παραγωγή στίχων και ϕωνητικής µελωδίας : (α) µια απλή αρχιτεκτονική κωδικοποιητή-
αποκωδικοποιητή σε ακολουθίες νοτών και (ϐ) ακόρντων, καθώς και (γ) µια διαχωρισµένη
αρχιτεκτονική σε ακολουθίες ακόρντων. Χρησιµοποιώντας ένα µοντέλο σύνθεσης ϕωνής,
δηµιουργούµε ήχο από την συµβολική αναπαράσταση που παράγουµε και διεξάγουµε µια
ποιοτική έρευνα.

Παρατηρούµε ότι η συµπίεση που πραγµατοποιήσαµε είναι καθοριστικής σηµασίας για
την ταχύτητα εκπαίδευσης των µοντέλων µας, ενώ δίνει και ελαφρώς καλύτερα αποτελέσµατα.
Επίσης, η νέα αρχιτεκτονική που προτείνουµε, έχει την καλύτερη απόδοση στην ποιοτική
µελέτη και παράγει ιδιαίτερα ικανοποιητικούς στίχους. Αυτό είναι αναµενόµενο, εφόσον
χρησιµοποιούµε ένα προεκπαιδευµένο γλωσσικό µοντέλο που εκπαιδεύουµε περαιτέρω σε
στίχους.

Στο µέλλον, στοχεύουµε στη ϐελτίωση της απόδοσης των αρχιτεκτονικών που µελετήσα-
µε. ΄Οσον αφορά την αναπαράσταση των δεδοµένων, ϑα ϑέλαµε να δοκιµάσουµε χρήση των
µουσικών αξιών (για παράδειγµα µε ϐάση τα εξηκοστά τέταρτα) ή περαιτέρω απλοποίηση
των ακόρντων. ΄Οσον αφορά τις ϐελτιώσεις στην αρχιτεκτονική, ϑα µπορούσαµε να πειρα-
µατιστούµε µε άλλες µεθόδους για να µειώσουµε τις απαιτήσεις σε µνήµη, για παράδειγµα
χρησιµοποιώντας gradient checkpointing [13]. Αξίζει επίσης να µελετηθεί εάν η εξάρτηση
των στίχων από το ορχηστρικό µέρος είναι χρήσιµη, πραγµατοποιώντας ένα ablation study.

Για να µειώσουµε την πολυπλοκότητα της διαχωρισµένης αρχιτεκτονικής, ϑα µπορούσα-
µε επίσης να δοκιµάσουµε να χρησιµοποιήσουµε άλλους τρόπους για να ενσωµατώσουµε
προηγούµενες γνώσεις από ένα γλωσσικό µοντέλο. Αυτό προϋποθέτει εκπαίδευση ενός γλωσ-
σικού µοντέλου από την αρχή µε χωρισµό (tokenization) των λέξεων σε συλλαβές. Μια κοµψή
λύση που προσθέτει έναν όρο κανονικοποίησης ανάλογα µε την κατανοµή εξόδου του γλωσ-
σικού µοντέλου, παρουσιάζεται στο [5].

29

Κεφάλαιο 0. Εκτεταµένη Ελληνική Περίληψη

Μια άλλη ϐελτίωση, συγκρίσιµη µε τη χρήση προηγούµενων γνώσεων για τους στίχους,
ϑα ήταν η προεκπαίδευση του κωδικοποιητή, µε έναν µη εποπτευόµενο στόχο εκπαίδευσης,
όπως στα γλωσσικά µοντέλα (για παράδειγµα BERT [21]). Θα ήταν χρήσιµο, καθώς ο αριθµός
των αρχείων MIDI που περιέχουν µόνο µουσική είναι πολύ µεγάλος.

Τέλος, ϑα ϑέλαµε να ξεπεράσουµε τα όρια της συµβολικής µουσικής. Το σύνολο δε-
δοµένων DALI [56] περιέχει κοµµάτια ήχου, µε συγχρονισµένους στίχους και ϕωνητική
µελωδία. Η µορφή του είναι πολύ κοντά στο σύνολο δεδοµένων που δηµιουργήσαµε. ΄Ενας
απλός τρόπος να χρησιµοποιηθεί σε µία από τις υπάρχουσες αρχιτεκτονικές µας, ϑα ήταν
να διαχωριστούν τα ϕωνητικά και να εξάγουµε temporal audio features από τη µουσική.
Τέλος, ϑα µπορούσαµε να χρησιµοποιήσουµε αυτό το σύνολο δεδοµένων για να µελετήσου-
µε κατευθείαν την παραγωγή ϕωνητικών σε µορφή ήχου.

30

Chapter 1

Introduction

Through the mountain

So many things

Between two of childhood and nothin’ you needed a degree

On the time to give you a painter in your mind

One life or two

Through what a rainbow beauty and through life

Through many friends

Through a future of consciousness

And some deception

Reaching through just another man

And with this motherless man you’ll give away

On the heart

Tell another chance and darkness

Feel a two in two

I will say goodbye

To a good man

Epoch 1, Step 33075, Loss: 1.7501434139

This introductory chapter aspires to make the reader familiar with the setting of
our work and the task which the current dissertation deals with. At first, we

manifest our motivation behind the following research direction and we make a short,
first presentation of the broader research content and our work’s position in it. We
discuss the ways in which our work is original and we formulate our goals and research
objectives as well as our contributions in the field. Lastly, we present the organization of
this volume, making what is discussed in each chapter more clear to the reader.

1.1 Motivation and Originality of our Work

Singing is the act of producing musical tones with one’s voice. Its origins are impossi-
ble to track, but they are said to predate the development of spoken language, while voice
is presumed to be the original musical instrument [43]. The function and characteristics

31

Chapter 1. Introduction

of singing would vary tremendously between cultures and time periods, but its universal
importance is undisputable. The merging of instrumental accompaniment and singing
started to become more popular in late Renaissance Florence1. Music and singing con-
tinued to coexist in a theatrical context and gained the format we know today during the
last hundred years. Nowadays, singing and instrumental music are so commonly tied,
that when vocals are not present in a song it is characterized as instrumental and when
a music performance includes singing and no instruments it is called a capella.

Singing has an intrinsic value in human culture and is considered very hard to model
and automate, because it requires multiple skills, such as musical understanding and
creativity, that are very hard to formulate. For this reason, it is generally believed to be a
big step towards the long road of achieving Artificial General Intelligence2. A big part of
research regarding singing has focused on information retrieval tasks, such as transcrip-
tion of lyrics or melody. Another part, that is relevant to our work, focuses on generation
and it can be further divided into generation of lyrics/vocal melody and singing voice syn-
thesis. The latter is closely related to the more general task of speech synthesis and so
has gained more attention. Generation of lyrics and vocal melody are less straightforward
tasks and require, among others, the ability to be creative. For this reason, they have
gained more interest recently, with the success of generational deep learning methods.

Motivated by the writer’s adoration for music and enthusiasm to explore the chal-
lenges and opportunities presented when dealing with artificial creativity, the above task
was chosen to be the subject of the current dissertation. With this work, not only do we
study the relation of lyrics and vocals to music, but we create an end-to-end tool that
can be used by musicians or regular users to provide new creative ideas, useful in the
songwriting process.

Furthermore, our work aspires to fill a substantial gap that exists on the matter. We
will present a thorough review of the relevant research in the next chapter, but we will
quickly mention what we believe to be the most important aspects that have not been
addressed and are worth investigating. As we mentioned above, the relation of both vocal
melody and lyrics to music is very important and has not been yet taken into account
when dealing with generation. Previous work also follows a proof-of-concept approach and
deals with lyrics in the level of a few sentences, while working with full songs presents
many additional challenges. Finally, recent architectures that are strongly considered
state-of-the-art in many fields, such as the Transformer, have not been tested yet. The

present work is the first attempt, to our better knowledge, to generate both lyrics and

vocal melody for a full given music piece in the symbolic domain, using a state-of-the-art

architecture and utilizing prior knowledge from language models.

1https://en.wikipedia.org/wiki/Florentine_Camerata
2https://en.wikipedia.org/wiki/Artificial_general_intelligence

32

https://en.wikipedia.org/wiki/Florentine_Camerata
https://en.wikipedia.org/wiki/Artificial_general_intelligence

1.2 Research Objective and Contributions

1.2 Research Objective and Contributions

The main research objective of this work is to develop an end-to-end model, that given
any instrumental music piece in MIDI format, namely a symbolic representation of all
notes played, as input, can generate lyrics and a synchronized vocal melody, namely
pitch and timing information of the singing music tones. Using a singing voice synthesis
software we can mix the result with the synthesized music and create a complete piece
with vocals. We model the instrumental input and vocal output as two sequences of text
events and tackle the resulting problem as a sequence-to-sequence task, analogous to
translation from one language to another.

Our main contributions to the field are the following:

• We research for the first time the generation of lyrics and vocal melody conditioned
on instrumental accompaniment

• We use the Transformer architecture, for the first time in the context of lyrics and
vocal melody generation. Using a linear attention mechanism, we are able to train
our model to full song sequences, up to 50 times longer than those usually modelled
in a single GPU.

• We apply music analysis to compress our symbolic music data up to 80% and make
them key-independent, making our models more robust.

• We develop a novel architecture to decouple lyrics and vocal generation, while taking
into account their interdependence and providing the ability to use any language
model and optional conditioning on lyrics.

To research the above:

• We build a dataset that is suitable for our task, by separating vocals from instru-
ments and creating text sequences that describe each song.

• We train a language model to an abundancy of english lyrics found online and use
it in our architecture to improve the quality of generated lyrics.

• We develop a decoding strategy, specific to our task, to make the generation process
more robust by enforcing valid structure. Also, we devise a generation evaluation
method based on the sequence structure.

• We transform our results into a suitable format and use a singing voice synthesis
model to generate vocals. We further use them, alongside the input instrumental,
to conduct a qualitative evaluation study.

The code used for this thesis can be found on GitHub 3.

3https://github.com/gulnazaki/thesis

33

https://github.com/gulnazaki/thesis

Chapter 1. Introduction

1.3 Thesis outline

This volume is organized in the following way:

In Chapter 2 we present the theoretical background that is necessary to understand
this work. At first we present an overview of the field of Machine Learning. We start
by documenting the history and advancements in the broader field of Artificial Intelli-
gence and afterwards we focus on the basic architectures and methods used in Deep
Learning, a very successful subfield of Artificial Intelligence and Machine Learning. Next,
we document the field of Natural Language Processing and the usage of Deep Learning
methods. We analyze the attention mechanism and the Transformer architecture, which
is the basis of our work. Following, we present the literature relevant to reducing the
memory usage of the state-of-the-art methods, which is a drawback we had to overcome
in our work. We also introduce concepts of symbolic music and music theory, such as
MIDI, chords, scales and roman numeral analysis. Finally, we discuss related work, by
presenting research that has studied tasks, close to ours. We present previous work on
symbolic music, vocal melody and lyrics generation, as well as singing voice synthesis.

In Chapter 3 we present the steps we followed to built a dataset for our task and the
decisions we took. We talk about the original dataset we based our work on, the changes
we had to make an the reasons we used the chosen format. Moreover, we will analyze the
tools we used to generalize and compress our data based on music analysis. Finally, we
mention the changes we made in our dataset to model lyrics and vocal melody separately
and the lyrics dataset we assembled to pretrain our language model.

Chapter 4 is where the reader can find more details about the architecture of our
sequence-to-sequence model and enhancements/improvements we decided to use. We
present a decoding strategy that exploits the structure of the generated sequences. Also,
we introduce a novel architecture that decouples melody and lyrics, while taking into
account their codependency.

In Chapter 5 we talk in detail about our experiments. We discuss the training process
and the hyperparameters we chose, and we present and compare the results from all
models. We also, discuss the generation evaluation metric we use and we introduce a
structure metric that we devise. Finally, we analyze the qualitative evaluation study we
conduct and discuss the outcomes.

Chapter 6 is the last chapter of this volume. We list some concluding remarks inferred
from our work and we propose future work that can be done to improve current results,
as well as possible directions we could take from here.

34

Chapter 2

Background

As mentioned in the Introduction, in this Chapter we will lay the foundations that our
work has built upon. We present our theoretical background, regarding Machine

Learning literature and especially the Deep Learning subfield. We analyze Deep Learning
approaches to Natural Language Processing and focus on the base of our models, the
Transformer architecture, and its usage in sequence-to-sequence modelling. We also talk
about the drawbacks of commonly applied methods, regarding memory usage, and we
explore recent work that deals with overcoming them.

Finally, we introduce some basic concepts that we use in this work, such as symbolic
music representation and music theory concepts (notes, chords, scales and others). We
also present related work, namely previous approaches to tasks relevant to ours, such
as symbolic music generation, vocal melody generation and lyrics generation, as well as
singing voice synthesis.

2.1 Introduction to Machine Learning

2.1.1 A Short History of Artificial Intelligence

Artificial Intelligence (AI) can be defined as intelligence demonstrated by machines, a
type of intelligence that can be defined or computed, so it differs from natural intelligence
encountered in life forms, which involves consciousness and emotionality. A first distinc-
tion is made to strong AI (Artificial General Intelligence), which relates to the hypothetical
ability of a machine to understand and learn any intellectual task that is considered char-
acteristic of human intelligence, and to weak AI, which focuses on solving a specific task
and it is closer to the level that has been reached until today.

Humans have imagined that machines could have the above abilities much earlier
than the development of computers. Artificial beings capable of thinking have appeared as
storytelling devices in antiquity. Talos1, a giant automaton appearing in Greek Mythology,
is considered by many to be the first embodiment of this idea.

The starting point of the history of Artificial Intelligence is generally recognized to be
the work of McCulloch and Pitts on artificial neurons [54]. In this paper, the authors
describe a simple logical function computational model for a cell, called a neuron, in

1https://en.wikipedia.org/wiki/Talos

35

https://en.wikipedia.org/wiki/Talos

Chapter 2. Background

what is believed to be the first description of neural networks. The development of this
model, and the connections to biology that are drawn, are of course a product of its
time, since this period was marked by discoveries in neurobiology, information theory
and cybernetics, as well as the insight given by Alan Turing’s theory of computation2.

AI started being a separate field in 1956, after being distinguished from cybernetics.
During the next 50 years, new variations of this new technology were used to solve prob-
lems that were easy to formulate and hard for humans to solve, for example playing the
game of checkers (1954), or proving logical theorems (1956). The most successful and
famous application has been Deep Blue3, a model playing chess, that in 1997 managed
to beat world champion, Garry Kasparov.

During this period, there were a lot of different approaches to AI, as well as phases of
growth and decline, but the invariant was the barrier that was presented when dealing
with hard to formalize tasks, that humans can perform easily, almost without thinking,
but machines cannot. An approach to solve these real-world tasks, was to insert hard-
coded world knowledge into a model, using specific formal languages. This comprised a
methodology called knowledge based AI. Because of the increasing difficulty and human
effort needed to encode this knowledge, the research interest shifted away.

A different school of thought argued that the developed models should be able to
acquire knowledge themselves, without depending on human experts and explicit repre-
sentations. Comparable to the human learning procedure, they would be able to improve
through experience and data. This approach is called Machine Learning (ML) and it can be
thought of as a part or subfield of AI. Both fields share roots and goals, with ML focusing
away from the previously mentioned symbolic representations, while borrowing methods
and models from statistics and probability theory.

2.1.2 Machine Learning

Machine learning (ML) is a subfield of AI, that studies computer algorithms that im-
prove automatically through data and experience. Machine learning algorithms build a
model based on sample data in order to make predictions or decisions with no need for
explicit task-specific programming. Machine Learning algorithms are used with great
success for various applications, especially in scenarios in which it is challenging for a
human to manually design algorithms to solve them, such as in Computer Vision and
Natural Language Processing.

The term Machine Learning was coined in 1959 by Arthur Samuel, and a volume
that summarizes these first attempts, mostly focused on pattern recognition is Learning

Machines [61] by Nils Nilsson. A frequently quoted, formal definition of ML is given by
Tom Mitchel [58]: "A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P if its performance at tasks in T , as
measured by P, improves with experience E."

The most common distinction of Machine Learning approaches depends on the feed-

2https://en.wikipedia.org/wiki/Theory_of_computation
3https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)

36

https://en.wikipedia.org/wiki/Theory_of_computation
https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)

2.1 Introduction to Machine Learning

back available to the learning algorithm and the division is three-fold. The three categories
are quickly discussed below, but it should be noted that there are approaches that do
not fit into this categorisation or systems that use more than one approach, for example
semi-supervised learning.

Supervised Learning

Supervised learning can be thought of as a family of algorithms that learn a function
from input examples to target values given a set of data, for which the target responses
are known. These input-output pairs are called training data, while the output is referred
to as ground truth. Supervised models are designed to derive a mapping function g that
approximates the implicit relationships of the training dataset, with the goal of making
predictions about previously unseen inputs.

So, given a set of N training examples of the form {(x1, y1), ..., (xN , yN)} such that xi is
the feature vector of the i-th example and yi is its label (i.e., class or value), the learning
algorithm seeks a function g : X → Y , where X is the input space and Y is the output
space. We can denote a scoring function f : X × Y → R, such that g returns the y value
with highest score: g(x) = arg max

y
f (x, y). To measure how well a function fits the training

data, a loss function L : Y × Y → R≥0 is defined. We want to minimize the sum of the
loss function for all training examples, with the loss of predicting each output value being
L(yi , ŷ), for a training example (xi , yi) and prediciton ŷ.

Supervised algorithms are split into two main categories, based on the desired out-
put: (a) classification and (b) regression. The first refers to predicting outputs that are
restricted to a distinct set of values, called class, while the second refers to the problem
of estimating real-valued outputs within a predefined range.

Unsupervised Learning

Unsupervised learning is a family of algorithms that learn to infer patterns, without
given target values for each learning example. The algorithm discovers the underlying
structure or distribution of the data, through mimicry. A very common unsupervised
learning problem is Clustering, in which a model groups or divides data points into cate-
gories based on a similarity measure, such that points that belong to the same cluster are
more similar to points that belong to other clusters. Another set of techniques and tasks
is Representation Learning, where the model discovers meaningful representations that
can be later used to help in other tasks, replacing manual feature engineering. Lastly,
many generative models can create new data that are drawn from a distribution of real
data given as input.

Reinforcement Learning

Reinforcement learning is an area of ML that researches the way intelligent agents take
actions in a dynamic environment, with the goal of maximizing a cumulative reward. As
in the Unsupervise Learning, there is no need of labelled input-output pairs. The focus

37

Chapter 2. Background

of this approach is to find a balance between exploration (of uncharted territory) and
exploitation (of current knowledge), while sub-optimal actions do not have to be explicitly
corrected. The problem can be stated in the form of a Markov decision process. To give a
more formal definition, let us denote:

• a set of environment and agent states, S

• a set of agent actions, A

• the probability of transition (at time t) from state s to state s′ under action α

Pα(s, s′) = Pr(st+1 = s′ | st = s, αt = α)

• the immediate reward after transition from s to s′ with action α Rα(s, s′)

At each discrete time step t, the agent receives the current state st and reward rt ,
and then chooses an action αt from a set of available actions. The environment, given
αt , moves to a new state st+1 and the agent receives the new reward rt+1 associated with
the transition (st , at , st+1). The goal of the agent is to learn a policy: π : A × S → [0,1],
π(a, s) = Pr(at = a | st = s) that maximizes the expected cumulative reward.

2.1.3 Basic Machine Learning Methods

The Perceptron is an algorithm for supervised learning of binary classifiers that was
introduced in 1957 [75]. It is the basic building block of neural networks and it can be
considered as the simplest case, a single layer neural network (with one neuron). It is
a type of linear classifier, with a learnable weight vector. It can be denoted as a linear
predictor function f that maps its input x vector to a binary output value f (x):

f (x) =

1 if w · x + b > 0

0 otherwise
(2.1)

where w is a vector of weights, w · x is the dot product equal to
∑m
i=1wixi , and b is the

bias.

Figure 2.1: An illustration of the Perceptron with mathematical notation (right) and a draw-
ing of a biological neuron (left) to draw analogies and show the researchers’ inspiration.
(Source: [38])

Regardless of the innovative idea of the Perceptron, it was quickly proved that it can-
not be used for non-linearly separated classes, with the most infamous example being the

38

2.1 Introduction to Machine Learning

XOR problem. For this reason the idea of Perceptrons was dismissed for a lot of years, but
it was revived much later with the idea of Multi-layer Perceptron and its great processing
and representational power, more on that later. As can be seen in Figure 2.1 a vital part
of the Perceptron is the activation function, which introduces a non-linearity which is
very important, since it allows us to approximate arbitrarily complex functions. We will
explore some basic activation functions in the next subsection.

Another idea of traditional ML, that is worth mentioning, is Support Vector Machines

(SVMs), one of the most robust prediction methods. The original algorithm was invented
in 1963, but it got the form we use nowadays in 1995 [18]. One of the advantages of the
SVMs is that they can efficiently classify non-linearly separable data, using what is called
the kernel trick, implicitly mapping their inputs into high-dimensional feature spaces.

Figure 2.2: An example of Support Vector Machines for classification. The red line is the
maximum-margin hyperplane. (Source: Wikipedia)

The basis of the SVM algorithm is that it constructs hyperplanes, to perform classifica-
tion in the higher-dimensional space. Intuitively, to achieve a good separation, we expect
to use the hyperplane that has the largest distance to the nearest training-data point
of any class, because a larger margin, means a lower generalization error, when doing
classification. If such a hyperplane exists, it is called the maximum-margin hyperplane.

In the general case, where data is not linearly separable, we use the soft-margin

SVM algorithm. For input observations {x1, x2, ..., xN } with labels {y1, y2, ..., yN }, where
yi ∈ {−1,1} we want to minimize the quantity:1

n

n∑
i=1

max
(
0,1 − yi(wTxi − b)

) + λ‖w‖2 (2.2)

where the parameter λ regards the trade-off between larger margin size and ensuring

39

https://en.wikipedia.org/wiki/Support-vector_machine

Chapter 2. Background

that all data points lie in the correct side. Also, w is the normal vector to the hyperplane
and b is the bias. These two define the predicted maximum-margin hyperplane. An
example is seen in Figure 2.2.

2.2 Basics of Deep Learning

The distinction between Deep Learning and Machine Learning is arguably blurry.
Deep Learning models are generally more complex and they involve a greater amount of
learned function or concept composition than traditional Machine Learning does. The
adjective "deep" refers to the usage of multiple layers in a network, but it is not limited to
that. Also, Deep Learning is based on Neural Networks and Representation Learning in
a greater extent, as we mention above. In this subsection we will discuss basic concepts
(not limited to Deep Learning) and successful architectures that have been developed.

2.2.1 Feed Forward Neural Networks

Feed Forward Neural Networks (FFNs) was the first and simplest type of Artificial
Neural Network devised. It can be thought therefore as the basis of Deep Learning.
Another name for FFNNs is Multilayer Perceptrons (MLPs) and it reveals that they consist
of multiple stacked layers of Perceptron units. These Perceptron units are connected
without any feedback loops, in a Directed Acyclic Graph. One of the basic motivations
and advantages of stacking Perceptron in a multi-layer network, is that if we introduce
non-linearities through non-linear activation functions (more on that later), we are able
to distinguish between non-linearly separable data.

Figure 2.3: A 3-layer feed forward neural network with three inputs, two hidden layers of
4 neurons each and one output layer. (Source: [38])

Each Perceptron acts as a computational unit, taking as input the output of the
previous layer. Each unit implements a function that converts the input vector to a
scalar (as we mentioned above). A feed forward network consists of at least three layers of
nodes: an input layer, a hidden layer and an output layer. The input layer takes as input
the data, the hidden layers process the outputs of the previous layers and the output
layer provides the final output. The flow of information from the input to the output is
called forward propagation. Also typically, units of a single layer are not connected to
each other. The number of hidden layers determines the depth of a model, while the

40

2.2 Basics of Deep Learning

number of the units in the hidden layer determines the width of the model. An example
can be seen in Figure 2.3.

FFNNs are applied with great success to many problem settings, either alone or as part
of a more complex network. Apart from their experimental success they have also theo-
retical guarantees. The universal approximation theorem4 states that every continuous
function that maps intervals of real numbers to some output interval of real numbers can
be approximated, arbitrarily closely, by a MLP with just one hidden layer and a sufficient
number of neurons. This result requires a suitable activation function, but it holds for
most that are used, one of the first proofs was for the sigmoid [20].

2.2.2 Activation Functions

As we discussed above, in order to classify non-linearly seperable data points with
multiple layers, it is essential to introduce non-linearities. Non-linearities allow us to
approximate arbitarily complex functions. We introduce them with activation functions.
Activation functions take as input the output of a node and produce the final output,
by making a non-linear decision. Common activation functions, introduce a first non-
linearity at zero and some, like sigmoid, use a second non-linearity to restrict large inputs.
If we add the activation function g to the single Perceptron, we can define a simple
classifier with one node as follows:

ŷ = g(w · x + b) (2.3)

Some common activation functions are the following:

Sigmoid

The sigmoid or logistic function is defined as:

σ(z) =
1

1 + e−z
(2.4)

The sigmoid function is differentiable, defined for all real input values and has a non-
negative derivative at each point. It takes a real-valued number and outputs a real number
bounded in the range [0, 1]. In particular, large negative numbers become 0 and large
positive numbers become 1. The sigmoid function has been widely used historically,
because of the biological intuition of a neuron firing (fully for 1 and not at all for 0).
Sigmoid functions are monotonic and have a first derivative which is bell shaped. The
sigmoid function is convex for values less than 0, and it is concave for values more than
0.

In practice, the sigmoid is rarely used nowadays because of two drawbacks. First
of all, when its value is close to 0 or 1, the gradient value is close to 0. This has the
undesired effect of saturating or vanishing gradients. Secondly, the sigmoid output is not
zero-centered. As a result, the input of the next neurons has always positive values. The

4https://en.wikipedia.org/wiki/Universal_approximation_theorem

41

https://en.wikipedia.org/wiki/Universal_approximation_theorem

Chapter 2. Background

Figure 2.4: A sigmoid non-linearity. All inputs are squashed in the range [0,1]. (Source:
[38])

gradient of weights will be either always positive, or always negative and an unwanted
alternation of them is introduced into the network.

Hyperbolic Tangent (tanh)

The hyperbolic tangent or tanh function is defined as:

tanh(z) =
ez − e−z

ez + e−z
(2.5)

Figure 2.5: A tanh non-linearity. All inputs are squashed in the range [-1,1]. (Source: [38])

The tanh function is a scaled and shifted variation of the sigmoid. We can confirm
that if we compare Equations 2.4 and 2.5. We get the relation tanh(z) = 2σ(2z) − 1. So,
similarly to the sigmoid, the hyperbolic tangent is a bounded, differentiable, real function.
It is defined for all real input values and has a non-negative derivative at each point. It
has the same drawback of gradients close to zero for large input values, but its advantage
is that it is zero-centered.

Rectified Linear Unit (ReLU)

The ReLU activation function is described by the following simple mathematical form:

f (z) = max(0, z) (2.6)

42

2.2 Basics of Deep Learning

Figure 2.6: A ReLU non-linearity. Simply, zero when z < 0 and then linear with slope 1
when z > 0. (Source: [38])

This activation function simply thresholds the input at zero, keeping only positive
inputs. It is otherwise known as the ramp function. It is one of the most commonly
used activation functions nowadays. First of all, it does not involve any computationally
expensive operations (like exponentials), in contrast to the sigmoid and tanh fuctions.
This makes its computation extremely fast. Also, it is found to accelerate convergence by
a large factor in many cases, compared to the previously mentioned functions. Moreover,
it avoids the vanishing gradient problem and it is sparsely activated, making it more likely
that neurons learn more meaningful aspects of the problem. Finally, it is scale-invariant.

Some disadvantages are the following. ReLU is not differentiable at zero, it is not zero-
centered and unbounded. A common problem is the "dying ReLU" problem. ReLU units
can be fragile during training and can “die”. This means that it is possible for neurons
to be pushed into states that they become inactive for essentially all inputs. Then, no
gradients flow backward through the neuron, and so the neuron becomes stuck in a
perpetually inactive state. For example, if a high learning rate is used, as much as 40%
of the network can be “dead”, meaning that so many neurons will never activate across
the entire training dataset.

Leaky ReLU

Leaky ReLU is an attempt to fix the problem of "dying ReLU". It is described in
mathematical form as:

f (z) =

z if z > 0,

αz otherwise
(2.7)

where α is a small constant (commonly 0.01). Another variant called Parametric ReLU
uses a learnable α coefficient instead. Instead of the function being zero when z < 0, a
leaky ReLU will instead have a small negative slope.

43

Chapter 2. Background

Gaussian Error Linear Unit (GELU)

The GELU activation function [31] is used in some of the most recent state-of-the-art
language model architectures, such as BERT [21] and GPT-2 [69], with great success. We
also use it in our architectures. It is defined as:

GELU (z) = zP (Z ≤ z) = zΦ (z) = z ·
1
2

[
1 + erf(z/

√
2)

]
(2.8)

if Z ∼ N(0,1). Φ(Z) is the cumulative distribution function of the standard normal
distribution. An approximation of GELU is given by:

GELU (z) = 0.5z
(
1 + tanh

[√
2/π

(
z + 0.044715z3

)])
(2.9)

Figure 2.7: A GELU non-linearity. (Source: PyTorch documentation)

The GELU non-linearity weights inputs by their percentile, rather than gates inputs
by their sign as in ReLUs. Consequently the GELU can be thought of as a smoother ReLU.
The GELU function has a negative coefficient, which shifts to a positive coefficient. So
when z is greater than zero, the output will be z, except when z is in the range [0, 1],
where it slightly leans to a smaller output value. That formulation relates to stochastic
regularizers because it is a modified expectation of adaptive dropout, providing neurons
with more abstract probabilistic view. The GELU function largely avoids the vanishing
gradient problem.

Softmax

The softmax function is simply a generalization of the logistic or sigmoid function to
multiple dimensions. It is often used as the last activation function of a neural network
to normalize its output to a probability distribution over some classes. It takes as input
a vector z of K real numbers, and normalizes it into a probability distribution consisting
of K probabilities proportional to the input exponentials. Given an input vector z and a
weighting vector w, we have:

P(y = j | z) =
ez

Twj∑K
k=1 e

zTwk
(2.10)

44

https://pytorch.org/docs/stable/generated/torch.nn.GELU.html

2.2 Basics of Deep Learning

2.2.3 Training

Artificial Neural Networks are trained by an optimization method, that aims to select
a set of model parameters that minimizes the prediction error. We will discuss a way to
quantify how well the model fits to the training data, some optimization algorithms and
other notions and enhancements used in the training process.

Loss Functions

As we quickly discussed in Subsection 2.1.2, a way to measure the performance of
supervised learning is the loss function. The loss function computes a non-negative value
that measures the inconsistency between the predicted and the target output. So, if we
denote our model as a function f with parameters w and the i-th training example pair
as (xi , yi) the loss for each example is L(yi , f (xi ;w)). As we want to quantify the total loss
over the entire dataset of size N , we want to minimize J(w) (objective function or empirical
risk), given by:

J(w) =
1
N

N∑
i=1
L(yi , f (xi ;w)) (2.11)

Next, we denote the predicted output as ŷiw instead of f (xi ;w). For models that output
a probability between 0 and 1, the binary cross-entropy loss is commonly used:

J(w) = −
1
N

N∑
i=1

(yi log(ŷiw) + (1 − yi) log(1 − ŷiw)) (2.12)

For the general case of multi-class output, the dissimilarity between the empirical
distribution p and the predicted distribution q can be expressed by the cross-entropy H.
This requires an output probability for each class and usually for this a softmax layer is
used. The cross-entropy loss, for M classes, is given as:

J(w) = −
1
N

N∑
i=1

H(pi , qi) = −
1
N

N∑
i=1

M∑
c=1

(yi,c log(ˆyi,cw)) (2.13)

For regression tasks, in which a model outputs a real value instead of a probability,
mean squared error loss can be used:

J(w) =
1
N

N∑
i=1

(yi − ŷiw)2 (2.14)

More loss functions exist, but these are the most commonly used ones. Note that
the performance of a model on a particular task is actually measured by another metric,
different from the loss J . These performance measures, however, are often not suitable
for gradient-based optimization. So, we minimize a selected loss function and expect that
we will improve the performance of the model, by minimizing the loss.

45

Chapter 2. Background

Optimization

Training a model can be actually thought of as the optimization problem of finding the
model parameters w that minimize the loss function J(w) averaged across the training
dataset. Most optimization algorithms are gradient-based. Let us denote a differentiable
function f : Rn → R, then its gradient ∇f : Rn → Rn is defined, at p = (x1, ..., xn) as the
vector:

∇f (p) =


∂f
∂x1

(p)
...

∂f
∂xn

(p)

 (2.15)

The gradient vector can be interpreted as the direction and rate of fastest increase.
Since, we want to minimize the loss function, we compute its gradient with respect to
the weights of the model and then the weights of the model are updated in the opposite
direction. We will now present some common optimization algorithms.

Gradient Descent (GD) is a very basic optimization algorithm and one of the most popular
ones. It follows an iterative process. The model parametersw are randomly initialized and
at each iteration the gradient of the loss function is computed for the entire dataset with
respect to the parameters w and then the parameters are updated accordingly. Let J(w)
be the loss function over the entire dataset and α ∈ R be a small value (a hyperparameter),
called learning rate. Then, the parameters of the model at the i-th iteration are updated
as:

wi+1 = wi − α∇wJ(wi) (2.16)

The Gradient Descent algorithm is very simple and effective, but it has a major draw-
back. Computing the loss over the entire dataset at each iteration is computationally
expensive and inefficient, especially for large datasets.

Stochastic Gradient Descent (SGD) is a variant of Gradient Descent that solves the
aforementioned problem. It computes the gradient of the loss function over a subset of
samples, not for the whole dataset. It makes an estimation of the gradient, instead of
computing the true gradient using all samples, therefore the name "stochastic".

In its simplest form, the gradient is computed over each unique training example, but
this can lead to very noisy gradients and cause the loss function to fluctuate. For this
reason, a variation called mini-batch SGD is commonly used in practice. A mini batch of
B training data points is picked and the average gradient over those B points is calculated
and used:

wi+1 = wi − α
1
B

B∑
b=1

∇wJb(wi) (2.17)

This method is still fast to compute and gives a much better estimate of the true gra-

46

2.2 Basics of Deep Learning

dient. The larger the batch size, the more accurate the estimation of the gradient, which
leads to smoother convergence and allows for larger learning rates.

Figure 2.8: The surface of a non-convex loss function. The arrow shows a path to reach
the global minimum. (Source: Medium)

It should be noted, that when we train a deep neural network, the loss surface be-
comes non-convex because of the introduced non-linearities. This means that there is no
guarantee that a gradient based method will converge to a global minimum, where the
loss function is zero. The learning rate becomes a very important training hyperparam-
eter and effectively controls the speed at which the model learns. If the learning rate is
too large, we may overshoot the minima and bounce back and forth on the loss surface
or the model can become unstable and diverge. If it is too small, it may take too long to
reach a minimum, or the algorithm might get stuck at a suboptimal local minimum.

In practice, learning rate is chosen based on experience and the model that we train.
But, in order to deal more systematically with the problem of choosing a suitable learn-
ing rate, it is common to use different values during training. One way of doing this,
is scheduling the rate based on the timestep. For example Linear Warmup is a tech-
nique that linearly increases the learning rate for the first K steps and then keeps it
stable. This is shown to reduce volatility in the early stages of training. Learning Rate
Decay, on the other hand, starts with a large rate and then slowly decreases it. The
intuition behind this is that decaying the learning rate helps the network converge to
a local minimum and avoid oscillation. Another way to change the learning rate is to
choose an adaptive learning rate algorithm that calculates it depending on the gradient
magnitude, the speed of learning, the size of particular weights or other measuers. Some
famous adaptive gradient descent algorithms are Adam, Adadelta, Adagrad and RMSprop.

Adam [40] is one of the most commonly used optimization algorithms with adaptive
learning rate. Adam is short for Adaptive Moment Estimation. It keeps a learning rate
for every parameter in the network and separately adapts them during training. It uses
estimations of first and second moments of gradient to adapt the learning rate for each
weight. The n-th moment of a variable is the expected value of that variable to the power
of n. We can formally define the model’s and Adam’s parameters update as:

47

https://medium.com/swlh/non-convex-optimization-in-deep-learning-26fa30a2b2b3

Chapter 2. Background

w(i+1) ← w(i) − α
m̂w
√
v̂w + ϸ

m̂w =
m(i+1)
w

1 − �i+1
1

v̂w =
v(i+1)
w

1 − �i+1
2

m(i+1)
w ← �1m

(i)
w + (1 − �1)∇wJ (i)

v(i+1)
w ← �2v

(i)
w + (1 − �2)(∇wJ (i))2

(2.18)

wherem and v are the first and seconds moments respectively, α is the step size/learn-
ing rate, ϸ is a very small value (typically 1e-8) to avoid zero division and �1 (typically 0.9),
�2 (typically 0.999) are the forgetting factors for gradients and second moments of gradi-
ents, respectively. Adam is well suited for noisy gradients, it is computationally efficient
and has little memory requirements.

AdamW [48] is an improvement to the Adam algorithm. The basic idea of AdamW is
that it modifies the typical implementation of weight decay [44] in Adam, by decoupling
weight decay from the gradient update.

Weight decay, otherwise known as L2 Regularization, penalizes larger model param-
eter (weight) norms, by adding an extra part to the loss: J ′ (w) = J (w) + λwTw, with
λ being a hyperparameter. It is a regularization technique, used to mitigate the prob-
lem of overfitting, by encouraging smaller weights and therefore less complex functions.
Overfitting is a common training problem. It happens when a model learns too much
detail and therefore noise in the training data, to the extent that it negatively impacts the
performance on unseen data.

AdamW adjusts the weight decay term to appear in the gradient update:

wi+1,j = wi,j − α

(
1

√
v̂i + ϸ

· m̂i + λi,jwi,j

)
(2.19)

The weight decay or regularization term does not end up in the moving averages and is
thus only proportional to the weight itself. The authors show experimentally that AdamW
yields better training loss and that the models generalize much better than models trained
with Adam.

Backpropagation

As we discussed above, in order to use a gradient based optimization algorithm, it is
essential to compute the gradient of the loss function with respect to the weights of the
network. Every neural network can be illustrated as a directed graph where each neuron
corresponds to a node and each weight to an edge. The backpropagation algorithm [45]
[77] computes the gradient of the loss function for each input-output pair, with respect
to each weight. It is the backbone of training neural networks.

48

2.2 Basics of Deep Learning

Computing the gradient for a network is not a trivial step, especially for large and
complex networks. Fortunately, the backpropagation algorithm can efficiently compute
the gradients for all parts of the network. It works by computing the gradient of the
function with respect to each weight, using the chain rule. It computes the gradient one
layer at a time, iterating backward from the last layer and caching intermediate results
to avoid redundant calculations. Its idea is based on dynamic programming.

Dropout

Dropout [34] is another regularization method for neural networks. Its basic idea is
very simple, yet it is very effective and commonly used. During training, each unit is
dropped with a probability p > 0, meaning that it ignored during both the forward and
the backward pass, while its activation becomes zero. This is illustrated in Figure 2.9.
During inference, all neurons are used and no unit is dropped, but they are scaled by a
factor frac1p to account for the missing activations during training. Dropout forces the
network to not rely on specific nodes and prevents units from forming co-dependencies
amongst each other. It can otherwise be thought of as a way to perform model averaging.

Figure 2.9: Using dropout during a training step. (Source: [7])

Normalization

Training a deep neural network is complicated by the fact that the distribution of each
layer’s inputs changes during training, as the parameters of the previous layers change.
The problem that arises is called internal covariate shift and as a result it requires lower
learning rates, making training slower, and careful parameter initialization, making it
harder to train models with saturating non-linearities. A way to address this problem is
to normalize layer inputs.

Batch Normalization [37] is a method that performs this normalization for each
training mini-batch. A normalization step fixes the mean and variance of each layer input.
It improves gradient flow through the network, reducing the dependence of gradients on
the scale of the parameters and their initial values. It allows to use higher learning rates
and permits less careful initialization. It can also act as a regularizer, eliminating the
need for dropout, in some cases.

49

Chapter 2. Background

Let us denote b a mini-batch of size B of the training dataset. The empirical mean
and variance of b could thus be denoted as:

µb =
1
B

B∑
i=1

xi and σ2
b =

1
B

B∑
i=1

(xi − µb)2 (2.20)

For a layer of the network with input x = (x (1), ..., x (d)), each dimension of its input is
normalized separately, as:

x̂ (k)
i =

x (k)
i − µ

(k)
b√

σ(k)2

b + ϸ
(2.21)

where k ∈ [1, d] the dimension and i ∈ [1, B] the sample of the mini-batch b. ϸ is
a small constant to avoid zero divisions. The new normalized activation x̂ (k) has zero
mean and unit variance. To restore the representation power of the network, a final
transformation step follows:

y(k)
i = γ(k)x̂ (k)

i + �(k) (2.22)

with parameters γ(k) �(k) being learned in the optimization process.

Layer Normalization [3] is another normalization technique that was introduced to
normalize the training of recurrent networks, where batch normalization falls behind. It
also solves the challenging task of selecting a suitable mini-batch size and omits the de-
pendence between training examples. Layer normalization is, in a sense, the transpose of
batch normalization, since it computes the mean and variance from all of the summed in-
puts to the neurons in a layer on a single training case. Unlike batch normalization, layer
normalization performs exactly the same computation at training and test time. Layer
normalization is widely used, since it stabilizes the hidden state dynamics in recurrent
networks, reduces the training time and generalizes well.

The layer normalization statistics (mean and variance) are computed over all the hid-
den units in the same layer as follows:

µl =
1
H

H∑
i=1

a li

σ l =

√√
1
H

H∑
i=1

(
a li − µl

)2 (2.23)

where H is the number of hidden units in a layer. Under layer normalization, all
the hidden units in a layer share the same normalization terms µl and σ l , but different
training cases have different normalization terms. After computing the normalization
statistics we follow the same procedure as in batch normalization.

50

2.3 Deep Learning for Natural Language Processing

Residual Connections

Residual or skip connections are paths (shortcuts) in neural networks that jump over
one or more layers. They have been introduced in [30] to create an architecture called
Residual Neural Networks (ResNets). This addition made ResNets the state-of-the-art
model in many Computer Vision tasks, and since then the residual connections have
been an important component in a wide variety of architectures.

The main motivation behind the development of residual connections was to combat
the problem of vanishing gradients, that made the training of deep architectures notori-
ously difficult. As we discussed above, the backpropagation algorithm is used to compute
the gradient for all the layers of a network, using the chain rule. When there are many
layers with gradients less than 1, the total product approaches zero, making learning
infeasible. By using a skip connection, an alternative path for the gradient is provided.
These connections simply use the identity function and add the original input to the out-
put of the layers they skip. This can be seen in Figure 2.10. Supposing a layer (or more)
perform the function F , then the output with a residual connection, given an input x,
will be:

F (x) + x

Figure 2.10: A residual connection skipping two layers. (Source: [30])

Except from providing an uninterrupted gradient flow from the first layer to the last,
residual connections enable feature reusability and stabilize training and convergence.
Skipping effectively simplifies the network, using fewer layers in the initial training stages,
while the skipped layers are gradually restored, as the model learns the feature space.

2.3 Deep Learning for Natural Language Processing

2.3.1 Overview of the Field

Natural Language Processing (NLP) is a subfield of computer science, artificial intel-
ligence and linguistics, concerned with the interactions between computers and human
(natural) languages. NLP deals with extracting meaningful information from natural lan-
guage input and producing natural language output. It analyzes human language based
on semantics and employs various parsing techniques to achieve that. Analysis of lan-
guage has as purpose the production of meaningful representations, while generation
aims to produce (language) text from a representation. NLP deals not only with written

51

Chapter 2. Background

language, but also spoken language, for example speech recognition is considered an NLP
problem.

The roots of NLP can be traced back to the 1950s. In 1950, Alan Turing published
the article "Computing Machinery and Intelligence", which proposed as a criterion of in-
telligence a task that involves the automated interpretation and generation of natural
language, today known as Turing test. This started the so called Symbolic NLP phase,
which lasted until the early 1990’s. The idea of Symbolic NLP can be summarized in the
Chinese room experiment5, a hypothetical setting devised by John Searle. Given a collec-

tion of rules (for example a Chinese phrasebook, with questions and matching answers),

the computer emulates natural language understanding (and other tasks) by applying those

rules to the data it is confronted with. This means that a computer has no meaningful
representations of words or other notions. Instead, its understanding or generation of
answers is emulated, by following a set of carefully crafted (hard-coded) rules.

The next phase is called Statistical NLP and it was a big step towards achieving
something that resembles understanding of language. With the introduction of machine
learning algorithms, a revolution started in the field of NLP. Statistical NLP, instead of
focusing on grammar or other rules, focused on existing language data. This approach is
statistical and inductive in nature. Instead of using rules, a computer could use statistical
inference to automatically learn such rules through the analysis of large corpora of typical
real-world examples.

The current phase of NLP is called by many Neural NLP, because of the usage of
neural networks and deep learning instead of traditional ML methods, like in other related
fields. It started in the 2010’s, with the widespread usage of representation learning
based methods and currently achieves state-of-the-art results. The paradigm has not
changed significantly, patterns are inferred from language text, but there is no need
for elaborate feature engineering, since meaningful representations of words are inferred
directly from data. This led to many tasks that were previously solved as a chain of
different subtasks to be solved directly, in an end-to-end manner. For instance, the term
"neural machine translation" (NMT) emphasizes the fact that neural NLP directly learns
sequence-to-sequence transformations, obviating the need for intermediate steps such as
word alignment and language modeling that were used in statistical machine translation
(SMT).

2.3.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a type of artificial neural networks in which
the connections between nodes form a directed graph along a temporal sequence. Un-
like feedforward neural networks, that operate under the assumption that all training
instances are independent, RNNs produce their output taking into account previously
presented information. This allows them to exhibit temporal dynamic behavior and for
this reason RNNs are used to model sequential data (for example text or audio). The term

5https://en.wikipedia.org/wiki/Chinese_room

52

https://en.wikipedia.org/wiki/Chinese_room

2.3 Deep Learning for Natural Language Processing

"recurrent" refers to the way they process a sequence, performing the same task for every
element. The basic idea of RNNs is to infer the temporal dynamics of the data sequence
by keeping an internal state, also known as hidden layer (or state), which they update on
each time-step, for each token of the sequence.

Figure 2.11: An RNN looping through time (left) and the same network unfolded over time
(right). (Source: Wikipedia)

An RNN is essentialy a very simple network. At each timestep t, it receives an input
vector xt and a hidden state from the previous timestep ht−1 and produces a new hidden
state ht and an output ot . The hidden state at each timestep is updated based on the
previous hidden state and the input vector, while the output depends on the current
hidden state. To better visualize this, we can "unfold" the model over time, as in Figure
2.11. Then we can see it as multiple copies of the same network, each passing hidden
state information to its successor. The hidden state ht and the output ot for each timestep
t are computed as:

ht = fh(Vhht−1 + Uhxt + bh)

ot = fo(Woht + bo)
(2.24)

where fh , bh , and fo, bo are activation functions and biases for the hidden state and
the output respectively, while Uh , Vh and Wo are learnable weight matrices. One major
advantage of RNNs is that they can process sequences of arbitrary lengths, wnd while
doing that the size of the model remains the same, since the same weights are applied at
each timestep.

Some basic modifications of this architecture are the following:

Deep RNNs are simply created by stacking multiple RNNs on top of each other, with the
output of each layer being the input to the next one. The inspiration for this was the
rise of deep neural networks, and the intuition behind it is that a deep RNN can capture
better the hierarchy present in the input sequences.

Bidirectional RNNs were developed to tackle a drawback in the simple RNN architecture.
The simple architecture conditions only on previous input tokens to predict the current

53

https://en.wikipedia.org/wiki/Recurrent_neural_network

Chapter 2. Background

output. This is enough (or even necessary) for some tasks, but insufficient for others,
such as encoding a sentence. It is possible to use the context of the whole sequence,
not just the previous tokens, by adding an RNN that reads backwards. A combination of
a forward and backward RNN is called bidirectional. At each timestep it maintains two
hidden states, one (

−→
ht) for the left-to-right and another (

←−
ht) for the right-to-left propaga-

tion. These are then concatenated into ht to compute the output ot at the current timestep.

RNNs have a very basic problem, that appears when dealing with long sequences.
In order to train the network, the gradient of the loss needs to be propagated not only
through the depth of the model but also through previous timesteps (backpropagation
through time). A common issue is that these long-term dependencies cause the gradients
to become either very large (explode) or very small (vanish). This makes learning very hard
and the model prone to degeneration. To mitigate this issue, two popular architectures
were proposed which we will shortly present below.

Long Short-Term Memory

Long Short-Term Memory (LSTM) [35] is a type of recurrent neural network that ad-
dresses the vanishing gradient problem in RNNs through additional cell states and gates.
LSTMs are able to effectively learn long-term dependencies and have largely replaces the
simple RNN architecture. Intuitively, they solve the vanishing gradient problem through
additional additive components, and forget gate activations, that allow the gradients to
flow through the network without vanishing as quickly.

Figure 2.12: The architecture of an LSTM unit. (Source: Wikipedia)

The internal architecture of an LSTM unit (cell) is depicted in Figure 2.12. We will
shortly describe the additional components and their function. An LSTM cell contains:

• A forget gate (ft), which controls which information will be be discarded from the
cell state. The current input xt and the previous hidden state ht1 pass through a
sigmoid activation, in order to scale the values between 0 and 1. Values closer to 0
will be forgotten, while values closer to 1 will be kept in the cell state.

54

https://en.wikipedia.org/wiki/Recurrent_neural_network

2.3 Deep Learning for Natural Language Processing

• An input gate (it), which controls which values of the input are important and will
be used to the new cell state.

• An output gate (ot), which controls how much information of the cell should be
passed to the output and hidden state, based on the current input and previous
hidden state.

• A memory cell (ct), which is updated based on past information and the current
input. The forget gate and the input gate filter the past and new information, before
it enters the memory cell.

• A hidden state (ht), which is used to encode all the past information of the sequence.

To formulate the function of and LSTM unit and better show how the above compo-
nents interact, we show how to compute the above for the timestep t:

ft = σ(Wf xt + Uf ht−1 + bf)

it = σ(Wixt + Uiht−1 + bi)

ot = σ(Woxt + Uoht−1 + bo)

c̃t = tanh(Wcxt + Ucht−1 + bc)

ct = ft � ct−1 + it � c̃t

ht = ot � tanh(ct)

(2.25)

where W and U are the weight matrices to be learned (different for f , i, o and c) and
� denotes the element-wise product between vectors (Hadamard product).

Gated Recurrent Units

Gated Recurrent Units (GRU) were introduced in [16] and are a variant of the original
LSTM architecture. It actually has fewer parameters than an LSTM, since it omits the
output gate and the cell state, but has an equivalent performance on most tasks. GRUs
effectively solve the vanishing gradient problem using update and reset gates, which
decide what information should pass to the output.

The update gate zt acts like the input and forget gates of the LSTM. It is responsible
for determining what percentage of ht1 should be propagated to the next timestep. On
the other hand, the reset gate rt determines how much of the past information should
the model forget. The inner architecture of a GRU unit can be seen in Figure 2.13 and
the equations that describe its function are:

zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wrxt + Urht−1 + br)

h̃t = tanh(Whxt + Uh(rt � ht−1) + bh)

ht = (1 − zt) � ht−1 + zt � h̃t

(2.26)

where W and U are learnable weight matrices (for z, r and h).

55

Chapter 2. Background

Figure 2.13: The architecture of a GRU unit. (Source: Wikipedia)

2.3.3 Sequence-to-Sequence Modelling

Sequence-to-sequence (seq2seq) is a family of machine learning approaches used in
NLP and other fields. It deals with the task of generating an output sequence given an
input sequence, when the two sequences have different lengths and not an explicit one-
to-one correspondence. For example, one very typical task that is solved using a seq2seq
approach, is Neural Machine Translation (NMT). Other tasks that are solved in a similar
manner are Document Summarization, Conversational Models and Image Captioning, to
name a few.

Since the two sequences do not have the same structure, using simply a sequen-
tial architecture, like the RNN we described above, is not sufficient. To deal with this,
the seq2seq architecture was introduced [84]. Seq2seq is based on an Encoder-Decoder
framework. The encoder encodes the input sequence into a hidden (contextualized) rep-
resentation, while the decoder takes this representation as input to generate the final
output. In the original implementation, RNNs (specifically deep LSTMs) are used as the
encoder and the decoder, while the encoded representation is a vector of fixed dimension-
ality.

If we denote the input sequence as x1, . . . , xn, the output sequence as y1, . . . , ym and
the fixed size vector as c (context vector), we can formally express the task of generating
the output sequence given the input, by the conditional probability:

P(y1, . . . , ym | x1, . . . , xn) =

m∏
i=1

P(yi | c, y1, . . . , yi−1) (2.27)

In more detail, the encoder RNN processes the input sequence one token at a time
and the final hidden state is used as the context vector c. Then, the hidden state of
the decoder RNN is initialized with c. The first input to the decoder is a special token
called <bos> (beginning of sequence) and the next inputs are the outputs of the previous
timestep. Another technique that is used during training, called teacher forcing, uses
the target sequence tokens as input instead of the predicted output and it usually leads
to faster convergence. During inference (or test time) the first technique is used, since

56

https://en.wikipedia.org/wiki/Recurrent_neural_network

2.3 Deep Learning for Natural Language Processing

there is no ground truth.

Figure 2.14: The encoder-decoder framework. The RNN units are unfolded over time.
(Source: Github)

While this approach is very helpful when solving tasks without making assumptions on
the sequence structure, it has a major drawback. The input can only be accessed through
the context vector. Encoding a sequence of arbitrary length into a fixed-size representation
creates an information bottleneck. Also, when dealing with long sequences, information
in the beginning can be significantly forgotten by the time the last token is processed.

2.3.4 The Attention Mechanism

The attention mechanism was introduced in [2] for the task of Neural Machine Trans-
lation. It improves the performance of the aforementioned encoder-decoder architecture,
by solving the bottleneck problem that arises when using a fixed size context vector. In-
stead of discarding the intermediate hidden states of the encoder and using its final state
as the context vector, the attention mechanism develops a dynamic context vector by
combining all the encoder hidden states. This also creates shortcuts between the context
vector and the entire source input, which solves the problem of forgetting too. Attention
can be interpreted as the ability to focus on relevant tokens of the input by computing
weights of importance for their representations. This addition made the NMT approach
competitive with previous methods such as statistical MT. Since then, it is widely used in
most state-of-the-art architectures, not limited to NLP.

Formally, we have an input sequence x1, . . . , xn and an output sequence y1, . . . , ym .
The encoder is a bidirectional RNN with hidden state hi (the concatenation of

−→
ht and

←−
ht) at

timestep i and the decoder is a unidirectional RNN with hidden state st = f (st−1, yt−1, ct)
at timestep t. The context vector ct now is dynamic and is given by the following equation:

ct =

n∑
i=1

αt,ihi (2.28)

The weight αt,i refers to the pair (xi , yt) and is a measure of how well they match. It is
computed by:

57

https://github.com/sooftware/seq2seq

Chapter 2. Background

Figure 2.15: The attention mechanism of the original paper. (Source:[2])

αt,i = softmax(et,i) =
exp(et,i)∑n
j=1 exp(et,j)

(2.29)

where
et,i = score(st−1, hi)

is the score function that measures the alignment. There are many choices for an
alignment score function. In the original paper the score function is implemented by a
feedforward neural network with a single hidden layer. This network is jointly trained
with the rest of the model. In this case, using a tanh activation function, the score is:

score(st , hi) = v>a tanh(Wa[st ;hi]) (2.30)

where va and Wa are learned weight matrices. This type of attention mechanism
is called additive attention. An overview of alternative attention mechanisms and the
corresponding score function can be found in Table 2.1.

Name Score Function Introduced In

Content-base attention score(st , h i) = cosine[st , h i] [28]
Additive score(st , h i) = v>a tanh(Wa[st ;h i]) [2]

Location-Based αt,i = softmax(Wast) [49]
General score(st , h i) = s>t Wah i [49]

Dot-Product score(st , h i) = s>t h i [49]
Scaled Dot-Product score(st , h i) =

s>t h i√
n

[86]

Table 2.1: A summary table of popular attention mechanisms in chronological order

2.3.5 Transformer

The Transformer is a deep neural network architecture introduced in [86], providing a
seq2seq approach to the task of NMT. Inspired by the success of the attention mechanism
and trying to combat the slow training speeds enforced by the sequential nature of recur-

58

2.3 Deep Learning for Natural Language Processing

rent networks, the Transformer relies only on attention and so is able to process data in
parallel. This makes it much faster than any sequential architecture, while it performs
much better.

The Transformer is an encoder-decoder architecture. The encoder and the decoder
consist of N stacked layers, where the output of each layer is the input to the next. The
layers are identical, with different weights. Each encoder layer consists of a self-attention
and a fully connected feedforward sublayer interleaved by a residual connection and layer
normalization. The decoder has the same structure, with the addition of a cross-attention
sublayer between the self-attention and the feed-forward. The self-attention sublayer is
capable of creating a contextualized representation of the sequence, by analyzing the
dependency between tokens of the sequence. The cross-attention sublayer is responsible
for analyzing the dependency between the input and the output sequences. It should be
noted that the self-attention in the encoder is "bidirectional", while the self-attention of
the decoder is "unidirectional". This is implemented by using triangular masking and its
intention is to avoid attending to future tokens of the sequence, which has adverse effects
when predicting the current token. The cross-attention sublayer of each decoder layer is
conditioned by the last layer output of the encoder. The ouput of the last decoder layer is
finally converted to token probabilities, using a linear transformation and a softmax.

Figure 2.16: The Transformer Encoder-Decoder Architecture. (Source: [86])

The Feed Forward sublayer is fully connected and has a hidden layer with dimensionality
dff (usually dff = 4dmodel). It can be thought of as two linear transformations with a
non-linearity in between (ReLU in the original paper) applied to each position separately

59

Chapter 2. Background

and identically:

FFN(x) = max(0, xW1 + b1)W2 + b2 (2.31)

W1 andW2 are weight matrices learned by the model. This step performs an important
non-linear transformation, which creates a new representation based on the previous at-
tention sublayers. While experimentally it has been proven very helpful, its exact function
is still being researched [25].

Positional Encodings are used to give a sense of order in the sequences, since the Trans-
former is not a sequential architecture. They are ultimately a mapping of the sequence
index to a vector. In the original paper, sinusoidal functions of different frequencies were
used (fixed embedding), while a popular variation is using simple learned embeddings
based on the index.

Scaled Dot-Product Attention is the backbone of the Transformer. We will first describe
how it is applied in cross-attention and then we will show how it can be used for self-
attention too.

Figure 2.17: Schematics of Scaled Dot-Product Attention (left) and Multi-Head Attention
with h attention heads (right). (Source: [86])

We can think of the attention function as mapping a query and a set of key-value pairs
to an output. The output is computed as a weighted sum of the values, where the weight
of each value is computed by a compatibility (score) function between the query and the
corresponding key (similar to Subsection 2.3.4). At first, the key K and value V matrices
are created from the input and the query Q matrix is created from the output. They are
computed by multiplying them with learned weight matrices. The output is computed as:

Attention(Q,K, V) = softmax(
QK>
√
dk

)V (2.32)

where dk is the dimension of keys. The 1√
dk

scaling factor avoids too large inputs to
the softmax, which lead to extremely small gradients.

60

2.3 Deep Learning for Natural Language Processing

Instead of performing the above attention function once, the d-dimensional queries,
keys and values are projected with h different, learned, linear projections to dimensions
dq, dk and dv. The attention function is applied h times in parallel and then combined.
Each application of the attention function is an attention head, while this method is called
Multi-Head Attention. Formally, given the weight matrices WQ

i ∈ R
d×dq , WK

i ∈ R
d×dk ,

WV
i ∈ R

d×dv , WO ∈ Rhdv×d the multi-head attention is given by:

MultiHead(Q,K, V) = [head1; . . . ; headh]WO

headi = Attention(QWQ
i , KW

K
i , VW

V
i)

(2.33)

In the original paper, h = 8 and dq = dk = dv = d/h = 64. All the above weight matrices
are learned by the model.

Note that, in cross-attention, K and V come from the last layer of the encoder and Q comes
from the previous decoder layer, while in self-attention, simply all three matrices come
from the same part (encoder or decoder).

Transformer Variants

Since its appearance, the Transformer has revolutionized the wider field of Natural
Language Processing and became the state-of-the-art architecture for many NLP tasks.
It has even been used with great success for image and speech. Many variations of the
original architecture exist for seq2seq modelling, but it is worth mentioning a line of
research that keeps only one of the two parts (encoder or decoder) and trains them with
a semi-supervised objective.

The first approach keeps only the encoder part to create a language representation
model. The most successful work in this direction is BERT [21]. Its basic idea is that
by pretraining a bidirectional encoder on unlabeled data, meaningful representations can
be derived, which can later be used (with a little finetuning and some extra layers) on
downstream tasks, such as question answering or summarization. The task of masked
language modelling (hiding a word and predicting it based on context) and next sentence
prediction were devised to pretrain the model. The success of BERT led to many similar
models being developed (it even created a field of study called BERTology). Also, pretrain-
ing large language models on huge corpora of data (usually by large companies) and then
making their weights publicly available, to be finetuned on specific tasks became the new
paradigm.

Another line of work is focused on language models for text generation (unidirectional
or causal). The most successful work has been the GPT-x (x ∈ {1,2,3}) architecture [68]
[69] [9]. All three models are quite similar, with an increasing number of parameters,
larger training datasets and few enhancements. In contrast to BERT, GPT keeps the
decoder part of the model, which is trained on the task of predicting a token based on the
previous tokens of the sequence. It uses masked self-attention like the original decoder.
Pretrained models on huge language corpora are made publicly available, following the
paradigm of BERT. GPT is usually finetuned to generate text with specific attributes, like

61

Chapter 2. Background

poetry or movie reviews (domain adaptation). It can also be finetuned for other tasks such
as translation or question answering, with or without adding extra parts to the model. It
is considered by many as a general-purpose learner and the latest models can generate
text indistinguishable from text written by humans.

2.4 Overcoming Memory Constraints

2.4.1 The Pursuit for Efficient Attention

One major drawback of the attention mechanism is that it is inefficient for long se-
quences. Suppose we have a sequence of L tokens and the dimension of the Transformer
model is d. Also, the dimensions of matrices Q, K and V are L ×d (in the simple case). To
compute the attention matrix given by the Equation 2.32, we have to compute the QK>

matrix, which is of size L × L. So, the memory usage and time complexity of the Trans-
former scales quadratically with L making it unfeasible to use it for sequences longer than
1024 tokens, practically. Notice, that this multiplication has to be computed because of
the softmax, otherwise we could make the K>V multiplication first, which is of size d ×d.

Recently, many solutions have been many proposed to address the above drawback.
Most solutions make assumptions about the attention matrix to reduce complexity. In-
stead of regular dense attention, [15] uses sparse attention with O(L

√
L) complexity, [42]

uses locality-sensitive hashing to group together tokens with similar embeddings and
reduces complexity to O(L · log L) and [39] substitutes softmax with low-rank kernels to
achieve O(L) complexity.

2.4.2 Performer - FAVOR+ Attention

Performer [17] is a very recent architecture that manages to achieve linear complexity
by accurately estimating full-rank softmax attention, without relying on any priors or
changing the attention mechanism, like previous approaches. This is succeeded by using
a novel approach called Fast Attention Via positive Orthogonal Random features (FAVOR+),
which provably can be used to make a robust and unbiased estimation of attention.

To formally show how this is possible, we can rewrite Equation 2.32 as:

Att(Q,K, V) = D−1AV, A = exp(
QK>
√
dk

), D = diag(A1L). (2.34)

with exp() applied elementwise, 1L being an all-ones vector of length L and diag() a
diagonal matrix with the input vector as the diagonal.

Matrix A is of the form A(i, j) = K(q>i , k
>
j), qi being the ith query and kj being the

jth key row and K the kernel: K(x, y) = E[φ(x)>φ(y)]. By using the positive orthogonal
random features mapping φ(), we have Q′ and K′ with rows given as φ(q>i)> as and
φ(k>i)> respectively. Now matrix A does not have to be computed and by reordering the
computations, linear complexity on L is achieved, as shown in:

Âtt(Q,K, V) = D̂−1(Q′((K′)>V)), D = diag(Q′((K′)>1L). (2.35)

62

2.4 Overcoming Memory Constraints

Figure 2.18: The Performer Architecture - approximation via random features to avoid
computation of A (source: [17])

The authors show experimentally that the Performer achieves similar results to the
original Transformer architecture, using the same hyperparameters. Also, it is shown
that loading the weights of a pretrained Transformer model to this new architecture is
possible, but a small finetuning is necessary to recover the original accuracy. Finally,
redrawing the random features periodically is crucial to get a good approximation of the
attention mechanism.

2.4.3 Reversible Layers

Reversible layers were introduced in [26] and they focus on reducing the memory
consumption of deep neural networks. They are heavily inspired by deep residual net-
works and provide a simple but clever method to minimize the memory requirements for
activation storage.

When using gradient descent (or other optimization algorithms) to train a model with
N layers, the activations of all layers are saved to be used in the backward pass. With
reversible layers, one needs only the last activations, which can be used to recover the
activations of all previous layers, during back-propagation.

To achieve this, a reversible layer uses pairs of inputs (x1, x2) and outputs (y1, y2) and
two residual functions F , G. The outputs, during the forward pass, can be computed as:

y1 = x1 + F (x2), y2 = x2 + G(y1) (2.36)

This way a layer can be reversed simply by subtracting the residual functions. The inputs
of the layer, during the backward pass, can be computed as:

x1 = y1 − F (x2), x2 = y2 − G(y1) (2.37)

A very straightforward way to apply this idea to the Transformer has been introduced
and used with great success in the Reformer architecture [42], along with other mecha-
nism to reduce memory usage. The basic idea is to create a reversible block (as described
above) that contains one attention sublayer as the F function and one feedforward sub-
layer as the G function. Now, the activations for only one out of the N Transformer layers

63

Chapter 2. Background

Figure 2.19: The forward (a) and reverse (b) computations on a reversible block (Source:
[26])

have to be stored.

2.5 On Symbolic Music and Vocal Melody Generation

2.5.1 Symbolic Music - MIDI

Symbolic music refers to a notation-based representation of music, which contains
information about a music piece (such as pitches, rhythm, instruments and more), but
no audio. The two most common symbolic music (digital) formats are (a) digital score and
(b) MIDI.

A digital score is similar to an analog score (or sheet). Scores with various musical
notations have been developed over the years (traced back to 2000 BC), while the modern
staff notation, which we are all familiar with, took its final form around the 19th century
and got digitised in the 1990’s. The score format imposes a certain structure. A music
piece is divided into bars (or measures). A bar is a segment of time corresponding to
a specific number of beats. Notes are represented by their pitch and their duration
which corresponds to a note value, which is a fractional power of two. Rests are denoted
similarly. Without analyzing sheet music further, one can understand that it has a certain
structure and it is useful mostly for musicians.

MIDI on the other hand, is closer to an event log of all notes played by all instruments,
than to a hierarchical structured representation of a score. MIDI stands for Musical
Instrument Digital Interface and is a protocol that allows computers, musical instruments
and other devices to communicate.

A single MIDI link can carry up to sixteen channels of information, different digital
instruments for example. The basic element of MIDI is the event message. These are data
that specify instructions, like a note onset with its pitch and velocity (loudness) or clock
signals (which set tempo) and more. When a musician plays a MIDI instrument, all of
the key presses, knob turns and other actions are converted into MIDI data. These data
can also be stored to files and the original song that was played can be reconstructed
from them. Early mobile phones used MIDI files as ringtones, because of their small size.
MIDI files can also be annotated with other metadata events, such as lyrics. Today, MIDI
files are used widely and some that contain synchronized lyrics are used for karaoke and
related videogames.

Since a MIDI file is just binary data, a common way to visualize it is the piano roll
representation, a two dimensional representation, with the horizontal axis denoting time

64

2.5 On Symbolic Music and Vocal Melody Generation

and the vertical being the note range. An example can be seen in Figure 2.20.

Figure 2.20: The piano roll representation of a MIDI file (Source: songaweek)

2.5.2 Music Theory

We will shortly present some concepts from music theory that we use in the next
chapters.

Notes can represent the pitch and duration of a sound in musical notation. A note can
be represented by a letter (A to G), an optional accidental symbol (] or [) and a subscript
number (0 to 10) denoting the octave. A4 is the standard tuning pitch and is equal to 440
Hz. An octave contains 12 tones, or steps. All 12 tones can be seen in Figure 2.21.

Figure 2.21: The chromatic 12-tone chromatic scale built on C4, with corresponding fre-
quencies. (Source: Wikipedia)

Enharmonics or enharmonic equivalents are equivalent notes that have different "spellings".
For example E] and F correspond to the same pitch, but they are spelled differently. While
a specific spelling is commonly used, there are contexts in which another spelling is pre-
ferred.

Chords are (harmonic) sets of notes that are played simultaneously. Chords can be sym-
bolized by simply enumerating the containing notes. For example, C E G (we will not use

65

http://www.charliemccarron.com/songaweek/2011/09/week-3-pat-boerner-something-to-say/
https://en.wikipedia.org/wiki/Musical_note

Chapter 2. Background

the octave). Another notation that is used in popular music is using a letter indicating
the root note, a symbol indicating the quality and optional additional symbols for more
complex chords. Chord qualities are the qualities of the note intervals and they can be
major, minor, augmented, (half-)diminished and dominant. In our example our chord
can be written as C or Cmaj (major).

Scales (or keys) are sets of notes ordered by pitch. A specific scale is defined by its char-
acteristic interval pattern (like chord qualities) and by a note, known as its first degree
(or tonic). For example, C major indicates a major scale with a C tonic. Most common
modern Western scales consist of 7 notes (per octave). Each note is called a degree of the
scale. Each scale contains specific accidentals, which are called the key signature. Most
contemporary popular music is written in one scale, meaning that chords that consist of
notes of that scale are used. Sometimes the scale can change mid-song. This key or tonal
change is called modulation.

Roman Numerals is another representation of chords. They are commonly used in har-
monic analysis to denote the scale degree on which the chord is built on. Roman numerals
(I, II, III, IV, . . .), can denote scale degrees themselves. More commonly, however, they
represent the chord whose root note is that scale degree. For instance, III denotes either
the third scale degree or, more commonly, the chord built on it. Typically, uppercase
Roman numerals (such as I, IV, V) are used to represent major chords, while lowercase
Roman numerals (such as ii, iii, vi) are used to represent minor chords. So for example,
in the key (scale) of C major, the chord E G B or Em is represented as iii (lowercase), since
it is the third degree of the scale and minor, while the chord F A C or Fmaj is represented
as IV (uppercase), since it is the fourth degree of the scale and major. Roman numerals
are sometimes complemented by numbers to denote inversion (different note ordering) of
the chords. The musical analysis process that creates this representation for a chord is
called Roman Numeral Analysis. A more thorough example can be found in Figure 2.22.

Figure 2.22: The chord progression vi–ii–V–I in the key of C major, in standard notation
Am − Dm − Gmaj − Cmaj. (Source: Wikipedia)

2.5.3 Symbolic Music Generation

Music generation is by no means a new area of interest among computer scientists
and artists, with the first example being the Illiac Suite [32] in the late 1950’s, utilising
generative grammars and Markov chains. Similar methods based on knowledge and rule-
based approaches were popular the following years, with the first use of Artificial Neural
Networks [46] in the late 80’s setting the paradigm until today. Music generation would
mostly be thought of as a sequence modelling task, with recurrent architectures applied

66

https://en.wikipedia.org/wiki/Roman_numeral_analysis

2.6 On Conditional Lyrics Generation

to various symbolic representations.
Another line of work would create representations directly from spectograms and

waveforms, following the rise of deep features in the wider field of audio and music pro-
cessing with the most notable examples being SampleRNN [55] and Jukebox [22].

We will now mention some notable works in the field of symbolic music generation.
MidiNet [91] uses convolutional GANs [27] to generates monophonic MIDI melodies of fixed
length by dividing each bar to fixed timesteps in a piano roll representation. Another pop-
ular approach that creates a text event represenation of MIDI events (inspiration for our
approach) is used in PerformanceRNN [82] , Music Transformer [36] and MuseNet [64]
with great success on expressivity. A MIDI file is namely completely represented by a text
sequence. MuseGAN [23] uses a GAN-based model for multi-track sequence generation
on piano-roll format extracted from MIDI and MusicVAE [74] employs a hierarchical Vari-
ational Autoencoder model [41] to generate multi-track sequences, controllable through
latent space manipulation.

2.5.4 Conditional Vocal Melody Generation

Conditional Vocal Melody Generation is the task of generating a monophonic melody
to match a predefined lyrics text. In [4] the concatenation of syllable and word lyrics em-
beddings and a context window of the melody are encoded by two separate GRU encoders
and together condition a melody multi-layer decoder that explicitly outputs a note, its du-
ration and alignment information for each lyric syllable. [52] takes a similar approach. A
skip-gram model [57] is used to get word and syllable embeddings that are combined and
used as input for an LSTM encoder that uses a context vector to attend to three separate
decoders, for note, duration and rest. By connecting the encoder’s hidden vectors to a
language model head it is possible to also generate lyrics.

Another work [94] uses an LSTM that takes as input lyrics embeddings and noise
vectors to generate MIDI sequences in the above format, that are provided to another LSTM
together with the original text embeddings and are classified as real or fake if they match
the training distribution, functioning as a GAN. Lastly, [92] applies mutual information
maximization to a standard encoder-decoder LSTM architecture with attention.

2.6 On Conditional Lyrics Generation

An area of focus regarding lyrics generation is replicating the lyrical structure and
content of a specific genre or music style. For example in [60] a Transformer-based
denoising autoencoder architecture is used to create rap lyrics from given content words,
achieving rhyming by choosing words with large vowel overlap to end each line, while [73]
generates parody lyrics that adhere to the original song syllable and rhyming constraints
with suitable token masking. In [87] and [88] an LSTM Variational Autoencoder(VAE) is
used to create latent representations of lyrics, which are used together with embeddings
extracted from audio in order to condition lyrics generation on a specific music style.

Another area, more relevant to our work is the modelling and temporal conditioning

67

Chapter 2. Background

of lyrics to a specific vocal melody in the symbolic domain. An encoder-decoder LSTM
architecture is used in [50], where only the rhythmic quality of the melody is taken
into account. In [89] conditioning is done by concatenating each lyric syllable to the
corresponding melody note and its local window, before feeding it as input to an LSTM
language model. Finally, [14] utilizes Sequence Generative Adversarial Networks [93], an
architecture that overcomes the discrete sequence generator differentiation problem with
gradient policy update, trained on pairs of lyrics lines and their corresponding melody.

2.7 Singing Voice Synthesis

Singing voice synthesis is the task of generating audio for specific melody and lyrics.
Note that while our work deals with symbolic representations and not audio synthesis,
we employ a singing voice synthesis model to generate audio for our results, which we
use in the qualitative evaluation study. We will shortly discuss some approaches to this
task.

Singing voice synthesis is closely related to the more general task of speech synthesis
(or Text-to-Speech) and so has gained more attention, with the very first attempt tak-
ing place in 1961 at Bell Labs6. A very successful (commercial) application of singing
voice synthesis is the VOCALOID7. Its core mechanism is concatenative synthesis in the
frequency domain, using short professionaly recorded samples. Another popular com-
mercial system is Sinsy8, which uses mostly Hidden Markov models.

Similar to other NLP tasks, voice synthesis used to be comprised of many com-
ponents, such as text analysis, phoneme analysis, intonation and others, while lately
there has been a shift towards more end-to-end approaches, that directly generate mel-
spectrograms or even waveforms. DeepSinger [72] is a multi-lingual model based on
the Transformer architecture that generates spectrograms which are converted to wave-
forms with the Griffin-Lim algorithm9. Another model, called WGANSing [11] uses a
Wasserstein-GAN [1] that works on vocoder (and other) features.

We decide to use an architecture called Mellotron [85], since we find it to perform
very well among the alternatives and a pretrained model is publicly available. Mellotron
is a multi-speaker voice synthesis model, that is based on the Tacotron 2 architecture
[81], a recurrent seq2seq feature prediction network that maps character embeddings
to mel-scale spectrograms. Unlike other methods, Mellotron is trained only with read
speech data without alignments between text and audio. Nevertheless, it manages to
generate singing mel-spectrograms, by explicitly conditioning on rhythm and continuous
pitch contours from an audio signal or music score. The mel-spectrograms are finally
converted into audio, using WaveGlow [65], a flow-based network for audio synthesis.

We are able to use Mellotron as the final part of our pipeline, by reformatting our
generated output into a suitable format.

6https://www.historyofinformation.com/detail.php?entryid=4445
7https://www.upf.edu/web/mtg/news/-/asset_publisher/WM181VyAQipW/content/id/231857712/
8http://www.sinsy.jp/
9https://paperswithcode.com/method/griffin-lim-algorithm

68

https://www.historyofinformation.com/detail.php?entryid=4445
https://www.upf.edu/web/mtg/news/-/asset_publisher/WM181VyAQipW/content/id/231857712/
http://www.sinsy.jp/
https://paperswithcode.com/method/griffin-lim-algorithm

Chapter 3

Building our Dataset

In this Chapter we analyze the Lakh MIDI Dataset that constitutes the basis of our
dataset. We present the decisions and the steps we took to make the irregular and

arbitrarily lyrics annotations well structured and formulated for our task. We talk about
the tools we used and the way we applied music theory and music analysis to reshape
our data in a more compact and meaningful format. Lastly, we demonstrate our strategy
to separate lyrics and melody and the data we collected to finetune a pretrained language
model on lyrics.

3.1 The Lakh MIDI Dataset

The core of our dataset is the Lakh MIDI Dataset (LMD) [70]. LMD is a collection of
176,581 unique MIDI files, scraped from various publicly-available online sources and its
main goal is to facilitate large-scale music information retrieval. It is the largest dataset of
symbolic music that is publicly available. A subset of 45,129 files have been automatically
matched to entries in the Million Song Dataset (MSD) [8] and small excerpts (around 30
seconds or more) of them have also been automatically aligned to available audio previews
(linked to the MSD). The Million Song Dataset is a freely-available collection of audio
features and metadata for a million contemporary popular music tracks. The matching
and alignment of the files was done using a Dynamic Time Warping [6] based algorithm
and for each match there a confidence score shows how probable it is that the result is
correct.

To make sure we don’t include any duplicate songs, which is unfortunately common
and creates an imbalance in our data, we used the subset of MIDI files that were matched
to the MSD and included only one MIDI file for each entry. We chose the ones with the
highest confidence scores among all others that were valid for our task, meaning those
that include lyrics and comply with other constraints that we discuss later.

69

Chapter 3. Building our Dataset

3.2 Shaping the Dataset for our Task

3.2.1 Drawbacks of the Existing Dataset

The above dataset is not oriented towards analysis or processing of vocal melody and
lyrics. For this reason many files don’t include vocal melody at all, or if they include one
it is sometimes considered as another instrument without synchronized lyrics included.
Another issue is that in MIDI files the notion of annotating a specific channel/instrument
as vocals does not exist and lyrics are included as metadata of the whole song. Also, for
the files that do contain lyrics, there is no consistent annotation. The files are uploaded
by different users. For example, some of the files that include lyrics are used for karaoke
or relevant video games, where vocals are important, and others are transcribed or used
by singers and musicians.

This high irregularity of the annotations mostly affects lyrics and it can lead to the
following: (a) different sentence and verse separators or special characters, (b) some
lyrics to be included as MIDI lyrics events, while others were included as text events
(usually reserved for metadata such as copyrights or artist name) and most importantly
(c) inconsistency in the way the lyrics were partitioned in order to correspond to notes.
To give some examples of the latter, the phrase hello world could be split into hell-o-world

or hel-lo-wo-rld or the whole phrase could correspond to just one note. This depends not
only on the annotator, but on the way it is sung too. This not desired, since it increases
our token vocabulary size and restricts us on training and on generation.

3.2.2 Creating a more Standardized Dataset

For the above reasons, we applied the following preprocessing steps to get a more
structured dataset, making it suitable for our task:

• Language detection software 1 was used to keep only English lyrics.

• Lyrics events that were misplaced or mixed with text events had to be reordered,
based on their timing information.

• Many tracks denoted line or part boundaries differently, so we used a strict multiline
format (for example substituting full stops with new lines). The only characters we
keep are:

– letters

– single spaces

– single and double new lines

– commas

– apostrophes

– hyphens
1https://github.com/aboSamoor/polyglot

70

https://github.com/aboSamoor/polyglot

3.2 Shaping the Dataset for our Task

• MIDI files don’t include instrument to lyrics mapping. Sometimes, the synchroniza-
tion is not absolute, so we assigned each lyric to the closest note, given a threshold,
and chose the instrument with the most matches.

• Tracks with less than 50 lyrics syllables were not used.

• We restrict all notes in the piano octave range.

• All instruments are grouped to 8 instrument classes: Piano, Guitar, Bass, Strings,

Wind, Synth, Drums, Effects

As we mentioned above, the division of lyrics to singing notes can vary, depending on
the singer or the annotator. Sometimes more than one syllables or even words correspond
to one music note, while one syllable is possible to belong to more than one notes. To
make this division consistent and reversible at inference time we enforce a strict syllabified
format:

• We do grapheme-to-phoneme conversion, using Phonetisaurus [62] and the CMU
pronouncing dictionary [29]

• We split words to syllables, each containing one vowel

• If a note corresponds to n >1 syllables we divide it to n equal duration notes of the
same pitch

• If a syllable spans n >1 notes we match it to the first note and assign the next n - 1

notes to a special symbol

3.2.3 Text Event Format

After the above process we are left with 8505 MIDI tracks.

Figure 3.1: Instrumental Text Events

We further analyze them and create text event sequences for the instrumental and the
vocal part. We use the extracted phonemes instead of word syllables to make the size of
the token vocabulary smaller and also account for rhyming, since words or syllables that
are spelled different can contain the same phonemes. We use MIDI ticks to denote time
and MIDI pitches for notes (C4 being MIDI pitch 60). The format of these text events is

71

Chapter 3. Building our Dataset

Figure 3.2: Vocal Text Events (phonemes) corresponding to the lyrics:
cotton

sold in a marke(-e)t

analyzed below.

For both sequences we have the following events:

• wait time events measure time passing in MIDI ticks, they can mean rest if no note
is being played or duration of current note and makes it easy to model polyphonic
music. Largest value is 2000, so longer events are represented by adding waits.

• note on events signify that a note of this MIDI pitch (C4 = 60) starts.

• note off events signify that a note of this MIDI pitch ends.

For instrumental sequences (Figure 3.1):

• The instrument class name is appended to the corresponding note on event. We
have 8 instrument classes in total.

For vocal sequences (Figure 3.2):

• syllable/phoneme events signify the lyric syllable that belongs to the following
note

• extension events are used when a syllable is sung in two or more notes

• boundary events are used for providing structure information and making it pos-
sible to recreate the original text and include:

– new double line

– new line

– new word

– comma

72

3.3 Applying Music Theory Analysis

• Since vocals are monophonic and one note is played at each time we need only one
note off event.

Notice that synchronization of instruments and vocals is not explicit, but it happens im-
plicitly, since timing information (wait events) is the same for both sequences.

Each MIDI tick corresponds to
60
T ∗ R

seconds, with T representing tempo in Beats Per

Minute and R being the resolution of the file in Pulses Per Quarter Note (PPQN) with a
minimum value of 24 and maximum of 960 for most. The resolution can vary a lot
between MIDI files, which largely impacts the distribution of wait tick times. To alleviate
this issue we normalize the resolution by using 960 PPQN for all files.

At first, we also used the MIDI velocity of each note, but as it increased the vocabulary
size, which is disadvantageous in low-resource conditions [80], and couldn’t be used in
the final singing voice synthesis, we decided to discard it.

Sequence Length Instrumental Vocal Vocal (w/o syllables)

max 59120 6115 5065
median 13041 1645 1373

min 575 310 256

Table 3.1: Sequence Lengths for Instrumental and Vocal text event formats

In Table 3.1 we can see the maximum, median and minimum of sequence lengths
for instrumental and vocal text event sequences. For the latter we can also see the
sequence lengths when we do not include syllables/phonemes. It is evident that the size
of the instrumental especially is very large. Even though we use an architecture that was
developed for usage in long sequence scenarios, compressing the instrumental sequence
without losing important information is for our profit. Training will be faster and a more
dense representation can make our model more robust.

3.3 Applying Music Theory Analysis

3.3.1 Chord Reduction

We adopt many techniques to combat the large sequence lengths of our data, which
we will analyze later. But even though we are able to fit our models in a single GPU,
the training process still requires a lot of time. Also, the information contained in the
instrumental text events is very dense and it can be argued that a singer does not have
to know every single note played by every instrument to sing on a track. For the reasons
above, we choose to create a new representation from raw midi data, that at the same
time is compact, meaningful and does not discard important information.

To achieve this we use the music21 library [19], a set of tools for computer-aided musi-
cology. Music21 can parse symbolic music in many formats, such as MIDI or MusicXML2

2https://www.musicxml.com/publications/

73

https://www.musicxml.com/publications/

Chapter 3. Building our Dataset

Figure 3.3: An example of two music measures before compressing them to chords and
annotating them using roman numeral analysis (illustration with MuseScore)

(digital score) among others. It contains very useful notions of music theory, such as
harmony, chords, key signatures and modalities.

First of all we analyze and remove vocal and percussion instruments from our files
using our preprocessing algorithm and we parse them with music21 to get a score rep-
resentation. Then, we use a method that is implemented by the library, called chordify3.
This method merges all different parts/instruments into one and can create a chordal
reduction of polyphonic music, where each change to a new pitch results in a new chord.
This way we can reduce a complex score to a simple chord succession, discarding no
information and simplifying it simultaneously. To visualize this simplification we present
the score representation of two music measures before in Figure 3.3 and after this com-
pression in Figure 3.4.

3http://web.mit.edu/music21/doc/moduleReference/moduleStream.html#music21.stream.Stream.chordify

74

https://musescore.org/en
http://web.mit.edu/music21/doc/moduleReference/moduleStream.html#music21.stream.Stream.chordify

3.3 Applying Music Theory Analysis

Figure 3.4: The same two music measures of Figure 3.3, but with generated chords and
their roman numeral representation. Notes are restricted in an octave range (illustration
with MuseScore).

The reason we do not include the percussion part is because it would insert noise
during this process. Since different parts of a drum kit are represented simply as different
notes, music21 has the drawback of interpreting them as notes and it is not able to extract
information correctly. Also, it can be argued that the exact parts played by a drummer
are not crucial to the singer. Instead, we will use more basic rhythmical notions such as
beats and downbeats (the first beat of the measure), which will give us more abstract, but
concrete rhythmical information.

3.3.2 Roman Numeral Analysis

The created chords reduce the instrumental sequence lengths by a large factor, but
if we now create a separate token for each chord as a combination of pitches, the size
of the vocabulary will become huge, because of all the possible note combinations and
permutations (voicings). Also, the exact same song, transposed to a different music
key would consist of completely different chords. It would be more useful to model the
relative positions and function of the chords, instead. To solve these issues, we use
Roman Numeral Analysis (RNA). RNA is a very common type of musical analysis and its
core idea is that chords can be represented by a degree of the musical scale they belong
to. It is presented in more detail in 2.5.2 along with other basic music theory concepts.

At first, we get a key estimation of the current song using the Krumhansl-Schmuckler
algorithm4. This algorithm determines the key a song is in by comparing its pitch class
distribution to ideal pitch distributions for each key. It is implemented in music21. It
should be noted that sometimes the key changes during a song (modulation), even though
this is not that common for pop or rock music, that makes up most of our dataset.
Identifying modulations algorithmically is not easy and complicates our representation,
so we identify the most common key and we implicitly represent modulations by analyzing
the changed tonality chords in the original key.

Following, we get the roman numeral representation of every chord based on the

4http://rnhart.net/articles/key-finding/

75

https://musescore.org/en
http://rnhart.net/articles/key-finding/

Chapter 3. Building our Dataset

estimated key, including inversions (specified accordingly). The enharmonics are also
respelled to get simpler representations, in the context of the key. One very important
advantage of this method, except for providing a smaller vocabulary size, is that every
chord is independent of the key the song is written in. This is actually a crucial data
augmentation procedure, because all our dataset is being transposed to a common but
abstract key. Previous work that takes this into account is limited. To our knowledge
only [4] transposes the dataset to the commonly used key of C or Am and [90] trasposes
to all keys.

Figure 3.5: Instrumental Text Events with Roman Numeral Chords, Rests, Downbeats and
Beats

We also apply a procedure similar to RNA for the vocal melody notes, by converting
each absolute MIDI pitch to a corresponding scale degree. Since octave information is
also useful to get a more expressive vocal performance, we indicate which octave a note
is in by appending a number that specifies how many octaves above or below from the
tonic of the key the note lies.

Figure 3.6: Vocal Text Events with Roman Numeral Notes

Since the instrumental data are now chords with no overlap it is very uncommon for
a note on event not to succeed a note off event directly. For this reason we introduce
a new event that explicitly represents the few rests that remain. Also, as we discussed
above we discard percussion and substitute it with two new events that correspond to
downbeat, meaning the first beat of a measure, and beat, a more fine grained division
(mostly quarter notes). In Figures 3.5 and 3.6 the reader can see examples of the new
format.

76

3.4 Decoupling Lyrics and Melody

Sequence Length Instrumental Reduction

max 11730 80.16%
median 3220 75.31%

min 239 59.83%

Table 3.2: Sequence Lengths and Percent Reduction of Instrumental Events

Table 3.2 proves that we achieve a very important reduction in the length of our
instrumental sequences. The size of vocal sequences remains the same.

3.4 Decoupling Lyrics and Melody

As we will discuss more thoroughly in the next chapter (Section 4.2), being able to
model lyrics and vocal melody separately, while also accounting for their correlation, can
have many advantages. As the reader can see in the previous sections, so far we have
merged the two sequences in one. Each note is preceded by the phonemes/syllable that it
vocalizes, which has the advantage of an explicit and simpler one-to-one correspondence.

To shape our dataset in a suitable format for this separate modelling we first follow the
preprocessing steps we analyzed in Section 3.2. The difference is that we do not substitute
syllables with phonemes. Instead, we concatenate all syllables and create a single lyrics
text for the whole song. Then, we remove the syllable/phoneme events from the vocal
event text sequences, except from the extension events that are needed to specify that
a syllable extends to more than one note. The new concatenated then can be used with
any tokenization method, which does not restrict us and allows us to use any pretrained
language model. To further emphasize the importance of the syllabification process we
described, if we had not enforced specific tokenization rules, that are also reversible, we
would not be able to know how to map the new lyrics text to vocal melody notes.

We then assemble a lyrics dataset to finetune a pretrained english language model.
The purpose of this is twofold. The language model will use the attention mechanism of
the Performer, which as we mentioned in Subsection 2.4.2 requires some training steps
to be able to utilize loaded weights from a pretrained model. Also, lyrics have specific
structure and content (repetition of words or phrases or onomatopoeia for example). So,
the finetuning also serves the function of Domain Adaptation.

We use three publicly available datasets5 6 7 that include lyrics. We keep only english
lyrics and enforce a multiline format as in our target dataset. We also remove metadata
regarding structure such as the words Verse or Chorus. The dataset we create contains
lyrics for 263,666 songs.

5https://www.kaggle.com/neisse/scrapped-lyrics-from-6-genres
6https://www.kaggle.com/edenbd/150k-lyrics-labeled-with-spotify-valence
7https://www.kaggle.com/deepshah16/song-lyrics-dataset

77

https://www.kaggle.com/neisse/scrapped-lyrics-from-6-genres
https://www.kaggle.com/edenbd/150k-lyrics-labeled-with-spotify-valence
https://www.kaggle.com/deepshah16/song-lyrics-dataset

Chapter 4

Model Architectures for Lyrics and

Vocal Melody Generation

In this Chapter we present the model architectures that we use in our experiments.
First, we formulate the sequence-to-sequence task we want to solve. The architecture

we use is based on Transformers, substituting the original softmax attention with the
FAVOR+ attention mechanism and including some enhancements we found to be helpful
to reduce memory usage. We use improvements to the original architecture, documented
in literature. We also explore a decoding technique specific to our task to make the
generation process more robust. Next, we present a novel architecture for modelling
multiple sequences, while we also formulate the input combination technique we are
using. Finally, we show the architecture of the pretrained language model that we finetune
on the lyrics dataset.

4.1 Sequence to Sequence Modelling

4.1.1 Formulation

Let us define a few concepts first to show how we train a sequence-to-sequence model
on our dataset. We will not analyze the attention mechanism of the Transformer or the
Performer architecture. The reader can refer to Subsections 2.3.5 and 2.4.2 for more
details.

We have an instrumental sequence I1:n of variable length n as input and a vocal
sequence O1:m of variable length m as output. Each token of the input sequence is a one-
hot vector of dimension dn and each token of the output sequence is an one-hot vector
of dimension dm , where dn and dm are the sizes of the input and output vocabularies
respectively. Next, we have two mapping functions for each sequence genc : Rdn → Rd and
henc : R → Rd for the input and gdec : Rdm → Rd and hdec : R → Rd for the output. These
functions map sequences I1:n and O1:m to the sequences X1:n and Y1:m of the shared
dimension d respectively, as:

79

Chapter 4. Model Architectures for Lyrics and
Vocal Melody Generation

Self Attention

Feed Forward

Instrumental
Input

Embedding

Positional
Embedding

Layer Norm

Residual

Layer Norm

Residual

Masked Self Attention

Feed Forward

Vocal Melody/Lyrics
Input

Weight Sharing

Embedding

Positional
Embedding

Layer Norm

Residual

Layer Norm

Residual

Cross Attention

Feed Forward

Layer Norm

Residual

Layer Norm

Residual

Language Model
Head

Vocal Melody/Lyrics
Output

Nx

Nx

Figure 4.1: Our Simple Sequence-to-Sequence Architecture with an instrumental encoder
(left) and a vocal melody/lyrics decoder (right)

X1:n = genc(I1:n) + henc(pi) Y1:m = gdec(O1:n) + hdec(pi) (4.1)

where pi is the index of each token in a sequence. genc and henc are the token em-
beddings and positional embeddings of the encoder (equivalent for the decoder) and are
learnable.

The model we present here is trained to implement the following mapping:

f : X1:n → Y1:m (4.2)

It is composed of an encoder (left on Figure 4.1) with parameters θenc and a decoder
(right on Figure 4.1) with parameters θdec and it models the conditional probability dis-
tribution:

80

4.1 Sequence to Sequence Modelling

pθenc,θdec(Y1:m |X1:n) (4.3)

The encoder part encodes the input sequence X1:n to a new sequence X1:n of the same
dimension, thus defining the mapping:

fθenc : X1:n → X1:n (4.4)

which now provides for each token contextual information of the sequence.

We can rewrite Equation 4.3, to depend only on the decoder part and the above
contextualized sequence, as:

pθdec (Y1:m |X1:n) (4.5)

Or using Bayes rule:

pθdec (Y1:m |X1:n) =

m∏
i=1

pθdec(yi |Y0:i−1,X1:n) (4.6)

Note that the probability for yi does not depend on Yi:m .

The sequence Y1:m includes vectors of dimension d. To bring them to dimension dm ,
which is required both for training as well as decoding (more on that later) we use the
transpose of the weight matrix of gdec, as in the original Transformer implementation.
This has been also explored in [67]. So we get the sequence L1:m :

L1:m = g′dec(Y1:m) (4.7)

Finally, we train our network by minimizing the cross-entropy loss between the sequence
L1:m and the original vocal sequence O0:m−1 shifted by 1 (otherwise the model would learn
to copy the input):

L =

m∑
i=1

(oi−1) log (li) (4.8)

As we can see, training is done with the teacher forcing technique.

4.1.2 Enhancements

As we already mentioned, a very important step to reduce the memory usage of the
original Transformer architecture, which otherwise scales quadratically with the sequence
length, is substituting the softmax attention with the FAVOR+ attention mechanism in-
troduced by the Performer (Subsection 2.4.2).

Another important addition to make modelling such long sequences in a single GPU
feasible, is using reversible layers (see Subsection 2.4.3) instead of normal ones. Each
layer of the encoder will now correspond to a reversible block. Our decoder contains an

81

Chapter 4. Model Architectures for Lyrics and
Vocal Melody Generation

additional cross-attention sublayer, so to make it possible for it to use reversible layers,
we include an extra feed-forward sublayer between self and cross-attention, creating two
reversible blocks for each layer. Notice, that while this can be considered a significant
change from the original architecture, recent research on reordering [66] or adding feed-
forward sublayers [51], as well as on substituting attention with feed-forward blocks [53],
has shown that feedforward layers mostly act advantageously.

Another technique for reducing memory footprint also introduced in Reformer [42] is
used. It is called feed-forward chunking. Its idea is simple, it means that the input to a
feed-forward layer is divided into groups and not processed entirely in parallel to avoid
large memory consumption, producing the same result.

One more addition is the usage of learnable positional embeddings, instead of fixed
sinusoidal ones. Learnable positional embeddings were introduced in [24] and have been
used for state-of-the-art models, such as BERT [21] or GPT-2 [69].

In the original Transformer architecture, layer normalization (see Subsection 2.2.3)
occurs after each sublayer and residual connection addition, in what is called post-norm.
Another way to do layer normalization is putting it immediately before each sublayer,
creating pre-norm residual units. The improvement from using pre-norm has been docu-
mented in [12] and further analyzed in [59]. We use pre-norm, since it improves perfor-
mance, robustness and most importantly is stable when using large learning rates, with
no need to do warm-up (starting with a very small learning rate and gradually increasing
it), in contrast to post-norm.

Finally, we use Gaussian Error Linear Unit (GELU) instead of the more simple Rectified
Linear Units (ReLU) as the activation function of the feed-forward networks. GELU has
been used in BERT and GPT-2 with great success. Activation functions are documented
in more detail in Subsection 2.2.2.

4.1.3 Decoding Strategy

The reader can affirm by examining our data, that in contrast to other token sequences
(for example human language) there exists a very specific structure in the vocal sequences
(as well as on the instrumental but we will not focus on this). To make the above more
specific:

• The possible events that follow a wait time event are: note off events if a note is
on (meaning a note on event was encountered more recently than a note off event)
or one of: phoneme, extension or boundary events if no note is on.

• If the wait time event has the maximum value it can also be followed by a wait

time event, since this is the way we model longer times.

• If we encounter a note on event only wait time events can follow.

• If we encounter a note off event wait time, phoneme, extension or boundary

events can follow.

• Boundary events are always succeeded by phoneme or extension events.

82

4.2 Decoupled Modelling - Combining Multiple Input Sequences

• Phoneme and extension events are always succeeded by note on events.

We take advantage of these structural constrains, by masking the logits vector ac-
cordingly, allowing only valid events to be selected. This masking is done by setting all
invalid events probabilities to −inf before our decoding technique, which is top-k sampling

followed by a softmax and sampling from the multinomial probability distribution.
Using these rules at generation time is very helpful. First of all, we explicitly enforce

that the generated sequence will be in the correct format. Moreover, when we mask
the invalid events before our decoding technique, we can argue that generation is more
robust, since the probability distribution is only over valid events.

4.2 Decoupled Modelling - Combining Multiple Input Sequences

4.2.1 Formulation

The fact that lyric syllables and melody are jointly modelled as part of the same
sequence is quite limiting, since it does not provide a lot of flexibility and control on the
training or the generation process. Now we will describe the new task we solve, which can
be thought of as a multi-source sequence-to-sequence task, with the difference of having
two outputs instead of one.

As can be seen in Figure 4.2, we keep the instrumental encoder unchanged and
instead of a single decoder, we have one decoder for lyrics and one for vocal melody, in
which we add a second cross-attention layer. This technique to combine multiple input
sequences in a decoder has been studied in [47] and has been shown to perform very well
among the alternatives. The output of the instrumental encoder cross-attends to both the
lyrics and the first cross-attention sublayer of the vocal melody decoder, while last layer
output of the lyrics decoder cross-attends to the second.

We have still one instrumental sequence, let us denote it as I1:n and one vocal se-
quence, that does not contain lyrical information (phonemes) now, let us denote it as
O1:m . In our new architecture we have an extra part, which is the lyrics text and we will
refer to the part of the network that is responsible for it as the language model (leftmost
on Figure 4.2). Lyrics are tokenized by the tokenization method of the language method
to the sequence K1:q of length q and dimension dq.

As before we project it to the shared dimension d, using learnable token embeddings
glm : Rdq → Rd and positional embeddings hlm : R→ Rd. We get the sequence Z1:q

Z1:q = glm(K1:q) + hlm(p(K1:q)) (4.9)

We condition the language model to the instrumental input. We denote the parameters
of the language model as θlm and the modelled conditional probability distribution as:

pθenc,θlm(Z1:q |X1:n) (4.10)

We substitute now with the encodings of the instrumental encoder part X1:n and get
a probability depending only on θlm:

83

Chapter 4. Model Architectures for Lyrics and
Vocal Melody Generation

Self Attention

Feed Forward

Instrumental
Input

Embedding

Positional
Embedding

Layer Norm

Residual

Layer Norm

Residual

Masked Self Attention

Feed Forward

Lyrics
Input

Weight Sharing

Embedding

Positional
Embedding

Layer Norm

Residual

Layer Norm

Residual

Cross Attention

Feed Forward

Layer Norm

Residual

Layer Norm

Residual

Masked Self Attention

Feed Forward

Vocal Melody
Input

Weight Sharing

Embedding

Positional
Embedding

Layer Norm

Residual

Layer Norm

Residual

Cross Attention

Feed Forward

Layer Norm

Residual

Layer Norm

Residual

Cross Attention

Feed Forward

Layer Norm

Residual

Layer Norm

Residual

Language Model
Head

Lyrics
Output

Vocal Melody
Output

Language Model
Head

Nx

Nx

Nx

Figure 4.2: Our Decoupled Architecture with an instrumental encoder (center), one decoder
for lyrics (left) and one decoder for vocal melody (right) with two cross-attention sublayers.
The encoder conditions both decoders, while the encodings of the lyrics model condition the
vocal melody decoder.

pθlm (Z1:q |X1:n) (4.11)

Using Bayes rule:

pθlm (Z1:q |X1:n) =

q∏
i=1

pθlm(zi |Z0:i−1,X1:n) (4.12)

The sequence Z1:q is now encoded into the sequence Z1:q which depends on both the
lyrics sequence as well as on the instrumental one.

We can now use the transpose of the weight matrix of glm and get the logits vector L′1:q
of dimensions dq:

84

4.2 Decoupled Modelling - Combining Multiple Input Sequences

L′1:q = g′lm(Z1:q) (4.13)

We train this part of the network by minimizing the cross-entropy loss between the
sequence L′1:q and the original lyrics sequence K0:q−1 shifted by 1:

L1 =

q∑
i=1

(ki−1) log (l′i) (4.14)

Next, we focus on the vocal melody decoder.

As the reader can see in Figure 4.2 and as we mentioned already, the vocal melody
depends both on the instrumental and the lyrics. The conditional probability for vocal
melody is:

pθenc,θlm,θdec(Y1:m |X1:nZ1:q) (4.15)

We use the encodings from the instrumental encoder part as well as the lyrics encod-
ings and we rewrite the previous equation as:

pθdec (Y1:m |X1:n,Z1:q) (4.16)

pθdec (Y1:m |X1:n,Z1:q) =

m∏
i=1

pθdec(yi |Y0:i−1,X1:n,Z1:q) (4.17)

We then use Equation 4.7 to get the logits vector L1:m and we calculate the cross-
entropy loss for this sequence as we did before (Equation 4.8).

Finally, we train the network to minimize the sum of the above two cross-entropy
losses.

At inference time, the two separate sequences can be merged. Finally, one more
advantage of this method is that we can either generate both lyrics and melody or specify
in advance full lyrics or a part of them, to conditionally generate melody.

4.2.2 Lyrics Language Model

One of our main motivations behind the above decoupling was the ability to use a
pretrained language model as prior. With the release of language models trained on large
text corpora, it is common practice to use the knowledge they have acquired, either by
loading a pretrained model’s weights and finetuning on a downstream task (warm-starting)
or with more sophisticated methods, such as fusion [83] or knowledge distillation [5].

Since all pretrained language models we researched use a different tokenization method
than the one we are using (syllable tokenization), we cannot use any of the methods that

85

Chapter 4. Model Architectures for Lyrics and
Vocal Melody Generation

Figure 4.3: The Language Model that we finetune on lyrics, warm-starting with pretrained
distilGPT-2 weights

require a one-to-one correspondence between tokens. So, we use a different network
(lyrics decoder) that conditions our sequence (vocal melody) with cross-attention.

We decide to use the distilled version of GPT-2 (distilGPT-2), since it is one of the best
performing causal language models available and since it is small it fits our low-resource
requirements. Knowledge distillation was introduced in [10] and [33] and used with great
success in distilBERT [78], being one of the most successful ways to compress a model.
Its basic idea is that a smaller student model is trained to reproduce the outputs of a
larger, teacher model. Note that distilGPT-2 is 34% smaller than the smallest version of
GPT-2, and two times faster on average. GPT-2 uses a Byte-Pair Encoding tokenizer [79].

We use the model’s weights to warm-start a Performer decoder with reversible layers,
which we will later use in the decoupled model shown in Figure 4.2. As discussed in
the Performer paper and as we found out in practice, a small amount of finetuning is
necessary for the model to get on par with the original model. Also, we will use reversible
layers as we do in the decoupled model.

The language model in Figure 4.3 is unconditional and causal (each token attends
only to previous tokens) and is trained to minimize the cross-entropy loss like before.
For the final model we add a randomly initialized cross-attention layer, as it has been
showcased in [76]. As we confirm experimentally next, this random initialized layer does
not degrade the quality of generated lyrics, even from the very beginning of the training.

86

Chapter 5

Experiments and Results

In this Chapter we discuss some experimental details and the model and training hy-
perparameters we used, as well as the impact of the model parameters on training

speed. We further analyze the evaluation metrics we use. Following, we do a short com-
parison based on the above and analyze the qualitative evaluation study we conducted.
The reader can visit Appendix A for plots of losses, and evaluation metrics. Appendix B
contains examples of generated sequences.

Our code1 is on GitHub. Most of the architecture code is based on a Pytorch im-
plementation2 of Performer, that uses the attention mechanism introduced by the latter
on the original Transformer architecture, alongside some enhancements. We also use
DeepSpeed [71], a deep learning optimization library, in our training setup.

5.1 Experiments

5.1.1 Model Hyperparameters

Table 5.1 summarizes the main hyperparameters for the three models we train, while
Table 5.2 refers to the hyperparameters of the language model we finetune on the lyrics
dataset we assemble. We use a distilled version of GPT-2 (distilGPT-2) to perform warm-
start, by loading its weights to a model that uses the FAVOR+ attention mechanism and
has reversible layers. DistilGPT-2 is pretrained on a large corpus of regular English text
and its weights are publicly available online3.

As we already mentioned in Chapter 4 all our models have the following settings:

• FAVOR+ attention mechanism

• reversible layers

• feed-forward chunking (10 chunks)

• learnable token embeddings

1https://github.com/gulnazaki/thesis
2https://github.com/lucidrains/performer-pytorch
3https://huggingface.co/distilgpt2

87

https://github.com/gulnazaki/thesis
https://github.com/lucidrains/performer-pytorch
https://huggingface.co/distilgpt2

Chapter 5. Experiments and Results

Hyperparameters Seq2Seq (Full) Seq2Seq (Chords) Decoupled (Chords)

dimension 512 768
depth 6

encoder heads 8 6
decoder heads 8 6

lm* heads - 12
vocabulary size (encoder) 3411 22443
vocabulary size (decoder) 11984 12066 2122

vocabulary size (lm*) - 50257
maximum length (encoder) 50000 11730
maximum length (decoder) 6115 5065

maximum length (lm*) - 1024
token embedding dropout 0.1

feed-forward dropout 0.1
attention dropout 0.1

Table 5.1: Model Hyperparameters for Sequence-to-Sequence with Full Instrumental In-
put, Sequence-to-Sequence with Reduced Chords Instrumental Input and Decoupled with
Reduced Chords Instrumental Input. *language model

Hyperparameters Lyrics Language Model

dimension 768
depth 6
heads 12

vocabulary size 50257
maximum sequence length 1024
token embedding dropout 0.1

feed-forward dropout 0.1
attention dropout 0.1

Table 5.2: Model Hyperparameters for the Language Model that we finetune on Lyrics, we
warm-start (load weights) from a pretrained distilGPT-2 model

• learnable positional embeddings

• pre-norm (layer normalization before each sublayer)

• GELU activation function in the feed-forward sublayers

Also

• the dimension of the feed-forward hidden layers is 4d, d being the model/embedding
dimension

• the random features for the FAVOR+ attention mechanism (see Subsection 2.4.2)
are redrawn every 1000 steps

Note that while we try to have the same hyperparameters in all three models for a
more fair comparison, we are limited in the decoupled model by the hyperparameters of
the pretrained distilGPT-2. Specifically, it has been trained with a dimension of 768 and
12 attention heads. We use 6 heads for the encoder and decoder, since the dimension

88

5.1 Experiments

has to be divisible by the number of heads. Using a dimension larger than 768 on all
models was not an option, since we could not fit the full instrumental input model in a
single GPU.

5.1.2 Training Hyperparameters

Training Hyperparameters All Instrumental to Vocals Models Lyrics Language Model

Batch size 8 64
Mini-Batch size 1 8

Gradient Clipping 0.5
Optimizer AdamW

Betas 0.9, 0.98
Learning Rate 0.001
Weight Decay 0.1

Linear Warmup steps 100

Table 5.3: Training Hyperparameters for all three Instrumental to Vocals Models (Seq2Seq
(full), Seq2Seq (chords), Decoupled (chords)) and the finetuned on Lyrics Language Model

In Table 5.3, the reader can see the configuration we used for the training of our
models. We used the same hyperparameters on all models except from the finetuning
of our language model, in which we used a much larger batch size because of the small
memory requirements.

We manage to use a batch size 8 times the mini-batch size by performing gradient
accumulation (updating only every 8 steps).

We use gradient clipping (introduced in [63] and analyzed thoroughly in [95]). Gradient
clipping solves the exploding gradient problem and smoothens the gradient landscape, by
restricting the gradient norm: if ||g|| > v then g ←

g
v

||g||
where v is a norm threshold, 0.5

here.
We use the AdamW optimizer (see Subsection 2.2.3) with beta parameters of 0.9 and

0.98. We report that using this optimizer instead of regular Adam led to a much faster
convergence. We use a λ of 0.1 for the weight decay.

Lastly, we perform a very quick warm-up scheduling on the learning rate. We start
with a learning rate of 0 and gradually increase it until the final value of 0.001. Notice that
since we are using pre-norm, a slow warm-up, or small learning rates are not required.

5.1.3 Dataset size and total steps

We train all three instrumental to vocals models with same size dataset, using a
90% of the dataset for training and the 10% for validation and evaluating the generation
performance. We also train all models for the same amount of training steps, since we
have convergence at around this point and for fair comparison.

Likewise, we split our dataset to 90% for training and 10% for validation and evaluating
the generation performance, when finetuning the pre-trained distilGPT-2 on lyrics. Since,
the dataset we have assembled is very large and finetuning does not need to be extensive,
we train it for a little more than one epoch. Details are presented on Table 5.4.

89

Chapter 5. Experiments and Results

The reader can find the training and validation loss for all models plotted with time in
Appendix A.

Training All Instrumental to Vocals Models Lyrics Language Model

Train size 7654 237299 (29663 batches)
Validation size 851 26367

Epochs 6 1
Total Steps 45923 33370

Table 5.4: Size of Train and Validation Datasets (90/10 split), Epochs and Total Training
Steps for all three Instrumental to Vocals Models (Seq2Seq (full), Seq2Seq (chords), Decou-
pled (chords)) and the finetuned on Lyrics Language Model

5.1.4 Training and Inference Speed

At this point we document the training and inference times for our models. Tables 5.5
and 5.6 present the training speed, using the average of processed training samples per
second and providing an estimate of the total training time based on that. We notice that
reducing the instrumental input sequence is very important and leads to much faster
training (almost 3 times faster). Notice that we have an average reduction of 75% on the
length of the input sequence (see Table 3.2). The decoupled architecture is slower than the
simple sequence-to-sequence on chords (as expected), since it is more complex because
of the extra sublayers and the language model part. But still, larger sequence lengths
impact the training speed more. Also, we notice that finetuning the lyrics language model
is a fast process.

Next, we present the inference speed in generated tokens per second. In the sequence-
to-sequence architectures we calculate speed on the tokens of the unique output se-
quence, while in the decoupled architecture we take an average on the sum of lyrics and
vocal melody tokens. It should be noted that the decoding strategy that we analyzed in
4.1.3 makes generation slower, which is why the decoupled architecture that uses these
decoding constrains only on the vocal melody decoder is faster.

Speed/Duration Seq2Seq (Full) Seq2Seq (Chords) Decoupled (Chords)

Samples/second (average) 0.171 0.473 0.259
Total hours of training 74.59 26.96 49.25

Generated tokens/second 5.89 6.71 9.09

Table 5.5: Training speed, total training duration and inference speed for Sequence-to-
Sequence with Full Instrumental Input, Sequence-to-Sequence with Reduced Chords Instru-
mental Input and Decoupled with Reduced Chords Instrumental Input (times measured in
an NVIDIA Tesla T4 GPU)

5.2 Regarding the Generation Evaluation Metrics

To get an estimate of our model’s performance during training we need to evaluate
the generation capabilities, besides the loss on the validation dataset. A metric most

90

5.3 Comparison

Speed/Duration Lyrics Language Model

Samples/second (average) 3.59
Total hours of training 2.58

Table 5.6: Training speed and total training duration for the Language Model that we
finetune on Lyrics

commonly used in Machine Translation (a common seq2seq task) is the Bilingual Evalua-
tion Understudy (BLEU). BLEU metric is constrained between 0 and 1, and larger values
indicate that a generated sequence is closer to ground truth. The generated sequence is
evaluated based on n-gram matches to ground truth and can be defined as:

BLEU = BP · exp

 N∑
n=1

(wn log pn)

 (5.1)

where BP is the brevity penalty on the length of the utterance, pn is the probability
that the n-grams in a generated response occur in ground truth, N is the max number of
grams and wn is the weight for each n-gram.

The reader can find BLEU metric plotted with time in Appendix A. Arguably, its values
are small and irregular, and there is no significant improvement with time. This does
not surprise us, since vocals generation based on instrumental input is by no means a
task with a "correct answer". Given the same instrumental song, a thousand songwriters
would come up with a thousand different vocal melodies and lyrics.

For the above reason we devise a much weaker metric, that nevertheless is informative
of the generation quality. We talked about the structure of the vocal sequence in detail
in Subsection 4.1.3. There are specific rules/constraints regarding the possible event
types, based on a few previous event types of the sequence. To get an estimate of how
well the generated sequence obeys to these rules, we remove the decoding constrains we
mentioned and instead we generate unconstrained sequences. Then, using the same al-
gorithm we described, we count how many of these events obey the structural constraints
and we divide by the total length of the sequence getting a value between 0 and 1. We call
this metric Valid Structure Metric (VSM) and we write:

VSM =

∑m
i=1 v(Oi ,O1:m)

m
(5.2)

where v is a function that is equal to 1 if the current event is valid and equal to 0
otherwise, and O1:m is a vocal sequence of length m.

We notice that although VSM takes values close to one early in training, it is not
consistently 1 and has some negatives spikes, especially when using the full instrumental
input. So, the need for constraining on generation is justified.

5.3 Comparison

To recap what we noted above and what we see in the plots in Appendix A, reducing
the size of the instrumental input is very important for the training speed of the model.

91

Chapter 5. Experiments and Results

When examining the plotting of the losses we also note that validation loss converges to
a smaller value.

Regarding the decoupled architecture, we note that, while the model is more complex
than the simple sequence-to-sequence one, the training speed is not affected as much as
it is affected from larger instrumental input sequences. Also, we see from the VSM metric
that generated sequences with the decoupled architecture have a valid structure metric
more consistently close to 1, with much fewer downward spikes.

5.4 Qualitative Evaluation

In Subsection 5.2 we discussed the generation evaluation metrics we used to get an
estimation of the quality of generation sequences. It is very hard to formulate musicality
and because of this, automatic evaluation of the results is not representative of the re-
sulting quality. BLEU metric can not give us a good estimation and the metric we devised
depends only on the structure of the sequences and gives us no estimation for the melodic
or lyrical content.

For the above reasons, and since musicality is subjective, we conduct a qualitative
evaluation of our results to compare the different models we developed. The raw format
of the sequences is impossible to judge, so we convert it to a much more human friendly,
audio format. We take the following steps:

• We randomly pick 5 MIDI instrumentals from the evaluation dataset.

• We synthesize audio from the above instrumentals, using code from a MIDI pro-
cessing library4 and the software synthesizer FluidSynth5.

• We generate vocal melody and lyrics with our 3 models (seq2seq with full input,
seq2seq with reduced (chords) input and decoupled with reduced input).

• We use Mellotron (see Subsection 2.7) to perform singing voice synthesis on the
results (using custom code to make our event sequence format compatible).

• We mix the generated singing with the instrumental audio and get a total of 15
audio files.

• We also include the generated lyrics. Note that for the seq2seq architecture, we
train a phoneme to grapheme model6 on the CMU pronouncing dictionary to turn
the phonemes to a more friendly text format.

Then we ask 15 people to compare the results of the 3 models, for each one of the 5
tracks. We shuffle the audio files for each track to avoid bias in the answers.

For each track, the participants have to choose one or more audio files that they
believe were better in terms of:

4https://github.com/craffel/pretty-midi
5https://www.fluidsynth.org
6https://github.com/cmusphinx/cmudict

92

https://github.com/craffel/pretty-midi
https://www.fluidsynth.org
https://github.com/cmusphinx/cmudict

5.4 Qualitative Evaluation

1. Rhythmic/Melodic Quality: how musical or interesting is the vocal part, in terms
of rhythm and melody

2. Relation to the Music: how well the vocal part fits with the instrumental, both in
terms of harmony (in tune) and synchronization (in tempo)

3. Lyrical Content: the quality of the generated lyrics

Figure 5.1: Rhythmical/Musical Quality according to our Qualitative Evaluation Study

We gather their answers and analyze them. The reader can see the results in Figures
5.1, 5.2 and 5.3.

We conclude that the decoupled architecture is definitely better when it comes to
lyrics, as expected. Also, it significantly outperforms the seq2seq architectures, regarding
the relation of vocals to music. Finally, it is slightly better to generating musical vocal
sequences. Comparing the two seq2seq models we note that they are quite similar, with
the one using chords being a little better regarding instrumental/vocal relation and a little
worse on the quality of the vocal melody.

Since we have used a relatively small number of tracks and participants in our study,
we cannot come to a conclusion with very much confidence.

93

Chapter 5. Experiments and Results

Figure 5.2: Relation to the Music according to our Qualitative Evaluation Study

Figure 5.3: Lyrical Content according to our Qualitative Evaluation Study

94

Chapter 6

Conclusions and Future Work

In this last Chapter we will wrap up our work with some conclusions. Also, we present
some ideas that could improve our approach to the task we explore or give us new

and exciting directions to gaze at.

6.1 Conclusions

In this thesis we explore a very interesting task, that of lyrics and vocal melody genera-
tion for a specific instrumental music piece. We focus on symbolic music and specifically
on the MIDI format. To the best of our knowledge, our work is the first to incorporate the
musical context of the accompaniment, when studying the generation of lyrics or vocal
melody. Our research, and the code that we release along, make it possible to generate
end-to-end a complete vocal performance for any instrumental MIDI file we can imagine,
for the first time. We turn the generated vocals from a symbolic representation to audio,
using a singing voice synthesis model.

We propose a text event approach, inspired by the recent, successful work in the field
of symbolic music generation. Based on a dataset that consists of publicly available MIDI
files, we separate vocals and lyrics from the instrumental part and create a dataset in a
more structured format, suitable for the problem we research. We also make available
the code to recreate it from the original.

We experiment with two types of model architectures. In the first one, we merge
lyrics with vocal melody. We have two sequences, one consisting of instrumental events,
the input sequence, and another one that consists of vocal melody events, alongside
lyrics syllables, which is the output. Then, we model conditional vocal melody and lyrics
generation as a sequence-to-sequence task, using a typical encoder-decoder Transformer
architecture.

The second type of model architecture that we experiment with is one that we in-
troduce, inspired by research in multi-source and multi-modal sequence modelling, and
motivated by the benefits of incorporating prior knowledge from language models. We
separate lyrics from vocal melody and use a Transformer architecture that consists of
an instrumental encoder, one vocal melody decoder and one lyrics decoder part. For the
lyrics decoder we use a pretrained GPT-2 model, which we finetune on plain lyrics. The
encodings of the instrumental part are used to encode both the lyrics and the vocal melody

95

Chapter 6. Conclusions and Future Work

decoder, using cross-attention sublayers in the latter two. We also use the encodings of
the lyrics language model part, before decoding it to text tokens, to condition the vocal
melody decoder, by adding a second cross-attention sublayer to it. The generated lyrics
and vocal melody sequences are merged into one. We call this architecture decoupled.

The sequences that we model can be up to 50 times longer than the barrier of 1024
tokens that most Transformer based architectures can model, because of the quadrati-
cal memory requirements of the regular softmax attention mechanism. For this reason,
we use the linear FAVOR+ attention mechanism introduced recently, along with other
enhancements to reduce memory footprint, such as reversible layers. Furthermore, we
apply a music analysis step, that reduces the instrumental input up to 80%, by substitut-
ing music notes with chords. We also substitute notes and chords with roman numerals,
a music key-independent representation, for more robustness. We find that this reduced
representation substantially reduces training time.

Finally, we conduct a qualitative comparative evaluation study to compare the results
from three models: (a) a sequence-to-sequence model trained with full instrumental notes
input, (b) a sequence-to-sequence model trained with reduced instrumental chords and
(c) a decoupled architecture model trained with reduced instrumental chords. We find
that the latter significantly outperforms the others in terms of lyrics content, as expected,
while also being slightly superior in the musical quality of the generated vocal melody as
well as on its relation to the accompaniment.

We hope that with work we can encourage more researchers to study conditional
vocal melody and lyrics generation and bring new ideas to this exciting field. Also, we are
confident that our work can be used by artists and others to create and inspire.

6.2 Future Work

In the future, we aim to improve the performance on the task we study here by
experimenting with some different settings, regarding the sequence representations and
the model architecture. A difference in representation, that is easy to incorporate in
the existing pipeline, is substituting MIDI ticks as the time unit with musical durations
(for example using a 64th note duration as base). Another idea is to keep only notes
that belong to the derived music key, or further simplifying chords, when doing chordal
reduction.

Regarding improvements in the model architecture, we could experiment with other
methods to reduce memory footprint, for example using gradient checkpointing [13] in-
stead of reversible layers, since reversibility enforces slower training speed. Some other
ideas regard the decoupled architecture we introduced. We can experiment with a differ-
ent setup, such as conditioning lyrics to vocal melody, in contrast to the current model.
It is also worth studying whether the conditioning of lyrics to the instrumental sequence
is important, by performing an ablation study.

To reduce the complexity of the decoupled architecture we could also try using other
ways to incorporate prior knowledge from a language model. Since the vocal tokenization
of lyrics, meaning the mapping of lyrics text to notes, is different from commonly used

96

6.2 Future Work

tokenization algorithms, we cannot think of a more efficient way to use a pretrained lan-
guage model. Instead, we can train a language model, using a syllable based tokenization
method, on a large corpus of english text from the beginning. Training a language model
with restricted resources could mean that it will not perform as well as a pretrained state
of the art model, but using other ways to leverage it, could improve the performance
overall. An elegant solution that performs a type of knowledge distillation technique, by
adding a regularization term depending on the language model output distribution, is
showcased in [5]. It can be easily utilized in our model if the regularization applies only
to syllable tokens.

Another improvement, comparable to the usage of prior knowledge for lyrics, would
be the pretraining of the instrumental encoder, with an unsupervised training objective,
like bidirectional language representation model encoders (for example BERT). Since the
amount of instrumental-only MIDI tracks is very large, this is worth exploring.

Finally, we aspire to cross the limits of symbolic music. DALI [56] is a large dataset that
contains audio tracks, with synchronized lyrics and their time-aligned vocal melody notes.
Its format is very close to the dataset we built, with the difference of containing raw music
audio information. Using source separation to isolate vocals and extracting temporal
audio features and using them instead of the symbolic instrumental embeddings, is one
straightforward way to use one of our existing architectures. Finally, we could use this
dataset to build an end-to-end audio vocals generation pipeline, since singing audio is
contained with synchronized note and lyrics mapping.

97

Παραρτήµατα

99

Appendix A

Training, Validation and Generation Metrics for

our three models:

Seq2Seq with Full Input,

Seq2Seq with Reduced Chords Input,

Decoupled with Reduced Chords Input

In this appendix, we present diagrams for: (a) Training and Validation Loss, (b) BLEU
metric, (c) Valid Structure Metric. These metrics are explained in Chapter 5 along with a
comparison for our three models based on these results.

A.1 Sequence-to-Sequence with Full Instrumental Input

Figure A.1: Train(orange) and Validation(blue) Loss for simple seq2seq architecture with
full input - training for 6 epochs

101

Appendix A. Training, Validation and Generation Metrics for our three models:
Seq2Seq with Full Input,
Seq2Seq with Reduced Chords Input,
Decoupled with Reduced Chords Input

Figure A.2: BLEU metric for simple seq2seq architecture with full input

Figure A.3: Valid Structure Metric of Vocal Melody sequence for simple seq2seq architecture
with full input

102

A.2 Sequence-to-Sequence with Reduced Chords Instrumental Input

A.2 Sequence-to-Sequence with Reduced Chords Instrumental

Input

Figure A.4: Train(orange) and Validation(blue) Loss for simple seq2seq architecture with
reduced input - training for 6 epochs

Figure A.5: BLEU metric for simple seq2seq architecture with reduced input

103

Appendix A. Training, Validation and Generation Metrics for our three models:
Seq2Seq with Full Input,
Seq2Seq with Reduced Chords Input,
Decoupled with Reduced Chords Input

Figure A.6: Valid Structure Metric of Vocal Melody sequence for simple seq2seq architecture
with reduced input

A.3 Decoupled with Reduced Chords Instrumental Input

Figure A.7: Train(orange) and Validation(blue) Loss for decoupled architecture with reduced
input (sum of lyrics and melody losses) - training for 6 epochs

Figure A.8: Valid Structure Metric of Vocal Melody sequence for decoupled architecture with
reduced input

104

Appendix B

Examples of the Generated Sequences

In this appendix, we present some examples of the lyrics that are generated with our
finetuned language model before and after incorporating it in our decoupled architec-
ture. The reader can also find some audio examples of generated vocals, mixed with the
instrumental part, on SoundCloud.

Figure B.1: Generated examples of the distilGPT-2 language model finetuned on lyrics

105

https://soundcloud.com/thomas-melistas

Appendix B. Examples of the Generated Sequences

Figure B.2: Generated examples of the language model in the decoupled architecture

106

Βιβλιογραφία

[1] Martin Arjovsky, Soumith Chintala και Léon Bottou. Wasserstein GAN, 2017.

[2] Dzmitry Bahdanau, Kyunghyun Cho και Yoshua Bengio. Neural Machine Translation

by Jointly Learning to Align and Translate, 2016.

[3] Jimmy Lei Ba, Jamie Ryan Kiros και Geoffrey E. Hinton. Layer Normalization, 2016.

[4] Hangbo Bao, Shaohan Huang, Furu Wei κ.ά. . Neural Melody Composition from

Lyrics, 2018.

[5] Christos Baziotis, Barry Haddow και Alexandra Birch. Language Model Prior for

Low-Resource Neural Machine Translation, 2020.

[6] R. Bellman και R. Kalaba. On adaptive control processes. IRE Transactions on Auto-

matic Control, 4(2):1–9, 1959.

[7] Amineben khalifa και Hichem Frigui. Multiple Instance Fuzzy Inference Neural Netw-

orks. 2016.

[8] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman και Paul Lamere. The

Million Song Dataset. Proceedings of the 12th International Conference on Music Infor-

mation Retrieval (ISMIR 2011), 2011.

[9] Tom B. Brown, Benjamin Mann, Nick Ryder κ.ά. . Language Models are Few-Shot

Learners, 2020.

[10] Cristian Buciluundefined, Rich Caruana και Alexandru Niculescu-Mizil. Model Co-

mpression. Proceedings of the 12th ACM SIGKDD International Conference on Kno-

wledge Discovery and Data Mining, KDD ’06, σελίδα 535–541, New York, NY, USA,
2006. Association for Computing Machinery.

[11] Pritish Chandna, Merlĳn Blaauw, Jordi Bonada και Emilia Gomez. WGANSing: A

Multi-Voice Singing Voice Synthesizer Based on the Wasserstein-GAN. 2019 27th

European Signal Processing Conference (EUSIPCO), 2019.

[12] Mia Xu Chen, Orhan Firat, Ankur Bapna κ.ά. . The Best of Both Worlds: Combining

Recent Advances in Neural Machine Translation. Proceedings of the 56th Annual Mee-

ting of the Association for Computational Linguistics (Volume 1: Long Papers), σελίδες
76–86, Melbourne, Australia, 2018. Association for Computational Linguistics.

107

ΒΙΒΛΙΟΓΡΑΦΙΑ

[13] Tianqi Chen, Bing Xu, Chiyuan Zhang και Carlos Guestrin. Training Deep Nets with

Sublinear Memory Cost, 2016.

[14] Yihao Chen και Alexander Lerch. Melody-Conditioned Lyrics Generation with Seq-

GANs, 2020.

[15] Rewon Child, Scott Gray, Alec Radford και Ilya Sutskever. Generating Long Sequences

with Sparse Transformers, 2019.

[16] Kyunghyun Cho, Bartvan Merrienboer, Caglar Gulcehre κ.ά. . Learning Phrase Re-

presentations using RNN Encoder-Decoder for Statistical Machine Translation, 2014.

[17] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan κ.ά. . Rethinking Atte-

ntion with Performers, 2021.

[18] Corinna Cortes και Vladimir Vapnik. Support-Vector Networks. Mach. Learn.,
20(3):273–297, 1995.

[19] Michael Scott Cuthbert και Christopher Ariza. Music21: A Toolkit for Computer-

Aided Musicology and Symbolic Music Data. ISMIRJ. Stephen Downie και Remco C.
Veltkamp, επιµελητές, σελίδες 637–642. International Society for Music Information
Retrieval, 2010.

[20] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics

of Control, Signals, and Systems (MCSS), 2(4):303–314, 1989.

[21] Jacob Devlin, Ming Wei Chang, Kenton Lee και Kristina Toutanova. BERT: Pre-

training of Deep Bidirectional Transformers for Language Understanding, 2019.

[22] Prafulla Dhariwal, Heewoo Jun, Christine Payne κ.ά. . Jukebox: A Generative Model

for Music, 2020.

[23] Hao Wen Dong, Wen Yi Hsiao, Li Chia Yang και Yi Hsuan Yang. MuseGAN: Multi-

track Sequential Generative Adversarial Networks for Symbolic Music Generation and

Accompaniment, 2017.

[24] Jonas Gehring, Michael Auli, David Grangier κ.ά. . Convolutional Sequence to Sequ-

ence Learning, 2017.

[25] Mor Geva, Roei Schuster, Jonathan Berant και Omer Levy. Transformer Feed-

Forward Layers Are Key-Value Memories, 2020.

[26] Aidan N. Gomez, Mengye Ren, Raquel Urtasun και Roger B. Grosse. The Reversible

Residual Network: Backpropagation Without Storing Activations, 2017.

[27] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza κ.ά. . Generative Adversarial

Networks, 2014.

[28] Alex Graves, Greg Wayne και Ivo Danihelka. Neural Turing Machines, 2014.

108

ΒΙΒΛΙΟΓΡΑΦΙΑ

[29] The Speech Group. The CMU Pronouncing Dictionary, 2014.

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren και Jian Sun. Deep Residual Learning

for Image Recognition, 2015.

[31] Dan Hendrycks και Kevin Gimpel. Gaussian Error Linear Units (GELUs), 2020.

[32] Lejaren Arthur Hiller και Leonard M. Isaacson. Experimental Music; Composition with

an Electronic Computer. Greenwood Publishing Group Inc., USA, 1979.

[33] Geoffrey Hinton, Oriol Vinyals και Jeff Dean. Distilling the Knowledge in a Neural

Network, 2015.

[34] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky κ.ά. . Improving neural netw-

orks by preventing co-adaptation of feature detectors, 2012.

[35] Sepp Hochreiter και Jürgen Schmidhuber. Long short-term memory. Neural compu-

tation, 9(8):1735–1780, 1997.

[36] Cheng Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit κ.ά. . Music Transformer:

Generating Music with Long-Term Structure. arXiv preprint arXiv:1809.04281, 2018.

[37] Sergey Ioffe και Christian Szegedy. Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift, 2015.

[38] Andrej Karpathy. Convolutional neural networks for visual recognition.

[39] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas και François Fleuret. Tran-

sformers are RNNs: Fast Autoregressive Transformers with Linear Attention, 2020.

[40] Diederik P. Kingma και Jimmy Ba. Adam: A Method for Stochastic Optimization,
2017.

[41] Diederik P Kingma και Max Welling. Auto-Encoding Variational Bayes, 2014.

[42] Nikita Kitaev, Łukasz Kaiser και Anselm Levskaya. Reformer: The Efficient Transfor-

mer, 2020.

[43] John Koopman. A Brief History of Singing. http://www2.lawrence.edu/fast/KOOPMAJO/

brief.html, 1999. Online; accessed March 2021.

[44] Anders Krogh και John Hertz. A Simple Weight Decay Can Improve Generalization.
Advances in Neural Information Processing SystemsJ. Moody, S. Hanson και R. P.
Lippmann, επιµελητές, τόµος 4. Morgan-Kaufmann, 1992.

[45] Y. Lecun, L. Bottou, Y. Bengio και P. Haffner. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[46] Lewis. Creation by refinement: a creativity paradigm for gradient descent learning

networks. IEEE 1988 International Conference on Neural Networks, σελίδες 229–233
ολ.2, 1988.

109

http://www2.lawrence.edu/fast/KOOPMAJO/brief.html
http://www2.lawrence.edu/fast/KOOPMAJO/brief.html

ΒΙΒΛΙΟΓΡΑΦΙΑ

[47] Jindřich Libovický, Jindřich Helcl και David Mareček. Input Combination Strate-

gies for Multi-Source Transformer Decoder. Proceedings of the Third Conference on

Machine Translation: Research Papers, σελίδες 253–260, Brussels, Belgium, 2018.
Association for Computational Linguistics.

[48] Ilya Loshchilov και Frank Hutter. Decoupled Weight Decay Regularization, 2019.

[49] Minh Thang Luong, Hieu Pham και Christopher D. Manning. Effective Approaches

to Attention-based Neural Machine Translation, 2015.

[50] Xu Lu, Jie Wang, Bojin Zhuang κ.ά. . A Syllable-Structured, Contextually-Based

Conditionally Generation of Chinese Lyrics, 2019.

[51] Yiping Lu, Zhuohan Li, Di He κ.ά. . Understanding and Improving Transformer From

a Multi-Particle Dynamic System Point of View, 2019.

[52] Gurunath Reddy Madhumani, Yi Yu, Florian Harscoët κ.ά. . Automatic Neural Lyrics

and Melody Composition, 2020.

[53] Swetha Mandava, Szymon Migacz και Alex Fit Florea. Pay Attention when Required,
2020.

[54] Warren S. McCulloch και Walter Pitts. A logical calculus of the ideas immanent in

nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[55] Soroush Mehri, Kundan Kumar, Ishaan Gulrajani κ.ά. . SampleRNN: An Unconditio-

nal End-to-End Neural Audio Generation Model, 2017.

[56] Gabriel Meseguer-Brocal, Alice Cohen-Hadria και Geoffroy Peeters. DALI: A Lar-

ge Dataset Of Synchronized Audio, Lyrics And Notes, Automatically Created Using

Teacher-student Machine Learning Paradigm. 19th International Society for Music

Information Retrieval Conference, Paris, France, 2018.

[57] Tomas Mikolov, Kai Chen, Greg Corrado και Jeffrey Dean. Efficient Estimation of

Word Representations in Vector Space, 2013.

[58] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., USA, 1η έκδοση, 1997.

[59] Toan Q Nguyen και Julian Salazar. Transformers without tears: Improving the nor-

malization of self-attention. arXiv preprint arXiv:1910.05895, 2019.

[60] Nikola I. Nikolov, Eric Malmi, Curtis G. Northcutt και Loreto Parisi. Rapformer:

Conditional Rap Lyrics Generation with Denoising Autoencoders, 2020.

[61] N. J. Nilsson. Learning Machines. McGraw-Hill, New York, 1965.

[62] JOSEF NOVAK, Nobuaki Minematsu και Keikichi Hirose. Phonetisaurus: Exploring

grapheme-to-phoneme conversion with joint n-gram models in the WFST framework.
Natural Language Engineering, -1:1–32, 2015.

110

ΒΙΒΛΙΟΓΡΑΦΙΑ

[63] Razvan Pascanu, Tomas Mikolov και Yoshua Bengio. On the difficulty of training

Recurrent Neural Networks, 2013.

[64] Christine Payne. MuseNet, 2019.

[65] Ryan Prenger, Rafael Valle και Bryan Catanzaro. WaveGlow: A Flow-based Genera-

tive Network for Speech Synthesis, 2018.

[66] Ofir Press, Noah A. Smith και Omer Levy. Improving Transformer Models by Reorde-

ring their Sublayers, 2020.

[67] Ofir Press και Lior Wolf. Using the Output Embedding to Improve Language Models.
Proceedings of the 15th Conference of the European Chapter of the Association for

Computational Linguistics: Volume 2, Short Papers, σελίδες 157–163, Valencia, Spain,
2017. Association for Computational Linguistics.

[68] Alec Radford, Karthik Narasimhan, Tim Salimans και Ilya Sutskever. Improving

language understanding by generative pre-training.

[69] Alec Radford, Jeff Wu, Rewon Child κ.ά. . Language Models are Unsupervised Multi-

task Learners. 2019.

[70] Colin Raffel. Learning-Based Methods for Comparing Sequences, with Applications to

Audio-to-MIDI Alignment and Matching. PhD Thesis, 2016.

[71] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase και Yuxiong He. DeepSpeed:

System Optimizations Enable Training Deep Learning Models with Over 100 Billion

Parameters. Proceedings of the 26th ACM SIGKDD International Conference on Know-

ledge Discovery amp; Data Mining, KDD ’20, σελίδα 3505–3506, New York, NY, USA,
2020. Association for Computing Machinery.

[72] Yi Ren, Xu Tan, Tao Qin κ.ά. . DeepSinger: Singing Voice Synthesis with Data Mined

From the Web, 2020.

[73] Mark Riedl. Weird AI Yankovic: Generating Parody Lyrics, 2020.

[74] Adam Roberts, Jesse Engel, Colin Raffel κ.ά. . A Hierarchical Latent Vector Model for

Learning Long-Term Structure in Music, 2019.

[75] F. Rosenblatt. The perceptron: A probabilistic model for information storage and

organization in the brain. Psychological Review, 65(6):386–408, 1958.

[76] Sascha Rothe, Shashi Narayan και Aliaksei Severyn. Leveraging Pre-trained Check-

points for Sequence Generation Tasks, 2020.

[77] David E. Rumelhart, Geoffrey E. Hinton και Ronald J. Williams. Learning Represe-

ntations by Back-propagating Errors. Nature, 323(6088):533–536, 1986.

[78] Victor Sanh, Lysandre Debut, Julien Chaumond και Thomas Wolf. DistilBERT, a

distilled version of BERT: smaller, faster, cheaper and lighter, 2020.

111

ΒΙΒΛΙΟΓΡΑΦΙΑ

[79] Rico Sennrich, Barry Haddow και Alexandra Birch. Neural Machine Translation of

Rare Words with Subword Units, 2016.

[80] Rico Sennrich και Biao Zhang. Revisiting Low-Resource Neural Machine Transla-

tion: A Case Study. Proceedings of the 57th Annual Meeting of the Association for

Computational Linguistics, σελίδες 211–221, Florence, Italy, 2019. Association for
Computational Linguistics.

[81] Jonathan Shen, Ruoming Pang, Ron J. Weiss κ.ά. . Natural TTS Synthesis by Condi-

tioning WaveNet on Mel Spectrogram Predictions, 2018.

[82] Ian Simon και Sageev Oore. Performance RNN: Generating Music with Expressive

Timing and Dynamics. https://magenta.tensorflow.org/performance-rnn, 2017.

[83] Felix Stahlberg, James Cross και Veselin Stoyanov. Simple Fusion: Return of the Lan-

guage Model. Proceedings of the Third Conference on Machine Translation: Research

Papers, σελίδες 204–211, Brussels, Belgium, 2018. Association for Computational
Linguistics.

[84] Ilya Sutskever, Oriol Vinyals και Quoc V. Le. Sequence to Sequence Learning with

Neural Networks, 2014.

[85] Rafael Valle, Jason Li, Ryan Prenger και Bryan Catanzaro. Mellotron: Multispeaker

expressive voice synthesis by conditioning on rhythm, pitch and global style tokens,
2019.

[86] Ashish Vaswani, Noam Shazeer, Niki Parmar κ.ά. . Attention Is All You Need, 2017.

[87] Olga Vechtomova, Hareesh Bahuleyan, Amirpasha Ghabussi και Vineet John. Gene-

rating lyrics with variational autoencoder and multi-modal artist embeddings, 2018.

[88] Olga Vechtomova, Gaurav Sahu και Dhruv Kumar. Generation of lyrics lines condi-

tioned on music audio clips, 2020.

[89] Kento Watanabe, Yuichiroh Matsubayashi, Satoru Fukayama κ.ά. . A Melody-

Conditioned Lyrics Language Model. Proceedings of the 2018 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Langua-

ge Technologies, Volume 1 (Long Papers), σελίδες 163–172, New Orleans, Louisiana,
2018. Association for Computational Linguistics.

[90] Gerhard Widmer, Maarten Grachten και Stefan Lattner. Imposing Higher-Level Stru-

cture in Polyphonic Music Generation Using Convolutional Restricted Boltzmann Ma-

chines and Constraints. Journal of Creative Music Systems, 2(2), 2018.

[91] Li Chia Yang, Szu Yu Chou και Yi Hsuan Yang. MidiNet: A Convolutional Generative

Adversarial Network for Symbolic-domain Music Generation, 2017.

[92] Ruibin Yuan, Ge Zhang, Anqiao Yang και Xinyue Zhang. Diverse Melody Generation

from Chinese Lyrics via Mutual Information Maximization, 2020.

112

https://magenta.tensorflow.org/performance-rnn

ΒΙΒΛΙΟΓΡΑΦΙΑ

[93] Lantao Yu, Weinan Zhang, Jun Wang και Yong Yu. SeqGAN: Sequence Generative

Adversarial Nets with Policy Gradient, 2017.

[94] Yi Yu και Simon Canales. Conditional LSTM-GAN for Melody Generation from Lyrics,
2019.

[95] Jingzhao Zhang, Tianxing He, Suvrit Sra και Ali Jadbabaie. Why gradient clipping

accelerates training: A theoretical justification for adaptivity, 2020.

113

	Περίληψη
	Abstract
	Ευχαριστίες
	Πρόλογος
	Εκτεταμένη Ελληνική Περίληψη
	Εισαγωγή
	Θεωρητικό Υπόβαθρο
	Τα δεδομένα μας
	Αρχιτεκτονικές των Μοντέλων
	Πειράματα και Αποτελέσματα
	Συμπεράσματα και Μελλοντικές Κατευθύνσεις

	Introduction
	Motivation and Originality of our Work
	Research Objective and Contributions
	Thesis outline

	Background
	Introduction to Machine Learning
	A Short History of Artificial Intelligence
	Machine Learning
	Basic Machine Learning Methods

	Basics of Deep Learning
	Feed Forward Neural Networks
	Activation Functions
	Training

	Deep Learning for Natural Language Processing
	Overview of the Field
	Recurrent Neural Networks
	Sequence-to-Sequence Modelling
	The Attention Mechanism
	Transformer

	Overcoming Memory Constraints
	The Pursuit for Efficient Attention
	Performer - FAVOR+ Attention
	Reversible Layers

	On Symbolic Music and Vocal Melody Generation
	Symbolic Music - MIDI
	Music Theory
	Symbolic Music Generation
	Conditional Vocal Melody Generation

	On Conditional Lyrics Generation
	Singing Voice Synthesis

	Building our Dataset
	The Lakh MIDI Dataset
	Shaping the Dataset for our Task
	Drawbacks of the Existing Dataset
	Creating a more Standardized Dataset
	Text Event Format

	Applying Music Theory Analysis
	Chord Reduction
	Roman Numeral Analysis

	Decoupling Lyrics and Melody

	Model Architectures for Lyrics andVocal Melody Generation
	Sequence to Sequence Modelling
	Formulation
	Enhancements
	Decoding Strategy

	Decoupled Modelling - Combining Multiple Input Sequences
	Formulation
	Lyrics Language Model

	Experiments and Results
	Experiments
	Model Hyperparameters
	Training Hyperparameters
	Dataset size and total steps
	Training and Inference Speed

	Regarding the Generation Evaluation Metrics
	Comparison
	Qualitative Evaluation

	Conclusions and Future Work
	Conclusions
	Future Work

	Παραρτήματα
	Training, Validation and Generation Metrics for our three models: Seq2Seq with Full Input, Seq2Seq with Reduced Chords Input, Decoupled with Reduced Chords Input
	Sequence-to-Sequence with Full Instrumental Input
	Sequence-to-Sequence with Reduced Chords Instrumental Input
	Decoupled with Reduced Chords Instrumental Input

	Examples of the Generated Sequences

	Βιβλιογραφία

