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Περίληψη

Σ
κοπός αυτής της εργασίας είναι η αναγνώριση και ποσοτικοποίηση της αισθητικής

σε εικόνες για μια συγκεκριμένη φωτογραφική τεχνοτροπία (Μποκέ), η οποία

χαρακτηρίζεται από το επίπεδο στο βάθος πεδίου. Το πρόβλημα αντιμετωπίστηκε από

τη σκοπιά της εκτίμησης ποιότητας της αισθητικής στην εικόνα, χρησιμοποιώντας βαθιά

ενεργή μάθηση.

Αρχικά παρουσιάζονται στον αναγνώστη οι βασικές έννοιες της φωτογραφίας. Στη

συνέχεια θέτουμε την αισθητική ως φιλοσοφικό ερώτημα και ορίζουμε το πρόβλημα

της ποσοτικοποίησης με υπολογιστικές μεθόδους, βασιζόμενοι σε θεμελιώδεις θεωρίες

της ανθρώπινης αντίληψης και ψυχολογίας.

Γενικά, μελετάμε τον τομέα της τεχνητής νοημοσύνης και της υπολογιστικής όρα-

σης. Πιο συγκεκριμένα, εφαρμόζουμε μεθόδους μηχανικής και βαθιάς μηχανικής μάθη-

σης και τις συνδυάζουμε με τεχνικές ενεργής μάθησης. Επιπρόσθετα, χρησιμοποιήσα-

με ένα σύνολο δεδομένων υπερυψηλής ανάλυσης και παρουσιάζουμε ένα νέο καινοτόμο

σύνολο, που δημιουργήσαμε με επισημάνσεις υψηλής ποιότητας βασιζόμενοι σε γνώσεις

φωτογραφίας και μεθόδους ενεργής μάθησης.

Αρχικά, παρουσιάζουμε μια πειραματική διαδικασία που αποσκοπεί στη δημιουργία

ενός ταξινομητή ικανού να αναγνωρίσει το βάθος πεδίου και στη συνέχεια εφαρμόζουμε

τεχνικές ενεργής μάθησης, οι οποίες συγκριτικά με τις τυπικές μεθόδους, στοχεύουν

στην ελαχιστοποίηση του χρόνου επισήμανσης καινούριων δειγμάτων, ενώ παράλληλα

συμβάλλουν στην ταχύτερη αύξηση της απόδοσης του ταξινομητή.

Τέλος, σημειώνεται πως στην παρούσα διατριβή έχει δοθεί ιδιαίτερη έμφαση στη

μεθοδολογία και τη δημιουργία του συνόλου δεδομένων, το οποίο χρησιμοποιήθηκε

για την εκπαίδευση, την εκτίμηση των αλγορίθμων και τη γενική προσέγγιση του προ-
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βλήματος. Για το σκοπό αυτό δημιουργήθηκαν δύο διαφορετικά επισημασμένα σύνολα,

το ένα με αποκλειστική παρέμβαση του ανθρώπινου παράγοντα και το δεύτερο με συν-

δυασμό μεθόδων ενεργής μάθησης.

Θεματική περιοχή: Αξιολόγηση αισθητικής εικόνας

Λέξεις κλειδιά: Ταξινόμηση εικόνων, αισθητική εικόνων, ενεργή μάθηση



Abstract

T his thesis aims to recognize and quantify image aesthetics in a certain pho-

tography style (Bokeh) which is characterized from the level in depth of field.

The problem is treated as a task related to image aesthetics quality assessment ap-

proached with deep active learning.

Starting with, the reader is introduced to photography basics. We refer to aes-

thetics as a general philosophical question and state the problem of quantifying

aesthetics with computational methods based on fundamental principles of human

perception and psychology.

In general, we study the domains of artificial intelligence and computer vision.

More specifically we apply machine and deep learning techniques and combine them

with active learning methods. Additionally, we utilised a super high resolution data

set and present a novel one, created with high quality labels based on photography

domain knowledge and active learning strategies.

Firstly, we present an experimental process to generate a classifier able recognize

the depth of field in images and secondly apply active learning practices which,

compared to regular training methods, aim to effectively reduce annotation costs

and at the same time contribute to faster increase in classifier’s performance.

Finally, in this thesis, extra emphasis has been given to develop a methodology

in order to create a novel data set. We utilised it in order to train and evaluate the

machine learning algorithms and generally to approach the problem. To this end,

two different annotated data sets were created. One with exclusive human input

and a second combined with active learning methods.

Subject Area: Image aesthetics quality assessment
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Keywords: Image classification, image aesthetics, active learning
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Chapter 1

Introduction

The exponential growth of digital photography has turned to a new medium of

artistic expression with the contribution of technology through more accessible smart

capture devices and social media. Meanwhile the need for decision systems that can

recognize, suggest and quantify photography styles is increasing.

Such systems can contribute to rapid broadcast and understanding of high qual-

ity content with artistic features, to recommend and assist photography style tech-

niques during photo capturing. Other applications that may benefit include content

indexing and personalization, content-based image retrieval, etc.

1.1 Problem description

To begin with, aesthetics quantification is a non-trivial or even ill-posed open

problem for the research community that has gained popularity in the latest decade

with the substantial developments in neural networks and deep learning techniques.

In general a way of quantifying such a problem is to make sure that a certain

concept is reflected in the data and as well, the design of objectives should be able

to address it.

The practical usefulness of tackling this problem is by applying data-centric AI

techniques that are more closely reflected with a ML application in practice.

To approach the problem, we have used a recently published super high resolution

data set with substantial aesthetic level content. In photography, the term “Bokeh”
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1.2 : Thesis outline

has become kind of an aesthetic due to out of focus areas and the shallow depth

of field that acts as a pleasing artificial effect of the 3d world in a two-dimensional

surface, putting the subject at the spotlight.

We followed different approaches, including an active learning method, to con-

struct and annotate a new image data set based in depth of field. This thesis focuses

on solving a binary classification task of deep/shallow depth of field discrimination.

Moreover, in order to improve the estimator’s performance we have applied active

learning techniques having in mind the less possible annotated data and evaluated

them over regular data annotation and training process.

The results of the conducted experiments were encouraging and foster the con-

tinuity of this work which contributed to the following:

• a novel dataset based on depth of field

• methodologies to improve active learning strategies for any image classification

task

• a pre-trained model, that will become available to the research community

1.2 Thesis outline

The remainder of this thesis is organized as follows. In Chapter 2 we introduce

the art of photography referring to image aesthetics and fundamental perception

concepts. Chapter 3 presents the recent developments in artificial intelligence and

machine learning focusing on computer vision. Additionally we present active learn-

ing strategies and how can contribute to assist to annotate a data set more efficiently

and at the same time improve the estimator’s performance. Chapter 4 describes the

data set of our case study. It includes a data exploratory analysis, image prepro-

cessing techniques and the methods we followed to annotate our own data set based

on depth of field. Chapter 5 presents the experimental methodology we followed to

design a binary classification method for depth of field recognition. As described

before, much attention has been paid to utilise active learning methods to produce

annotations that increase the classification performance. We evaluate and compare
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these methods to regular training techniques providing an extensive set of results.

Chapter 6 presents the overall conclusions of the thesis, along with possible future

works that stem from this work.
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Chapter 2

Photography & Image Aesthetics

“Beauty is in the eye of the beholder”

—William Shakespeare

2.1 Photography

Photography is the practice or art of creating images by recording the light in a

light sensitive material. The official birth of photography goes back in 19th century

with the invention of camera obscura(dark room), yet there is evidence within pa-

leolithic cave artworks that this phenomenon was known since the prehistoric age.

That particular phenomena might occur from inversed projections and occurrences

of camera obscura effects where light entered in a completely dark environment

through tiny holes.

In ancient Greece, Aristotle first mentioned a phenomenon that he discovered

during a sun eclipse. By passing sunlight through a pinhole, he could create a

reversed image of the sun on the ground, as mean of observing the phenomenon

without staring directly to the sun.

Much later, by the mid-17th century, with the invention of optics, camera obscura

was used as tool by some artists that allowed them to paint realistic landscapes. It

its very simple form, through a pinhole, a scene is projected in a dark room that

the artist can draw over (Figure 2.1-a).

In 19th century, Nicephore Niepce, using a chemical compound of light-sensitive
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materials, created the first permanent photograph, (Figure 2.1-b) and by the start

of the next century the term photography was also referred to describe a whole new

industry.

(a) (b)

Figure 2.1: (a) Camera obscura, (b) The first photograph

In the previous century, photography aside from invention became a new medium

of communication, an art form and more affordable with Kodak’s coloured film in

1936.

Photography as a form of art, arose from advancements in technology which

enabled photographers to manipulate their image in order to form an artistic ex-

pression. Various equipment from different cameras, lenses, film and post processing

techniques contributed to develop the photographer’s individual genre and style of

taking pictures. Since camera equipment became more modular and configurable,

enabled the photographers to interact with them in order to create the picture as

they wished, using techniques such as long exposures using low shutter speeds, cre-

ate portraits using the different lenses or use the appropriate aperture value to put

their subject in focus and make it stand-out while the background is blurred.

2.1.1 Camera EXIF

In the early film days, photographers were forced to write down the important

information such aperture, shutter speed, date etc. in order to use this information

in the lab during the film processsing and photo printing, a very painful process

especially for new photographers.
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In the era of digital photography, every modern digital camera is capable to store

this information, along with all the relevant camera settings, built-in the photograph

file. These settings can be utilised later in order to organise photographs, perform

search and provide information about the particular camera gear and settings used.

Such metadata called EXIF(EXchangeable Image File Format) and can store a range

of settings and parameters such as aperture, shutter speed, iso speed, focal length,

camera model, lens type and much more.

It is much of important for a photographer who wish to find out of what ingredi-

ents a photo is made it is more than important to read this information; the latter

may even be used by anyone who would like to share the information even in an

image data set.

2.1.2 Photography styles and camera settings

A more experience photographer has a more firm grasp of which camera settings

should be used when synthesizing a photo in order to produce the desired style. In

general, there are numerous combinations to acquire the same level of illumination

in a photo, but only a set of combinations to achieve a certain photography style

characteristic. For example, in some cases an image with blurred subjects might be

desired, when the synthesized frame and the camera settings are appropriately de-

fined. Such photography styles can be identified as long exposure shots, panning and

bokeh as shown in Figure 2.2. All of them share a similar characteristic, blurriness,

but each one can only be achieved in different circumstances.

(a) (b) (c)

Figure 2.2: Photography styles with blurry characteristics: (a) Long Exposure, (b)
Panning, (c)Bokeh

For example, producing a long exposured image, cannot be easily done handheld
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and under the daylight. Since a photographer wishes to smooth out a particular

object in the frame, camera should be placed steady and most import use a slow

shutter speed setting. A slow shutter speed will let more amount of light to enter

the medium and “burn” the sensor or the film in the correspondent surface that the

image object is reflected.

On the other hand bokeh effect, relies mostly on the aperture and lens charac-

teristics. It requires the viewer’s attention to focus on a different area, that demon-

strates an artificial perspective of three dimensional world in a two dimensional

image. The technical part about how camera creates shallow or large depth of field,

is basically a function of lens aperture, i.e. the variable opening that allows light

to enter in the medium. When reduced to its smallest size, the aperture will create

an image with a large depth of field, and when widened to its largest opening it

will create a shallow depth of field. Other factor that contribute to bokeh effect are

proximity to the subject and focal length. The term bokeh can be defined as the

effect of a smooth, out-of-focus background while the main image subject stays in

focus.

As the camera became a more portable medium, several movements and famous

photographers emerged, such as landscape photography, documentary, photojour-

nalism, portrait, candid and more (Figure 2.3).

Photography from artistic perspective, can be seen as a superficial dimension of

reality. For the majority of the people, it is a subjective interpretation of an artifi-

cially constructed and arbitrary vision. In the next section we attempt to approach

the subjectivity term from the perspective of the domain of image aesthetics.

2.2 Aesthetics

The question in legitimacy of quantifying aesthetics was a subject of dispute

between philosopher and art theorists and works as Jahanian’s [3] in 2016, attempted

to provide a taxonomy map in order to quantify aesthetics shown in Figure 2.4.

Of course, we are not the first who asked this question. In ancient years, Plato

established a theory about natural and artistic beauty and the common reference
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(a) (b) (c)

Figure 2.3: Famous photos with depth of field variations: (a) Andre Kertesz, (b) Josef
Koudelka, (c)Ansel Adams

Figure 2.4: Taxonomy of quantifying aesthetics

that connects them, i.e., the imitation. Korsmeyer [4] summarized two opposite

tenets about aesthetics. One by referring on Plato and Immanuel Kant that aes-

thetics is a matter of taste and the other by referring to Aristotle and Hans-Georg

Gadamer, that aesthetics is a matter of cognition and learning. Yet, aesthetics is

not only the study of beauty, but of taste, experience and judgement.

Based on the above taxonomy, we may find two main directions to approach it,

either via human inspection or by automatic and evolutionary computations, able

to measure aesthetics.

Regarding the human inspection approaches a well-known theory in visual design

principles related to visual balance has been stated by a Gestalt psychologist and

art theorist, Rudolf Arnheim [5], [6]. Specifically, he speculated that there exists
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a structural net, (Figure 2.5) that contributes to a balanced spatial composition;

this resembles much to the famous rule-of-thirds in photography, whereas Jahanian

speculates that a good visual balance has Gaussian on the hot spots [7].

Figure 2.5: Arnheim’s structural net

2.3 Image Aesthetics Quality Assessment(IAQA)

Image aesthetics can be defined as a subjective problem but over the latest

decade image aesthetic quality assessment has demonstrated a tremendous success

in variety of applications such advanced image search, retrieval and photo aesthetic

enchancement.

IAQA aims to use computational techniques in order to simulate and understand

human perception and cognition of the “beauty” and evaluate the “beauty” of the

image. Beauty can be described with several image aesthetic factors such content,

object emphasis, light, colouring (black and white), depth of field (shallow/deep),

composition (rule of thirds), motion, blur, etc.

Teaching a machine to assessing “beauty” is obviously a not-trivial task but

recently artificial intelligence has made progress in these areas and the performance

achieved in certain tasks can directly compared to humans’. However, perceiving

or creating “beauty” is still far away though IAQA is a crossroad for a diverse set

of domains, such as computational cognition, computer vision, psychology, biology,

fine arts and others [8].

An interesting concept is the notion of aesthetic gap [9], roughly analogous to the

semantic gap in information retrieval, which separates low-level features of images
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like pixels and lines from high-level features like objects and symbols that humans

observe in images. Researchers have found that the feeling caused by a visual stimuli,

is evoked by activations in distinct and specialized areas of the visual cortex. Given

that human perception follows a hierarchical path from the receptive field of our

retina to the primal visual cortex [6], these activations can be categorized into the

primal processing of visual stimuli inputs including colour, shapes, lines, orientation

Figure 2.6.

Figure 2.6: Perception of visual world as a hierarchical path.

From the early research, IAQA does not follow the rule-based way but is treated

as a data-driven learning problem. Therefore the construction of the data set is a

key prerequisite to approach a certain problem.

Feature extraction techniques aim to extract high and low level features to de-

scribe and aesthetic image domain. Traditional approaches use hand-crafted fea-

tures to design specific photographic rules, image layout and objects and adopt

classical machine learning algorithms to learn from those descriptions. Datta et al

were determined to automatically learn from data which factors influence aesthetic

value. Despite the problem ambiguity, there exist certain visual properties that

make photographs more appealing than others [10] as their concept derives from

their data. They constructed a data set of 3000 images collected from photo.net and

used it to train decision trees and svms to classify images into high and low aes-

thetics categories based on feature variety(measures of colours, rule-of-thirds, image

dimensions). However, due to the vagueness of certain photographic or art rules,

hand-crafted features are often difficult to approximate them computationally.

An opposite approach for IAQA, this time from photo curation perspective pro-

posed by Ke et al [11], was based in computer vision rather than psychological

aesthetics, by measuring image noise and degradation. Their method utilizes im-
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ages and ratings from the photo challenge of DPChallenge.com, which are used to

extract features such edge and colour histograms and Fourier transformation based

blur metrics in order to train a Naive Bayes classifier.

Later, a variety of other techniques emerged, proposing different image features

like GIST or SIFT descriptors from Marchesotti et al. [12] which argued on the

non-exhaustive nature of hand-crafted features. The latter are heuristically gener-

ated and have shown generalization limitations in several problems and domains of

application.

Based on a recent survey on computational aesthetic evaluation in visual art

images [13], two research methods have been set, so far. The first is based on con-

ventional approaches such as the aforementioned ones, i.e., by using handcrafted

features, while within the second aesthetic judgement is carried through deep learn-

ing techniques (Figure 2.7). We shall provide further details regarding the latter in

Section 3.10.

Figure 2.7: Research methods in aesthetic evaluation classification.

So far we have covered the origins and latest developments in photography, ana-

lyzing popular photography styles and how they are related to general camera tech-

nical aspects. In addition, we have presented the philosophical and psychological

background in aesthetics and traced the evolution of IAQA.
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Chapter 3

Machine Learning

“Learn everything about something, and

something about everything”

—Donald Knuth

3.1 Artificial Intelligence

Undeniably the term of intelligence has gathered the attention of the most philo-

sophical studies and discussions whether is something that exclusively exist in hu-

mans and animal or that it can be reproducible. If the latter is valid, how can we

encode the human cognition in order to be understandable from a machine? Does it

happen by simulating a small children’s brain or let it learn by itself [14]? With the

exponential growth of computational power the interest for automating certain pro-

cedures has increased. An effort to develop intelligent systems has assisted to create

such applications that can aid to decision making in certain tasks. The term of Ar-

tificial Intelligence has been established by 1956 and some of the most remarkable

real world applications are image recognition, natural language processing, driving

assistance, art generation etc., have developed from self-trained systems without

human interference. That particular domain of AI is called Machine Learning.
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3.2 Machine Learning

In the era of big data we are surrounded of unlimited amounts of new data,

generated each second. Billions of images from popular platforms like Instagram,

Flickr and Unsplash to hundred of thousand hours of uploaded video, millions of

eretail transactions per hour and so on. This burst of data are subject to ubiquitous

methods of data analysis which derive from machine learning techniques. Machine

learning, at its definition is a set of applied statistical methodologies that can learn

from data upon a specific task and automatically discover patterns or learn to map

data on some class.

Intuitively we take advantage of this knowledge to predict a pattern of unknown

data or conduct inference by generating new information [15]. Pattern recognition

is linked with the automatic discovery of recurrences in data through the use of

computer algorithms. The produced knowledge can assist to take actions, such

decision making or classify data to different categories [16].

A more formal definition of Machine Learning is the following:

• A computer program, is a suitable to the task algorithm that has the capability

of training.

• Experience E, is the data set, that the algorithm is trained.

• The task T, that the algorithm will learn to solve.

• The performance P, the measurement that will be used in order to monitor

the algorithm on how well performs on the task.

3.2.1 Learning Tasks

Machine learning diverges from the classical rule-based approach of an algorithm

which is a standard procedure that one can explicitly define. On the other hand,

an ML algorithm is not an algorithmic process but a set of methods that are not

programmed but trained on sets of data.

Most of ML methods, fall into 3 broad categories:
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• Supervised Learning, the algorithm is trained on associations of the input

data to corresponded labels.

• Unsupervised Learning, the algorithm is trained without human supervi-

sion.

• Reinforcement Learning, a less commonly used type of learning which

works as a rewarding/punishing system upon an actor [17], but is beyond

the scope of this work.

In this thesis, we focus on supervised learning to solve a non-trivial task, in the

context of image aesthetics.

To begin with, consider the example of handwritten digit recognition illustrated

in Figure 3.1. Each digit is represented by a 28 × 28 pixel gray-scale image and so

it can represented by a 1-d vector x of 784 size. The task is to build a model that

will take as input such a vector x and will produce a label identified by the digit

number 0,. . . ,9 to the output.

Figure 3.1: Hand-written digits data set

The task is non trivial at hand due to the variety of handwritten digits and

employing a rule-based solution using handcrafted rules and classical image pro-

cessing techniques will lead to an explosive amount of rules and so forth will give

poor results. By adopting a machine learning approach, we can create a large set

of N digits namely a training set, of samples X = {x1, . . . , xN} and target vectors
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y = {y1, . . . , yN} and use it to train an adaptive model by optimizing each param-

eters in order to maximize classification performance. Typically we are feeding the

machine learning model with pairs of:

1. samples x expressed by the digit vector and

2. target vectors t, which represent the identity of the corresponded digit

A target vector, denoted as label, is produced from a human input, known as

annotation process. During the training phase model is determined to learn the

training data.

More specifically, it learns to map the samples on the associated targets and by

the end of training it is expected to identify unknown samples which hasn’t seen

before, namely, the test set. The ability to recognize an unknown digit falls to the

problem of generalization [18] which is a practical problem in all applications. For

the most applications, input samples are subject to typical preprocessing steps in

order to transform them into a new parameter space to ease and accelerate training

and learning. For example in the case of hand written images, a gray-scale image

is represented in 8-bit ranges from 0-255 integer values. Rescaling the values into

0-1 scale, will help to reduce the variability of the data it make it much easier

for the classifier to distinguish between the classes. The preprocessing stage can

be sometimes called feature extraction. In most of the tasks, where the raw data

are multi and high dimensional, preprocessing step is essential, otherwise it will be

computationally infeasible for the machine learning model to converge. Such tasks

as the one described above fall into the domain of supervised learning problems

and belong to a broader family of problems those, of Image Classification. In such

a task a model g also called estimator, will be trained and learn to map an input

vector sample, to a certain class, from a finite number of available classes xi → yi.

Practically, a perfect association can never be made, because of the model’s

incapability to describe complicated mappings or due to the descriptive information

of the features. Thus, we state that a model g predicts or infers hypothesis ŷi for

the sample xi, as ŷi = g(xi).

On the other hand assuming that the desired output could be a continuous
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variable, the task is called regression. An example of regression problem could be

the prediction of a house price given an input feature vector that represents e.g. a

residential area, size of house etc.

In many cases where the human input and target labels are unavailable, the

training data consist only of a set of input samples x. Such problems belong to the

category of instance-based learning or unsupervised learning. Such tasks can be clus-

tering where the algorithm discovers groups of similar instances within the training

samples or to determine the distribution of data and discover latent representations

from high dimensional input projected to a smaller number of dimensions for the

purpose of visualisation. An example of a visualised clustering application on the

same data set is illustrated in Figure 3.2.

Figure 3.2: Hand-written digits data set visualised in clusters

3.3 Deep Learning

A sub-domain of machine learning, known as Deep Learning (DL), has sub-

stantial growth in many types of machine learning systems over the latest years.

Conventional machine learning techniques are limited to their ability to process the

data at its natural form [19]. Machine learning systems are relying to careful fea-

ture engineering and sophisticated feature extraction techniques with considerable

domain expertise, in order to feed a classifier with data and produce a result. Deep

learning methods are representation learning methods able to fed with unstructured
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data (images, text, voice, etc.) without any prior handcrafted feature extraction

technique. It utilises of non-linear activated modules able to transform the data

directly from the input, into high-level feature representations. Compositing mul-

tiple modules we are able to learn very complex functions due to the hierarchical

structure of the network. A deep neural network is illustrated in Figure 3.3.

Figure 3.3: Deep neural network

This has led to groundbreaking advances in the domain of Computer Vision and

Natural Language Processing as one is able to process huge amounts of data and

solve complicated problems that were unable to get solved by the AI community for

many years.

Deep learning turned out to be very good at discovering complex structure in

high-dimensional data and consequently deep learning models are successfully de-

ployed and support real life applications in domains of science and business products.

3.4 Computer Vision

From the early 70s the field of computer vision started as an attempt to shed

some light in the open problem of visual perception. Pioneers of their time such Win-

ston [20] attempted to set a frame on the global scene understanding, Barrow [21],

proposed an approach to understand the fundamental importance of surface percep-

tion interpreting line drawing and Marr [6] as discussed in Section 2.2, introduced

the notion of a visual processing system summarised in the three levels of computa-

tional theory, representation and algorithms and hardware implementation. In 80s,

more sophisticated techniques have emerged to perform quantitative image and scene

analysis for better edge and contour detection Canny [22]. In 1990s, a burst in more
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integrated applications was recorded such in image segmentation by Haralinck [23]

and in image restoration by Banham [24]. In the decade of 2000, the exponential

growth in computational photography increased the demand for computational tech-

niques for the every day photography. For example image stitching [25] to create

photographic panoramas, automatic exposure bracketing into a composition of high

dynamic range scene [26], tone mapping to effectively correct the image gamut and

prevent from burned or darken images [27], super resolution and blur removal [28],

vignette and exposure calibration [29].

The problem we are going to tackle in this work, lies in the domain of computer

vision (CV). Computer vision tries to describe the natural world in images and

reconstruct its properties, such shape, illumination and colour distributions [30].

Nowadays, we are interacting with computer vision applications to a wide vari-

ety of solved problems such medical imaging, optical character recognition (OCR),

pose estimation, photogrammetry, motion capture, face and object detection, image

stitching, image filtering and many more.

Figure 3.4: Computer vision map

3.5 Neural Networks

Neural networks (NN) is a type of model that can be utilised to solve efficiently

classification problems. The basic building unit that constructs a neural network is

called Neuron or Perceptron [31].

A neuron is able to perform two operations: a linear (or affine) transformation to
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(a) (b) (c)

(d) (e)

Figure 3.5: Computer vision applications: (a) Medical imaging, (b) object detection, (c)
Pose estimation, (d) Photogrametry, (e) Image filtering

its input and a non-linear function application to the output. A neuron is described

from the next equation:

z = f(w · x+ b) (3.1)

In the above equation 3.5, the input is represented as a vector x ∈ R such as an image

or audio. This input is multiplied by the weight matrix w ∈ R which coefficient is a

tunable parameter bias b ∈ R. These operations consist the linear transformation of

the Perceptron. Then, every component of the result vector is passed through a non-

linear function f which is called activation function. The most popular activation

functions that are used thoroughly are the sigmoid, tanh, ReLU and softmax. More

for the activation functions is discussed in Section 3.6.1.

When we say that a network learns, it means that in the training phase the

neuron parameters w and b are being adapted in respect of the network output. A

neuron is presented in Figure 3.6.
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Figure 3.6: A representation of a neuron. N number of x input vectors are multiplied
with the corresponded weights w with added bias constant b. The outcome activates a
non-linear function.

3.5.1 Multi-layer Perceptron

A typical neural network consists of multiple layers; the output of one is the input

of the other in the next layer. In such hierarchical fashion, the network is able

to estimate non-linear functions. Repeating this process, it becomes a multi-layer

percepton (MLP) network as it is shown in Figure 3.7.

Figure 3.7: A Multi-layer perceptron network having a general feed-forward topology.

3.6 Training a model

The standard training procedure applies to any kind of neural network archi-

tecture. A simplified case, is a simple shallow network as the above and can be

described from the following equation:
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ŷ = f(W · x+ b), W ∈ RM×C , x ∈ RM , b ∈ RC (3.2)

Where M in the cardinality of input and C the number of classes. The input

samples constitute a vector of M number of values, x = {x1
i , . . . , x

M
i } The label

value takes the corresponded value of class, as yi ∈ {1, . . . ,C}. The output of the

network ŷ is the one that we are looking for to approach in correspondence to the

real label value as it is estimated from the type of activation function in the last

output layer.

3.6.1 Activation functions

Fitting a multilayer neural network requires the choice of an activation function and

a network architecture. During the forward pass in training process, the output of

a neuron is passed to the next layer only if activated a certain function is applied to

the output. While the type of the function is determined from the task to be solved

where are going to discuss the activation functions that we have used in our work.

Traditionally in neural networks, sigmoidal activations functions were employed but

for a deep neural network (dnn) there is a computational advantage when using a

non-sigmoidal rectified linear unit (ReLU) [32].

For classification problems, the ReLU is suggested over a sigmoidal [33] for image

and also text based problems. The ReLU handles better the problematic output of

sigmoid function and vanishing gradient phenomenon may occur during the back-

propagation. Figure 3.8 illustrates the aforementioned activation functions and the

corresponded equation are provided in 3.6.1, 3.6.1.

σ(x) =
1

1 + e−x
(3.3)

ReLU(x) = max(0, x) (3.4)

Additionally, concerning the network output the activation function is deter-

mined based on the problem at hand. The main problems are the following:

• Linear Regression, where the predicted variable has continuous values, so
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(a) (b)

Figure 3.8: Activation functions: (a) Sigmoid, (b) ReLU

ŷ ∈ R. This task does not require an activation function.

• Logistic Regression or Classification, the predicted variable takes a nom-

inal value of the given classes C, so ŷ ∈ N. In this case, the softmax function

is used.

Softmax is declared by the equation:

softmax(z)i =
ezi∑C
j=1 e

zj
(3.5)

Intuitively, softmax normalize the z input into a probability distribution that

each output is a posterior probability given a value in the interval [0, 1].

Figure 3.9: Intuitive example of the softmax function. In left the input data for each
class. In right the softmax output aggregating to 1.
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3.6.2 Loss/Cost function

When the forward pass is completed the network output ŷ should be compared

with the real values (groundtruth) in order to measure the discrepancy. Based on

the definition from Section 3.2, measuring the error between the prediction and

the groundtruth, informs us of how good or bad the network performs during the

training process. To measure the error, a loss function will be utilised.

For linear regression type problems, where the predicted ŷ and groundtruth y

are continuous variables, we use the Mean Squared Error (MSE).

MSE(y, ŷ) =
N∑
i=1

(yi, ŷi)
2 (3.6)

MSE loss function is minimized when the predicted value ŷ is as close enough to

the groundtruth y.

For classification problems the groundtruth values y are encoded to vectors in

length of the number of classes. This encoding is known as one-hot encoding. More

specifically each label yi is a binary vector, where its digit represent a class C. A

position with 1 in the vector, denotes the relative class. An example of an one-hot

encoded vector is shown bellow.

The available class labels representing three digits are one, two and three.

digit→ (one two three)

Each digit’s label is one-hoe encoded in a binary vector.


one

two

three

→


0 0 1

0 1 0

1 0 0



The loss function that is used in classification problems is called categorical cross-

entropy.
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J(y, ŷ) = −
N∑
i=1

yi · log ŷi (3.7)

The minimization of the loss function equals to the maximization of the posterior

prediction that a network gives for a certain input xi to correspond to a class label

yi. In other words, we are looking for the Maximum Likelihood Estimation (MLE).

3.6.3 Learning process

Now that we have defined most of the essential components of a neural network,

we are going to discuss about the learning process. Learning process is as iterative

method that is carried over in epochs and stops when a criteria is met. Our true

objective is to find those network’s parameters weights W and biases b that minimize

the error of the cost function as intuitively presented in Figure 3.10.

Figure 3.10: Initial and best weights and biases values hitting a local minima

During the forward pass, a sample is passed through the network of neurons until

the final layer which outputs a posterior probability and the loss function calculates

the error between the prediction and the groundtruth. Given the discrepancy, we

need to inform the network about the error and adapt its parameters and start over.

The problem is considered an optimization process and can be solved utilising a

method called gradient descent. By computing the gradients of the loss function

- 25 -



3.6 : Training a model

with respect to each of the parameters W and b we are calculating the slope of

the function to be approximated, at the current positition. The slope shows the

direction that will follow in order to reduce to cost function’s value. For example,

we calculate the weight’s matrix Wi as follows:

∇Wi
J(y, ŷ) =

∂J(y, ŷ)

∂Wi

(3.8)

and the updated value for the next epoch is given by:

W e+1
i ← W e

i − λ ·
∂J(y, ŷ)

∂W e
i

(3.9)

where λ is the learning rate hyperparameter and dictates the magnitude of the

update. Smaller values will require more steps for a network to converge, larger

values might lose the minima and the network might never converge. The above

method can be consider a criterion to be met and the procedure is referred as

training process or fitting while each learning cycle is referred as an epoch.

For network architectures with multiple layers, a chain rule is applied to calculate

the gradients of the layers next.

∂J(y, ŷ)

∂Wi

=
∂J(y, ŷ)

∂zL−1

· ∂zL−1

∂zL−2

· . . . · ∂zi
∂Wi

(3.10)

For computational reasons, layers are updated backwards from the latter to the

former, this operation is referred as backpropagation.

3.6.4 Optimization

Overall, the main steps of machine learning are to build a model hypothesis (M),

define the objective function (J) and solve the maximum or minimum of the objective

function to determine the parameters (w,b) of the model. The first two are the

modelling problems of machine learning and the latter is to train the model by an

optimization algorithm (optimizer).

An optimizer in deep neural networks is involved in many contexts. The simplest

form used is the gradient descent of the previous section. An optimizer in general

focuses on to find the parameters θ of a neural network that significantly reduce a

cost function J(θ) [34].
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Gradient descent follows a global optimal solution, where all training samples

N are involved towards the calculation of the cost and when the objective function

is convex like, similar to Figure 3.10. Because this problem is very important and

can become very expensive in applications with hundreds or millions trainable pa-

rameters that a specialized set of optimization techniques have been developed for

solving it.

A variant of the above technique called Stochastic Gradient Descent (SGD) uses

a random sample i rather than all samples, to update the gradient per iteration.

That particular sampled is called batch while the cardinality of samples included

in batch define the batch size.

θi+1 = θi − λ · ∂θiJ(yb, ŷb), b ⊂ N (3.11)

For every batch b on iteration i, SGD calculates the cost and updates model pa-

rameters in Equation 3.6.4. After N/b iterations, when all samples N have passed

ones from SGD an epoch is completed.

The main advantage of this method is that it does not require to load the entire

set in memory, but only a batch. This technique enable training feasible for larger

volume of data sets and despite the more iterations needed, this method is faster as

since less computational time is less. It is also observed that SGD has regularization

effects in training, as it mitigates overfitting [35].

Other successful variants of SGD, extend the equation with momentum, an idea

that derived from the mechanics of physics and preserves the influence of the previous

update direction on the next iteration to a certain degree developing a mechanism

to overcome local minima.

ui = λ · ∂θiJ(yb, ŷb) + γui−1 (3.12)

Momentum term is the γui−1. If the update of the previous iteration ui−1 is high,

then it will increase also the current iteration and thus the update is more increased.

Other modern optimizers [36], [37], [38], [39], utilise the above concept to optimize

the momentum calculation and contribute to smoother gradient descent progression
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and ensure that training will converge.

3.6.5 Bias and Variance

Bias and variance are two types of errors that a classifier is subjected to make. Bias

occurs from the false estimations during training. In neural networks, bias may arise

when the network complexity is very simple, namely it does not have the capacity to

learn more complex representation of the input X related the label y. For example,

if the task is complex and a low capacity or complexity network is used, high bias is

expected to occur. High bias is also referred as underfitting. An example of classifier

with high bias is visualized in Figure 3.11.

Figure 3.11: Example of a classifier with high bias. Circles are the samples X. Blue and
orange are the corresponded class that a sample is assigned, while in purple are the false
predictions. A linear classifier has not the ability to learn the non-linear complexity of
that particular data set.

Variance is a concept related to bias which derives from the classifier’s sensitivity

in minor input changes. In practice, means that the classifier can capture random

variation in input such noise or from random behavior in the learning algorithm

itself, such random initial weights [40]. An example of classifier with high variance

is visualized in Figure 3.12.
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Figure 3.12: Example of a classifier with high variance. The decision line is overfitted
on the samples as the classifier has learned perfectly the data set. That will cause issues
in task generalisation.

3.6.6 Objective performance evaluation

To prevent classifier from overfitting and ensure the proper network generalisation,

we “hide” completely a portion of the data from the classifier during training and

use it only for evaluation. In this way, we divide the data set X, in two subsets:

train set Xtrain and test set Xtest as in Figure 3.13.

Figure 3.13: Data set split in 2 subsets: a train set and a test set by 60/40 ratio.

In cases with extended experiments, the risk to overfit the network’s hyperparam-

eters to a certain test set is increased. To prevent the selection of hyperparameters

that perform well only on the selected test set, we create a third subset, the valida-

tion set Xval. A common practice to acquire a validation set is to split the existing
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training set or in case where access to large sets of data in not the case validation

can have the same ration as the test set. In practice, the network is trained as usual

and the validation set is used in order to tune hyperparameters and set the model’s

weights. The final model is evaluated on the test set (Figure 3.14).

Figure 3.14: Training process of an estimator. Train set is used to update model’s param-
eters(weight and biases). Validation set is used to tune model’s optimal hyperparameters.
Test set is used for the objective performance evaluation of the classifier.

3.7 Regularization

Training a deep neural network is considered an art rather than a typical proce-

dure. The choice of hyperparameter is not limited in the number of layers, convolu-

tion filter size etc. but is expanded to the subtle selection of other hyperparameters.

Some of them are weight initialization techniques, learning rate decay, early stop-

ping, dropout and batch normalization layers.

In this section we will discuss about dropout and batch normalization since the

rest of techniques are briefly presented in Section 5.1.

Dropout [41] is one of the oldest regularization techniques in deep learning,

Figure 3.15. At each training iteration, it drops random neurons from the network

with a probability p (typically 25% to 50%). In practice, neuron outputs are set to

0. The net result is that these neurons will not participate in the loss computation

this time around and they will not get weight updates. Different neurons will be

dropped at each training iteration.

A more complex technique called batch normalization tries to address a prob-

lem, known as internal covariate shift [42], which relates to how neuron outputs
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Figure 3.15: Dropout demonstration during training with 40% neuron drop. In evalu-
tion(inference) all the neuron are used.

are distributed relatively to the neuron’s activation function by the time. At the

beginning, network parameters are randomly initialized while during training these

parameters are varying. The variations in the distribution of neuron’s activations

has a property to “confuse” the next layer and so forth to destabilize the training.

In the bottomline, batch normalization aims to stabilize the training process by

minimizing exploding gradient issues, helps the network to converge and usually

allows to decrease the dropout rate, or even acts as a substantial to regularize

overfitting.

3.8 Convolutional Neural Networks

Deep neural networks are hierarchical learning systems, in which high-level fea-

tures are obtained by composing the low-level ones. In images, local combined

features of edges form motifs, motifs assemble into parts and parts create objects.

Convolutional neural networks (CNN) are inspired by neuroscience and more specif-

ically the overall architectures mimic the human visual cortex, as we showed in

Section 2.3. Marr [6] claimed that the attributes carrying the valuable information

in an image, may emerge at any of a range of scales in the real world. He formu-

lated a physical assumption on hierarchical organizations of the visual world that

in simple terms supports that the human representation mechanism must work un-

der a number of different scales in order to capture changes in depth and surface
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orientation.

The above statement is the core function in the design of a CNN. Convolutional

networks are designed to process data that come in its raw form, for example a colour

image is composed of three 2D arrays containing pixel intensities in RGB colour

space. That itself, is a major breakthrough in the domain of pattern recognition, as

the use of handcrafted features becames obsolete.

The key ideas behind a CNN can be considered the following:

• Automatic feature engineering

• Parameter sharing

• Local connections

• Pooling

• Non-linearity

• Used in many layers

The architecture of a typical CNN in illustrated in Figure 3.16 and is structured

as a series of stages.

The first stages are composed of two types of layers: convolution and pooling

layers.

Figure 3.16: A typical convolution neural network architecture.

In a convolution layer, the units are organized in features maps, Figure 3.17,

within each unit is connected to local patches in the feature maps of the previous

layer through a set of weights(parameter sharing), using a pool of filters.
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Figure 3.17: A hierarchical feature map from low to high level features.

The result of this local weighted sum is then passed through a non-linear function

such a ReLU. All units in a feature map share the same filter pool while different

feature maps in a layer use different filter pools.

The reason for this technique is twofold. First, in a image, local groups of values

are often highly correlated and form distinctive local motifs that are easily detected.

Second, the local features of images are invariant to translation. More specifically,

if a motif may appear in any region of an image, the same pattern can be detected

in any region, since units at different locations share the same weights.

However, the role of a convolutional layer is to detect local organizations of fea-

tures from the previous layers, the role of pooling layer is to merge the semantically

similar features into one. A typical pooling layer computes the max or average value

of a selected set of output neurons from the convolutional layers and use these as

inputs to higher layers. Because of the relative posititions of the features forming

a motif can vary, effective detection can be achieved by downsampling the patch

region of each feature, giving the property of invariance to shifts and distortions of

the inputs.

After the last concolutional layer, the data is in the form of a “cube”. In order

to pass to the next stage of a CNN, a densely connected layer, there are two ways.

The first one is to flatten the data into a vector and then pass it to the dense

layer with a softmax activation. The second and more cost efficient, is to average

all the values and feed these through a softmax activation function. Figure 3.18

illustrates the two methods.

With these constraints, the model can be quite compact in terms of number of
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Figure 3.18: Two methods to pass the input of the last convolutional layer to a densely
connected layer.

actual parameters. A CNN architecture achieves a substantial reduction in the num-

ber of connections concerning to a densely connected network via parameter/weight

sharing and pooling layer.

Summing up, a convolutional neural network, is primarly comprised of two levels.

The feature extraction level, that is constructed from convolutional and pooling

layers, trained to extract better and more robust features. The layer properties

allow the use of stacking multiple layers thus forming a deep network structure. The

second level, contain fully connected layers. This layers aim to learn the associations

between high-level features of the last convolutional layer with the labels of the input

in order to perform classification.

3.8.1 Convolution and receptive fields

In convolutional neural network the key operation is basic linera algebra operation

where an a filter or kernel with a set of weights, slides on a input vector. In each

slide, an element-wise multiplication between the input and the kernel in performed

producing a dot product which is summed, resulting in a single value. Applying a

filter to an image will result in a feature map that will have the characteristic of

the filter element structure. The operation is visualised in Figure 3.19(a). Different

type of filters will results in a different feature map(vertical lines, horizontal lines).

By stacking multiple convolutional layers allows a hierarchical decomposition of

the input, from low-level features expressed in lines or edges, to high-level features
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such objects, faces etc.

Pooling is a operation, without dot product level multiplications. Pooling layers

does not have weight parameters and perform a simple pooling operation such meam,

averaging or max pooling as illustrated in Figure 3.19(b).

(a) (b)

Figure 3.19: (a) The operation of convolution between an input(blue) and a kernel(dark-
blue) with weights. The out of a single slide is a single number(dark-green). The whole
operation produce a new feature map(green). (b) Pooling operation in max and average
types of pooling.

The notion of a receptive field in a deep convolutional architecture is inspired

from the human visual system, (Figure 3.20-a).

In deep learning, the receptive filed is defined as the size of the region in the input

that produces the feature [43]. Receptive field refers only to the feature extraction

part of the network, because a convolution unit is connected or depends to only a

specific region of the input. Intuitively, the network’s receptive field is the region of

an input - not only the input of the network, but any input, can be the output of

any network layer - with a relative unit that we consider it as output receiver of the

input. For example a simple convolutional operation between a kernel and an input

is considered a receptive field. Also the final convolutional layer in respect of the

first input layer characterises the total network’s receptive field size, (Figure 3.20-b).

3.9 Deep Learning Architectures

In order to increase the receptive field in a convolutional network, there is a vari-

ety of ways to achieve it. It can be done by adding more convolutional layers(make

the network deeper, add pooling layers, increase convolution striding, use sequen-

- 35 -



3.9 : Deep Learning Architectures

(a) (b)

Figure 3.20: (a)Human receptive field, (b) Receptive field with convolution operation.

tial dilated convolutions or add skip connections. The latter has also regularization

properties, because an the network becomes deeper the risk of vanishing gradient

problem to appear is higher.

By using a skip connection, we provide an alternative path for the gradient(with

backpropagation). At its name suggests, skip connectios, skip some layer in the

network and feeds the output of one layer as the input to the next layers [44].

There are two ways to apply skip connection, with addition and concatena-

tion. In this thesis, we have applied the famous DenseNet [1] architecture which

utilises concatenations as skip connections (Figure 3.21).

DenseNet model starts with a convolutional-pooling block and continues with

a series of “Dense blocks-Transition layer”. Finally it closes with a Global Average

pool and a Fully-connected block.

In every “Dense block” the input tensor passes through a series of convolutional

operations with fixed number of filters k and the result of each one is then concate-

nated to the original tensor.

Thus the number of feature maps of the input tensor follows an arithmetic growth

at every internal stage of the Dense block by k tensors per stage. In order for the size

of the tensor to remain manageable the model makes use of the Transition layers

where the number of feature maps of the input tensor is reduced to half. Also the

spatial dimensions of the input tensor are halved by an Average Pool layer.

At each Dense block, there is a repetition of: (a) 1× 1 conv with 4 · k filter, (b)
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3× 3 conv with k filters. Every Dense block is constructed by Batch Normalization-

ReLU-Convolution sets. The aforementioned modules of DenseNet model are shown

in Figure 3.22

Figure 3.21: DenseNet architecture from the original paper [1]

(a) (b) (c) (d)

Figure 3.22: DenseNet model modules: (a) BN-ReLU-Conv compartment, (b) Dense
block, (c) Transition layer, (c) all modules of the original DenseNet

More specifically we have implemented a lighter version of DenseNet architecture

where more details are presented in Section 5.1, illustrated in Figure 3.23.

Another famous architecture, the winner in ImageNet Challenge 2014, is the

VGG16 [45]. It is a rather simple but very deep architecture of 16 layers. All hidden

layers are equipped with ReLU non-linearity and max pooling is performed over a

2 × 2 window, with stride 2. The network consists of 5 convolutional blocks and 3

fully connected layers. Each convolutional block consists of 2 or more convolutional
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Figure 3.23: DenseNet architecture with 1 and 2 consecutive Dense Blocks

layers and a max pool layer. In this thesis we utilised VGG16 with pretrained

imagenet weights while we substitute the last decision layer with globar average

pooling, a batch norm layer and a two-output softmax layer. Figure 3.24 illustrates

the network architecture.

Figure 3.24: VGG16 architecture with Global Average Pooling 2D and Batch Normal-
ization layers at the end

Moreover, we have created a SimpleNet architecture, inspired from the afore-

mentioned models. We have combined the notion of Dense blocks in DenseNet with

the deep layer architecture of VGG16. The network consists of 3 convolutional block

and 2 fully connected layers. Each convolutional block consists of 2 or more convo-

lutional layers and a max pool layer. The first layer is consisted of one Dense block,

while the rest of two Dense block. After the last convolutional layer a global average

pooling layer forwards the input to a fully connected layer, passed to a Dropout, to

a softmax decision output. Figure 3.25 depicts the network architecture.

More details of the network can be found in Section 5.1 and in Appendix.
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Figure 3.25: A SimpleNet architecture

3.10 Image Aesthetics with Deep Learning

Image aesthetics quantification is a task that has gained tremendous growth with

the use of deep learning techniques from 2014 and later. The research community

has adopted the term Image Aesthetics Quality Assessment (IAQA) [8] to approach

the problem, which can be divided in five different aesthetic tasks including aesthetic

classification, regression, distribution aesthetic factors and description.

Deep learning, like to many other applications, offers and automatic and uni-

versal solution to extract features and consequently learn a feature extractor solely

based on the input data. In contrast with traditional hand-made feature extractors

that require substantial amount of engineering skills and domain expertise, a deep

learning approach does not require to master complicated and demanding knowl-

edge.

Major developments in the domain such as the dramatic improvement in the

ImageNet classification benchmark from Krizhevsky et al [46] using a DCNN, and

the release of the Analysis of Visual Aesthetics(AVA) data set in the same year from

Murray et al [47], which contains over 250,000 photos from DPChallenge.com, put

IAQA again in the spotlight.

Summarizing the recent literature concerning aesthetic classification and regres-

sion related tasks in 2014, Lu et al [2], proposed RAPID(RAting PIctorial aesthetics

with Deep learning) system which adopts a double-column DCNN which combines

heterogenous inputs from global and local view of an image to create a unified

classifier using AVA dataset.
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In 2016, Kong et al [48] assembled a new aesthetics and attributes database

(AADB) which contains aesthetics scores in form of star-rating and meaningful at-

tributes mapped to each image given by multiple human annotators. In addition

they have proposed a new CNN architecture that unifies aesthetics attributes and

photo content for image aesthetic ratings upon a classification problem benchmark-

ing their published data set versus AVA. Their published data set were collected

in co-operation with professional photographers and is closely related to image aes-

thetic judgements such content, object emphasis, light, colour harmony, vivid colour,

shallow depth of field, motion blur, rule of thirds, balanced elements, repetition and

symmetry.

Another approach that focus on preserving the image composition fed to a

CNN, without damaging the input image by a geometric transformation is pro-

posed by Mai [49], 2016. Multi-Net Adaptive Spatial Pooling ConvNet(MNA-net)

is a compotition-preserving architecture which learns aesthetics features from images

retaining their original aspect ratio without any transformation achieved by an adap-

tive spatial pooling layer on regular convolutional layers placed in network’s input.

It also allows multi-scale feature extraction achieved from multiple sub-networks

with different adaptive spatial pooling sizes, also utilising AVA data set.

A work in 2017 from Malu et al [50] similar to Kong’s, attempts to interpret

image quality attributes contributing to an overall aesthetic score. They propose a

multi-task dcnn which simultaneously learn eight aesthetic attributes the same as

above, composition balance, content, colour, depth of field, light, object emphasis,

rule of thirds and vivid colours, along with the overall aesthetic score Figure 3.26.

The have also developed a visualization of feature map activations based on the

attributes above to highlight the key regions that correspond to the related feature

attribute using the AADB database.

A recent study attempts to solve the same problem by training a dcnn to recog-

nize if an image is appealing or not. Bhandari et al [51] incorporate a technique that

extracts low-level features such colour properties and high level features in order to

recognize prominent structures and entities in an image such, salient objects, rule

of thirds, depth of field and other. They have created a diversely collected data set
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from Google, Flickr, Kaggle and at the same time utilize the GrabCut algorithm to

efficiently extract the foreground object from a complex environment.

However, inspecting the data sets used in the aforementioned papers, the dis-

tinction between “high” and “low” quality images is more of a stylistic difference

than anything else. Figure 3.27 shows a sample from AADB dataset and there is

a profound evident of the content quality. Also, Figure 3.28, shows the image aes-

thetic classification from the RAPID system. We would argue, that this style of

photography is not by any means close to a known form of art. One can observe,

datetime captions, poor sharpness, flat and overwhelming shots from compact cam-

eras or even mobile devices. Photography is a form of art that adopts the aspect of

the visual world and extends it, in the undefined rules of a form that a photographer

chooses to transform into a new medium of communication.

Figure 3.26: Sample images in AADB dataset. Each photo is annotated with 8 aesthetic
attributes in binary labels and aesthetic ratings.

Figure 3.27: Sample figures from AADB dataset

In the next Chapter, we present a recently published high competent data set,

with super high resolution images, from Unsplash, a famous image sharing and pub-

lishing platform, adopted by famous products and web applications across industry.
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(a) Images ranked the highest in aesthetics by
DCNN

(b) Images ranked the lowest in aesthetics by
DCNN

Figure 3.28: RAPID system, Lu et al. 2014 [2]

3.11 Active Learning

In the latest decade, deep learning models have achieved groundbreaking results

on several computer vision tasks [52], [46], [53] and have become very popular due to

their high flexibility, capacity and accuracy. Yet these models rely on vast amounts

of labelled data for training. In practice, in many applications, we might not have

access to such large data pools and more specifically we cannot afford to annotate

all of them. Data labelling is an expensive and tedious task that is performed under

a limited time budget, in addition the acquisition of a large number of high-quality

annotated samples consumes a lot of manpower, making it unfeasible in fields that

require high levels of expertise.

However, if there was an algorithm, that had the ability to suggest the samples

from which it learns, it would achieve greater accuracy with less annotations.

The paradigm of choosing the most informative data to label is referred to as
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active learning [54], [55]. The key challenge remains that there isn’t any standardized

method to determine the informativeness of the data. Active learning is performed

in the context of sequential decision making where at every step, two operations are

performed: i) measure the informativeness of the unlabelled data w.r.t. an active

learner and choose the most informative to annotate, ii) update the underlying

training data set with the new annotations and the active learner w.r.t. to the

training performance.

Active learning is a training strategy, that aims to select the most beneficial

samples from the unlabelled data set and send them to the oracle(human annotator)

for labelling, in order to reduce the cost of labelling as much as possible while

achieving high performance.

There are several scenarios which an active learner can utilise and pose queries

and several query strategies that can been used to decide which instances are most

informative.

3.11.1 Active learning scenarios

In random selection or in regular “passive” learning, the process is straightforward

and new samples are chosen to get labelled uniformly from an unlabelled pool.

When employing an active learning scenario, we ask the active learner from a

pool of unlabelled instances, to indicate the most informative samples that when

included in training set will be more beneficial and perform better, in less training

rounds, comparing to when trained with randomly selected samples.

Such active learning scenarios are considered the i) Membership query syn-

thesis, ii)Stream-based selective sampling and iii) Pool-based active learn-

ing [55], but only some of them can apply to our case study.

Membership query synthesis means that the learner can request to query the

label of any unlabelled sample in the input space while in stream-based sampling,

an independent judgement is made from the learner, on whether each sample in

the data set is considered for annotation. The latter is rather the most expensive

comparing to other methods as an additional mechanism is needed for the learner
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to decide if the candidate sample belong to the underlying distribution.

In pool-based scenario, unlabelled instances are selectively drawn from the pool

and are typically queried in a greedy fashion, according to an informativeness mea-

sure used to evaluate all instances in the pool.

Applying the first scenario to our case study when querying from the pool of

unlabelled instances the unexpected problem we encountered is that many of the

query images generated were not contain any semantic meaning about the certain

photography style (shallow/deep depth of field).

Pool-based seems that applies better to our case study and based on an infor-

mativeness measure we can generate actively selected samples. In order to tackle

the encountered problem, inspired from the second scenario, during the process of

annotation, the problematic candidate samples where discarded from the selection.

Finally we constructed a closed data set pool in order to apply the pool-based sce-

nario.

Figure 3.29 illustrates the framework diagram from pool based strategy. To

initialise the process(bootstrap), we can select randomly samples from unlabelled

pool U, obtain labels in order to generate a labelled training set L and train a

machine learning model C. Next, we use this model as an active learner, by applying

a query strategy framework in order to select the next annotated samples. The

process is repeated until the label budget is exhausted or the termination conditions

are met(e.g. data depletion, query strategy limits).

Figure 3.29: Pool based active learning
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3.11.2 Query strategy framework

The simplest and most commonly used query framework is uncertainty sampling,

where an active learner queries the samples that it can predict with least confidence

(LC) [55]. Those samples are considered as the most informative ones or the most

ambiguous, as the classifier is uncertain for the predicted class. This of course

requires the use of a model that is capable of assessing adequately the prediction

uncertainty.

The aforementioned query strategy when applied in DAL can be implemented

with the output of the softmax layer of the deep learned classifier, thus the query

strategy based on uncertainty is widely used in a variety of studies [56].

For this reason, Deep Bayesian Active Learning (DBAL) [57] has been developed.

For a given input set X and the network output Y belonging to class, the probabilistic

neural network can be defined as f(x; θ), p(θ) is a prior on the parameter space θ,

and the likelihood p(y = c|x, θ) is usually determined by softmax(f(x; θ)). The goal

is to obtain a posterior distribution over θ, as follows:

p(θ|X, Y ) =
p(Y |X, θ)p(θ)

p(Y |X)
(3.13)

For a new given(inferenced) observation x∗, a ŷ prediction is made:

p(ŷ|x∗, X, Y ) =

∫
p(ŷ|x, θ)p(θ|X, Y )dθ (3.14)

Thus, least confidence(LC) measurement is given from:

x∗LC = argminxP (ŷ|x; θ) (3.15)

where ŷ = argmaxyP (ŷ|x; θ), is the most likely predicted class.

Hence, we use the probabilities as indicators of classification uncertainty.

3.11.3 Batch-Mode Deep Active learning

Formulating the above, we are looking for these samples that will be selected from

the active learner, transferred systematically to a human annotator(oracle) and con-

sequently will returned back to the training set, get the model retrained and so forth,

achieve better classification performance.
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In most active learning research, queries are selected in serial, e.g. one at a time.

For the context of DL, the one-by-one sample query method which commonly used in

AL is not applicable. Consider also that sometimes a distributed, parallel labelling

environment may be available, e.g. labels are obtained from multiple annotators at

the same time.

Selecting queries in serial may be inefficient and in contrast, batch-mode active

learning allows the learner to query instances in batches which resembles a parallel

labelling practice or models with slow training procedures [55].

Moreover, many ML algorithms don’t re-train sequentially or retraining does not

provide a statistically significant impact on the model, as is the case for many DL

models. In addition, this query method is not only inefficient in the training of the

DL model, but can also easily lead to overfit [58].

Although there is not any standard rule to determine the number of batches

that can be used to an active learning experiment there are works that compare and

assess multiple volumes of active batches [59]. In this thesis we choose to experiment

in two options. One with variable size of batch without incremental training and an

option with a standard batch size of 100 samples and incremental training.

3.11.4 Deep Active Learning

DL has demonstrated abilities to process high-dimensional data though the auto-

mated feature extraction mechanisms, while AL has substantial potential to reduce

annotation costs. Therefore, combining the two approaches, will effectively benefit

the applications performance.

Recent studies and developments in Deep and Active learning are transition-

ing from the model-centric to the emerging field of data-centric artificial intelli-

gence [60], [61] which is expected to deliver techniques for data set optimization,

thereby to more efficient training with less samples and annotations.

This falls into an active learning framework with deep learning, known as deep

active learning (DAL), that will be able to select the most informative samples, send

them to an oracle for annotation and append them to the data set, as it is shown
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in Figure 3.30.

Figure 3.30: A typical example of DAL: A DL model is pre-trained on the labelled
training set L0, and given a query strategy is used to select the next samples from the
Unlabelled pool U. A sampling strategy is to pick the candidate images and they are sent
to a human oracle for annotation. The new labelled training set L updates the initial L0

and retrains the Deep Learning model.

However, we have to consider two things. Deep learning poses several difficulties

when used in an active learning setting. First, we have to be able to handle small

amounts of data, yet recent developments in deep learning require large amounts of

data [62], [46]. Second, many AL strategies rely on prediction uncertainty and such

a case is rare in deep learning [57]. Concerning the latter, there are studies [63], [64]

that pose an unreliability to softmax when used to estimate the informativeness

of the unlabelled samples and argue that the results may be worse than random

selection.

In this thesis, we are studying a challenging and non trivial task thus we will

follow the simplest approach using DBAL to exploit an active learning indicator and

consequently implement and active learning algorithm.

Active learning using deep learning aims to achieve the best learning result given

a limited labelled data set. Given a budget on the available unlabelled instances to

have them annotated, our objective is to maximize the classifier’s performance with

the less cost effective method.

At each iteration, an active learning algorithm has two stages: a) identify a set

of unlabelled instances and send them to a human oracle for annotation; and b)

train a classifier using both the new and the previously labelled instances. The

second stage (train the classifier) can be done in a fully or weakly-supervised man-

ner. Fully-supervised is the case when the classifier is trained using only human
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labelled instances. Weakly-supervised is the case where training runtime utilise the

points which are not labelled yet. Although the existing literature focuses most

on the active learning for fully-supervised models, we consider both cases in our

experiments.

3.11.5 Cost Effective Active Learning (CEAL)

Another technique different from the existing AL approaches that consider only the

most informative samples to get labelled from a human annotator, is one that poses

the most confident queried unlabelled samples and automatically pseudo-annotates

them without active user labelling. Samples queried to an active learner with high

predicted confidence are the most certain to get classified correctly. The method that

selects these samples and automatically assign the predicted class as a pseudolabel,

with any human labor cost, is proposed as cost-effective active learning (CEAL) [64].

Figure 3.31 illustrates the method.

Figure 3.31: CEAL progressively feeds the samples from the unlabelled data set into
the CNN. The clearly classified samples are pseudolabelled while the most uncertain are
send to manual annotation.

3.11.6 Cached Annotation Batch-Mode Active learning

Following a closed loop strategy, similar to the Figure 3.30, it requires the model to

be retrained on the whole labelled data set, once new labels are available. For very

large modern deep CNN’s that require many hours of end-to-end training, this is

typically impractical.

In practice, this scenario is often unrealistic: in order to be able to implement
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such a loop in a production environment the budget for human annotations is limited

or might be a deterring factor to construct a fully automated pipeline. Also the AL

strategy has to be closely integrated with the annotation system, something that

may introduce limits to the data owner.

In this work, inspired from pool based and batch-mode strategies, we have com-

bined and evaluated both methods in two different active learning settings, that we

present in Section 5.7.1.

The intuition behind both settings is that they do not adhere in a closed training-

query-annotation loop, thus do not require to ask or wait for new labels. All queried

“unlabelled” samples have been annotated once (pre-annotated) given a time bud-

get. This practice enables the machine learning practitioner to construct a fully

automated pipeline without waiting for unlabelled samples to get labelled, instead

the active learning algorithm can be designed on what samples will pick next.

We create a new setting of “caching” the annotations and named it after “Cached

Annotation Batch-Mode Active Learning”. A closed sampling pool is comprised

from randomly and actively selected samples, with “cached” annotations obtained

once at the bootstrap step.

More specifically in Section 5.7 we apply a simulation algorithm with single and

increamentally trained active learners, on the same pool of pre-annotated samples

and demonstrate random and active selection strategies, without asking for extra

annotations.
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Data Description

“To me, photography is the simultaneous

recognition, in a fraction of a second, of the

significance of an event.”

—Henri Cartier-Bresson

4.1 Unsplash Dataset

Unsplash dataset is a publicly available collection of super high resolution pho-

tos. 1

In Section 4.2 we describe the image preprocessing methodology we implemented

to reformat the dataset’s images into a unified format. Section 4.3 presents an

exploratory data analysis, performed to provide a general knowledge base for our

case study. Section 4.4 elaborates on binning process, based on EXIF metadata

used as features. Section 4.6 covers the methodology we followed to construct a

new labelled data set, the EXIF data set, based on EXIF metadata characterizing

photographs with a photography style. In Section 4.5 we come up with the problem

formulation, derived from the aforementioned methodologies. The distribution of

photography style characteristics that are reflected in Unsplash data set, played a

very important role to acquire a solid understanding for its photography aspect.

In Section 4.7 we present a second data set, the DoF data set, annotated with

1https://unsplash.com/data
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completely manual method based solely on qualitative characteristics of the images.

4.2 Image Preprocessing

Aside from data preprocessing in supplementary data which will be handled as

labels, the trained samples which help up solving the problem are RGB images.

Image preparation is an essential process in order to feed a dataset of images in a

convolutional network, at the same size. In the case of EXIF dataset, we have created

three individual datasets. The one with both image orientations will be transformed

into square images with zero padded pixels in left and right for a vertical oriented

image and up and down for a horizontal image. For the rest of the dataset, horizontal

and vertical, we keep them in the same orientation.

Complementary to resizing we are choosing to keep the original aspect ratio of

images. For aesthetic reasons changing the ratio will impact where the subject is

positioned in relation to the sides of the frame. If we just resize a photo to the

desirable target size, in many cases the final outcome will be distorted and the

subject composition will get altered. In photography the most usual aspect ratio of

a captured photo is 3/2. It has not been established by chance, as it is based on the

golden ratio of Fibonacci spiral 4.1 and has thoroughly adopted by the most famous

photographers 4.2.

Figure 4.1: The golden ratio

The target image size for horizontal images is equal to (300,200) for horizontal

images,equal to (200,300) for vertical images and equal to (400,400) for datasets

with both orientations. During image resize, inter area interpolation were applied,

to resample using pixel area relation. This technique offers moire-free results, a ge-

ometrical pattern produced in various digital imaging and computer graphics tech-

niques due to undersampling. To preserve the aspect ratio we have calculated the
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Figure 4.2: Left: Ansel Adams, Right: Henri Cartier-Bresson

ratio of the target axis to the maximum reference image axis resolution. For an

image that its original size is above or bellow the target ratio (3/2), the final out-

come after the resize, will be a larger image which needs to get cropped or a smaller

image which need to get padded with zeros. The aforementioned transformation

process is described in Algorithm 1. Additionally, we have provided a meaning full

representations of the transformed images in Figures 4.3-4.7.

Figure 4.3: Horizontal Crop, Left: Resized preserving ratio (325x200), Middle: Resized
preserving ratio & Crop to target (300,200), Right: Resized to target without preserving
ratio

Figure 4.4: Horizontal Pad, Left: Resized preserving ratio (300x177), Middle: Resized
preserving ratio & 0Pad to target (300,200), Right: Resized to target without preserving
ratio
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Algorithm 1 Image transformation

1: procedure Resize Image(image, target.width, target.height, orientation)
2: if orientation == Horizontal then
3: ratio← target.width/max(image.size)
4: else if orientation == Vertical then
5: ratio← target.height/max(image.size)
6: end if
7: new size← [image.width ∗ ratio, image.height ∗ ratio] . calculate new size
8: new image← resize(image, [new size.width, new size.height], INTER AREA IP)
9:

10: if new image.width 6= target.width then . crop/pad → target width
11: new image← pad crop(new image, target.width)
12: else if new image.height 6= target.height then . crop/pad → target

height
13: new image← pad crop(new image, target.height)
14: end if
15: end procedure
16:

17: procedure pad crop(image, target.width)
18: if image.width > target.width then . Evenly Crop image
19: rows to crop← target.width− image.width
20: split rows← rows to crop DIV 2
21: if rows to crop MOD 2 == 0 then
22: new image← image[width− split rows : split rows]
23: else . Rows to crop odd number, crop one more
24: new image← image[width− split rows : split rows+ 1]
25: end if
26: else . Evenly 0Pad image
27: rows to pad← target.width− image.width
28: pad rows← rows to pad DIV 2
29: if rows to pad MOD 2 == 0 then
30: new image← PADDING0(image, pad rows)
31: else . Rows to pad odd number, pad one more
32: new image← PADDING0(image, pad rows+ 1)
33: end if
34: end if
35: end procedure
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Figure 4.5: Vertical Crop, Left: Resized preserving ratio (240x300), Middle: Resized
preserving ratio & Crop to target (200,300), Right: Resized to target without preserving
ratio

Figure 4.6: Vertical Pad, Left: Resized preserving ratio (168x300), Middle: Resized
preserving ratio & 0Pad to target (200,300), Right: Resized to target without preserving
ratio

4.3 Exploratory Data Analysis

The first step to approach an unknown and recently published dataset, could be

done with an exploratory data analysis (EDA). Its purpose is to perform a critical

process to discover patterns, eliminate data anomalies and summarize main dataset’s

characteristics with the help of graphical representations to uncover certain aspects.

In a first level exploration the goal is to identify and comprehend the supplemen-

tary data(metadata) aside from images. We are looking for identifier columns and

levels for a categorical variable. In order to achieve that, we project the list of the

available feature columns, perform a data cleansing process and create uni-variate

histograms.
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Figure 4.7: Dataset in squarified transformation for both orientations to 400x400 by
0Padding

The scope beyond first level analysis, is to manually construct a labelled dataset

relying solely on EXIF features. By applying a binning strategy based on photogra-

phy domain knowledge, we aim to create data bins for each of the features in order

to assign an appropriate label. Uni-variate binning will aid us to form an initial

hypothesis and setup a dataset driven problem that will be used as an indicator for

a specific photography style classification problem.

Complementary to the EXIF-based labelled dataset, using the insights from the

EDA, we have manually labelled a dataset based on the qualitative characteristics of

a certain photography style. The aforementioned process is depicted in Figure 4.8.

Figure 4.8: ETL process

4.3.1 Data Cleaning

Photos dataset is comprised of 25318 samples in total with more than 15 features

and photography metadata, that only a few can be considered as features or can-

didate labels. In our case study, we focus only on EXIF(exchangeable image file

format) metadata such ISO, the digital sensor’s sensitivity, lens aperture value,
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lens focal length and shutter’s exposure time as they represent the camera set-

tings when a picture is captured. Additionally we have included width and height

as they denote the picture’s orientation. The features we kept are shown in Table 4.1.

Feature Description

photo id Image filename

photo width Width in pixels

photo height Height in pixels

photo aspect ratio Photo aspect ratio

exif iso ISO setting(EXIF)

exif aperture value Aperture setting(EXIF)

exif focal length Focal length setting(EXIF)

exif exposure time Exposure time settings(EXIF)

Table 4.1: Table with Unsplash dataset metadata & features

Any dataset collected from the web comes with distorted and noisy information

which can negatively affect the analysis. A data mining process is required prior

to any algorithm application, to increase consistency and interpretability of the

studying data.

We implemented a data cleaning/wrangling process on EXIF feature values,

to eliminate samples with NaN entries and align each feature value range to a

homogeneous format. Data wrangling process, eliminated and corrected values with

incoherent format e.g. for the case of aperture values, 1, 8→ 1.6, f/5.6→5.6, 180s→

180 and structural errors e.g. undef,Inf,inf,18-55mm→NaN. Removing NaN values

we ended up with 21,445 working examples.

Next, we present a family of plots related with EXIF values distribution con-

cerning both of the picture orientations in Figures 4.9 and 4.12.

It is observed that a large number of pictures are captured in middle to low

aperture settings. Most photographers, choose these specific settings as most of the

consumer lenses tend to be more sharper, with significant amount of Depth of Field

separation from the subject. Also, most of the captures are set in the lowest ISO

values which means that images are free of natural noise that could be introduced

from the camera sensor.

Concerning focal length, most of the pictures are captured with 50mm lens, the
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(a) Aperture

(b) ISO

Figure 4.9: Horizontal+Vertical Aperture/ISO value distribution

Figure 4.10: Captures in 2.8 and 5.6(leaf) aperture setting

most usual prime lens type that offers the closer to the human eye, feel in the visual

field. In the same neighborhood, 35mm and 24mm lenses are used, types for general

purpose shooting. These are wide angle enough to get the bigger picture but not

so wide to lose the subject. Less of the captures can be considered as portraits in

85mm or more, while the rest bellow 24mm for landscape photography. Exposure

values are most of them in the typical general purpose range, fast enough to capture

or even freeze any moving object while a few captures can be considered as long

exposure shots.
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Figure 4.11: Captures in 100 and 5000 ISO setting

4.4 Data binning

After data cleaning process, the quality of metadata were determined in terms

of validity and consistency in order to carry through binning process. Binning is a

method where instances are divided into discrete intervals known as bins, based on

a particular thresholding strategy applied on instance values. Binning by frequency

is a method that matches continuous instance values in bins, which correspond to a

certain threshold range.

In theory, concerning photography and the related EXIF metadata, a specified

range of values in a certain EXIF category, should justify a meaningfull photography

style namely, e.g. a picture with “bokeh” has shallow depth of field and is captured

with a low aperture value. Long exposure shots can be achieved when the shutter

value is set in more than 1sec.

In general, there isn’t a standard choice for the number of bins. In our case, we

have created only 2 and 3 bins. The binning strategy we structured is described in

Table 4.2. It originates from our empirical knowledge and also inspired from [65]

as well. More bins would not have contributed to the problem as it would be

inappropriate to consider to create more segments.

For certain photography styles namely short/long exposures(freezed/smoothed)

and bokeh/focused(shallow/deep DoF) is already difficult to characterise a photo in
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(a) Focal Length

(b) Exposure

Figure 4.12: Horizontal+Vertical Focal Length/Exposure value distribution

Figure 4.13: Captures in 50mm and 35mm

more than two bins as no/some/very DoF/exposure. Thus a binary label would

be adequate to map and classify certain photography styles while a three class could

work depending on the data distribution and photography styles related to the

introduced ISO noise e.g. clean/grainy/noisy.

Elaborating on the table 4.2, the ideal scenario is that bin 0 indicates a shallow

depth of field for aperture settings, wide angle shots for focal length, low noise for

ISO and long exposures, while bins 1 and 2, indicate shots with deep or deeper DoF,

narrow or more narrow angles, grainy or noisy shots and short exposured shots for

each of the categories respectively.
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(a) (b) (c) (d)

Figure 4.14: (a,b): Captures in fast 1/1000 shutter speed setting, (c,d): Long exposured
captures for 30”

Bins

EXIF 0 1 2

Aperture (DoF) (0,3.2) [3.2,5.6] (5.6,]

Aperture Binary (DoF) (0,3.5] (3.5,] -

Focal Length (0, 35mm] (35mm,85mm] (85mm, )

Focal Length Binary (0, 35mm] (35mm,) -

ISO (0,500) [500,1800) [1800,]

ISO Binary (0,500) [500,) -

Exposure (, 0”] (0, 1/250] (1/250,)

Table 4.2: Binning categories in EXIF dataset

4.4.1 Uni-variate label distributions

The following figures visualize a second family of distributions, of the created labels

based on binned EXIF values. Distribution for both photo orientations are shown

in Figure 4.15, images in horizontal orientation in Figure 4.16 and images in vertical

orientation in Figure 4.17.

By studying the distributions, we acquire substantial knowledge about the vari-

ability of bins existing in the same population.

The EXIF bins, that are skewed in one class and considered inappropriate as

candidate labels, are the ISO and exposure. One would argue that there are plenty

of samples to undersample from the majority class, but the contradiction could be

that ISO could have been post processed from a third party software before the

picture is published and for exposure normally even the human eye cannot detect

distinct differences if a picture belong in bin 1 or 2.

Concerning the distribution in aperture bins, is considered an ideal case to focus

on, as it can be translated to an appealing photography style namely Bokeh. Bokeh
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(a) Aperture (b) ISO

(c) Focal Length (d) Exposure

Figure 4.15: Horizontal+Vertical images for Aperture/ISO/Focal Length/Exposure la-
bel distribution

effect is a famous and widely spread photography style. It is already artificially

incorporated in most of the consumer smart-phone camera applications. On the

other hand, bokeh adds a softer and warm tone in a picture which is attractive to

the users who share and publish content.

4.5 Formulating the problem

Combining the aforementioned visualised distributions with photography domain

knowledge, we chose continue with aperture based bin, the one in two classes and

consider it as a binary label to annotate the dataset.
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(a) Aperture (b) ISO

(c) Focal Length (d) Exposure

Figure 4.16: Horizontal images for Aperture/ISO/Focal Length/Exposure label distri-
bution

As it has been mentioned in the previous section, an extra class for the current

use case wouldn’t have been supported qualitatively.

Finally the data set distribution led us to formulate a problem and define Bokeh

photography style, to consider as the target class. Thus, we will attempt to create

a binary classifier in order to learn and discriminate image with shallow and deep

DoF.

4.6 EXIF dataset - Data Sampling/Splitting

In the previous section we showed that most of the camera settings appear to be

more common than others. For the selected use case, the EXIF based binary set for

Bokeh style, is composed of 10, 322 samples for the low class and 11, 123 samples
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(a) Aperture (b) ISO

(c) Focal Length (d) Exposure

Figure 4.17: Vertical images for Aperture/ISO/Focal Length/Exposure label distribu-
tion

for the high class. The most common methods to smooth class imbalance problems

are oversampling and undersampling [66]. To tackle the imbalance problem we

undersampled from the majority class as the Figure 4.18 depicts. Undersampling is

defined as to randomly remove examples from the majority class in order to balance

the cardinality of minority class.

Undersampling is applied for three datasets types as follows:

• Horizontal+Vertical image orientantions with directly undersampling from the

majority class

• Horizontal images, filtered out from the total samples and then undersampled
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Figure 4.18: Undersampling strategy

the majority class

• Vertical images, in the same way

Table 4.3 denotes the number of samples for the three dataset before and after

undersampling.

Unbalanced Balanced

Orientation 0 1 Total 0 1 Total

H+V 10322 11123 21445 10322 10322 20644

Horizontal 4800 6629 11429 4800 4800 9600

Vertical 5522 4494 10016 4494 4494 8988

Table 4.3: Dataset cardinalities before and after undersampling

Also figures 4.19, 4.20 and 4.21 depict the cardinality of samples for each label

before and after undersampling for all dataset types.

(a) Unbalanced (b) Balanced

Figure 4.19: Horizontal+Vertical Unbalanced vs Balanced

Finally each one of the datasets has been split by 80/10/10 ratio in balanced

train, validation and test sets.
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(a) Unbalanced (b) Balanced

Figure 4.20: Horizontal Unbalanced vs Balanced

(a) Unbalanced (b) Balanced

Figure 4.21: Vertical Unbalanced vs Balanced

4.6.1 EXIF dataset - image samples

Motivated by problem formulation in Section 4.5, samples of EXIF dataset, binned

in low and high classes of depth of field are provided in Figures 4.22-4.27.

Investigating the sampled photos, we are looking for pictures with noticeable

shallow DoF level in low class Figures 4.22, 4.23, 4.24 where the subject should

stand-out from the background.

Figure 4.22: EXIF dataset - Horizontal+Vertical sample images low(0) class - shallow
DoF
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Figure 4.23: EXIF dataset - Horizontal sample images low(0) class - shallow DoF

Figure 4.24: EXIF dataset - Horizontal sample images low(0) class - shallow DoF

While for pictures in Figures 4.25, 4.26, 4.27 annotated in high class the DoF

should be deep enough that the horizon should not be separated from the main

subject.

Figure 4.25: EXIF dataset - Horizontal+Vertical sample images high(1) class - deep
DoF

By observing the samples, there are pictures where they seemed to be correctly

categorized and DoF escalation makes sense. On the other hand, there are several

cases where “noise” is introduced in bins, which is not due to faulty categorization

but due to photography circumstances. For example a picture with very low aperture

setting can be used to produce a “bokeh” effect, but can also be used in night

photography or even in daily photography when the subject is completely focused

and occupies most of the frame’s surface. The latter cases are met in the following

figures and are considered as introduced noise.
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Figure 4.26: EXIF dataset - Horizontal sample images high(1) class - deep DoF

Figure 4.27: EXIF dataset - Horizontal sample images high(1) class - deep DoF

4.7 DoF Dataset - Manual Annotation

We have created an EXIF based dataset, which was utilised to train a visual

classifier in shallow and deep DoF content pictures. We were expecting that the

induced noise can adversary affect the model training performance and classification

capability. After attempting to train a number of different classifiers, results of the

evaluation are presented in the next chapter, we did not observe any substantial

performance and overall poor results. Hence, we concluded that EXIF based data

set, failed to reflect “bokeh” in pictures and is not considered appropriate to create

a strong enough classifier to assess a certain photography style.

Our main concern, in order to effectively tackle the problem, is to construct a

carefully annotated dataset, utilising domain knowledge. We started from scratch

and focused only on horizontal images where we carefully annotated a total of 1200

samples, equally balanced for the two classes. We split it in train, validation and test

sets by 560/140/500 samples respectively. One may argue for the uneven ratio split

size between training/validation and testing sets. We chose a fairly large amount

of test set in order to acquire more accurate posterior estimations of the classifier,

since we delve into a task with limited or any prior knowledge. Annotated image

samples are shown in figures 4.28 and 4.29.
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Figure 4.28: DoF dataset - Horizontal sample images low(0) class - shallow DoF

Figure 4.29: DoF dataset - Horizontal sample images high(1) class - deep DoF

In the next chapter, we provide an extended description about the methodol-

ogy we followed to construct a range of deep learning classifier. In addition, we

present an active learning framework that will help us to indicate the most informa-

tive unlabelled samples to include in the training set in order maximize the model

performance and reduce annotation costs in time.
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Experiments & Results

Begin at the beginning, the King said

gravely, “and go on till you come to the end:

then stop.”

—Lewis Carroll, Alice in Wonderland

5.1 Passive Learning - Experimental Process

In Section 4.6 we have created an EXIF based dataset in three different image

orientations (horizontal, vertical, square). Moreover in Section 4.7 we created the

DoF data set from manually annotated horizontal images based on the depth-of-field

volume in photos, focusing on a specific photography style.

We experimented on different types of architectures, a simple (SimpleNet) one, a

more complex and sophisticated (DenseNet) one and a larger one (VGG16) utilising

both of the data sets. We have followed two training strategies: i) Train a model

from scratch, we have used a DenseNet and a SimpleNet architecture ii) Apply

transfer learning utilizing a pre-trained VGG16 architecture.

For the two former architectures, we trained the models using a mini-batch size of

32 samples with Adam optimizer and a learning rate 0.0001. DenseNet architecture

has 3.632 trainable parameters, 8 convolution filters are used for the network’s input,

with 7×7 kernel size.

DenseNet comprises of repetitive dense blocks and transition layers where the
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input of a dense block concatenates with its output. After denseblock repetitions a

transition layer takes place which feds a 2D Convolution block (BatchNorm-Relu-

Conv2D) with the output tensor of the denseblock multiplied by a factor θ = 0.5.

Each 2d convolutional layer uses a Glorot uniform kernel initializer [67]. The number

of dense blocks set for our architecture is 1 and 2 while the rest of the DenseNet

architecture’s hyperparameters were based on the original paper implementation [1].

SimpleNet architecture was inspired from the simplicity of a very deep architec-

ture such VGG using sets of convolution block. It has 4.172 trainable parameters

and is constructed with sets of BatchNorm-Relu-Conv2d blocks followed with a max

pooling layer. It stacks 5 hidden layers aside from the input layer with 1-1 and 2×

of 2-1 set of convolution blocks-max pooling. The 2D convolution layers use a He-

Uniform kernel initializer [52]. The first hidden layer has 12 convolution filters used

in the receptive field with 12×12 kernel size and 1×1 stride, second and third 5×5

kernel size and the last two, double the convolution filters with 3×3 kernel size. At

the output a global average pooling layers is used before a densely connected layer

with 64 nodes and a dropout with 20% drop rate.

The hyperparameter values above were set after a hyperparameter tuning pro-

cess on variable set of values in convolution filters, kernel size, hidden-repetition

layers and learning rates. For the optimizers Adam[36] was selected among SGD,

RMSprop [68], Adagrad [38], Nadam [39] and Adadelta [37].

Concerning VGG [45] architecture, we have initialised the network with ima-

genet [46] pre-trained weights, removed the last three fully-connected hidden layers

and added i) a global average pooling layer, ii) a batch normalization layer and iii)

a dense layer with a softmax activation function on two outputs. We froze the pre-

trained part of the network and trained the new layers with 2.050 parameters using

a mini-batch size of 8 samples with Adam optimizer and learning rate= 0.0001.

The classifiers have been trained in varying number of epochs until convergence

with the following regularization techniques. We have used early stopping, monitor-

ing the validation loss for 6 consecutive epochs keeping the best model, to prevent

overfitting. In addition we have applied a learning rate decay technique, monitoring

for 0.0001 delta difference in validation loss for 5 consecutive epochs. When model
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fitting reaches a learning plateau and the model validation loss does not improve, it

reduces the learning rate by a factor of ×0.1. Worthy noticing we shuffled training

set using a buffer size three times the size of its cardinality. Images are standardized

before the input using the following standardization1.

The experimental framework has been implemented with Tensorflow 2.3, using

tf.data.Dataset2 API for data loading and tf.keras.layers3 API to build the neu-

ral network architectures. Though determinism in deep learning cannot be set

alone with static seeds, thus we ensured the reproducibility of the experiments with

NVIDIA’s determinism framework [69]. Experiments conducted on a workstation

with Intel R© i7 920 3.0GHz, 16Gb RAM and an NVIDIA R© GTX 1650 4Gb.

5.2 Evaluation Metrics

Our case study falls into a supervised binary classification task, where categorical

labels y1, . . . , yn are assigned as predefined classes(bokeh-no bokeh or shallow DoF-

deep DoF) to a corresponded input sample x1, . . . , xn which fed as training examples

in a classifier.

The correctness of a binary classifier can be evaluated by computing the number

of correctly recognized examples with bokeh(true positives), the number of correctly

recognized examples without bokeh(true negative), the number of examples that

were incorrectly assigned as bokeh(false positive) and the examples that should have

assigned as without bokeh but failed(false negatives) [70]. The above, synthesize a

confusion matrix that is shown in Table 5.1, with above categorical labels.

Predicted

Bokeh No-Bokeh

A
ct

u
al Bokeh TP FN

No-Bokeh FP TN

Table 5.1: Confusion Matrix

Classifier performance were measured with the following metrics:

1https://www.tensorflow.org/api docs/python/tf/image/per image standardization
2https://www.tensorflow.org/api docs/python/tf/data/Dataset
3https://www.tensorflow.org/api docs/python/tf/keras/layers
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• Accuracy, the overall effectiveness of the classifier. Acc = tp+tn
tp+tn+fp+fn

• F1 score in macro average of the individual class F1 scores. F1 score is the

harmonic mean of recall and precision per class and represents a normalized

score for general classification performance. “Macro average” means that F1

is computed per class and then avaraging them F1score = 2∗(precision∗recall)
precision+recall

→
1
N

∑N
i=0 F1scorei

• Loss, the objective outcome of the loss function L (categorical cross-entropy),

that indicates the classifier’s prediction uncertainty.

5.3 Passive Learning - Results

In the following subsections 5.3.1, 5.3.2 we present the evaluation results of the

classifier’s performance trained on EXIF and DoF based data sets respectively. As

expected the accuracy and F1 score are maximised using the DoF manually anno-

tated data set. A discussion is followed along with a brief description introduction

in Section 5.4.

5.3.1 EXIF dataset - Results

This Section presents the results for individual classifiers trained with EXIF data

sets under three different image orientations. As we have discussed in Section 4.6.1,

it would be a surprise to observe significant performance from any type of classifier.

Architecture Dataset Train/Test Accuracy Train/Test Loss Train/Test F1 Epochs/Time

DenseNet

Horizontal 62.3/59.2 0.65/0.65 0.62/0.59 48/18s

Vertical 60.7/59.1 66/66.8 60/58.8 38/18s

Square 63.6/63.5 0.64/0.64 63.5/63.5 50/100s

SimpleNet

Horizontal 60.6/58.4 0.66/0.67 60/58 16/65s

Vertical 57.3/57.1 0.67/0.67 57.3/57.1 13/60s

Square 61/62.9 65.6/64.6 60/62 16/382s

VGG16

Horizontal 66.9/63.8 60.6/66.3 66.9/63.8 29/144s

Vertical 65.5/59.4 0.61/0.70 65.5/59.4 25/134s

Square 66/65.1 0.61/0.63 66/65 20/790s

Table 5.2: Recorder best performance results across all classifiers trained with EXIF.
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Figure 5.1: Training/Validation accuracy history for the total of classifiers trained with
EXIF square data set: (a) DenseNet, (b) SimpleNet, (c) VGG16

Figure 5.2: Confusion matrix for the total of classifiers trained with EXIF square data
set: (a) DenseNet, (b) SimpleNet, (c) VGG16

The results are presented in Table 5.2 and illustrate the current classifier, the

used data set, evaluation metrics, number of epochs and the time in seconds is taken

for a complete forward pass.

Concerning the winner classifier, that was the VGG16 which scored 66% in train-

ing set and 65.1% in testing set. It has been also observed that squared dataset offers

even +4% accuracy in comparison with any other dataset. However, this gain is not

clear to us if it is due the larger volume of samples or the combined diversity of

pictures.

Figure 5.1 visualise training/validation history for the total of classifiers under

the square dataset. It is observed that VGG16 and SimpleNet are overfitting which

can be mitigated with a more complex topology. On the other hand, DenseNet

presents a regular training curve for a baseline model with minor overfitting.

After a number of experiments, evaluating diverse classifiers under different data

set versions, the overall performance is noted within the same range. Since any of the

classifiers/data sets does not stand out, it is obvious to us that any hyperparameter

tuning cannot can offer a significant boost, since the data set’s power is limited.

- 75 -



5.3 : Passive Learning - Results

This led us to generate a human annotated dataset, with categorical labels for

shallow/deep depth of field in order to utilize it and train the classifiers. In the

following Section we present the results in training and evaluation of DoF data set

which substantially improves the performance.

5.3.2 DoF (annotated) data set - Results

This Section presents the results for all the classifiers trained with DoF dataset.

Table 5.3 illustrates the performance metrics across the classifiers while Figures 5.3-

5.4 visualise the training and validation fitting curves in training history. Concerning

SimpleNet and DenseNet networks, we tuned the models and found the sweet spot,

to minimize overfitting as much as possible. It is clear that VGG16 is again the

winner model, but it’s worth mentioning that DenseNet based model performs quite

close, given the fact that has less capacity, trained from scratch and is 83% faster

in forward pass during training.

Architecture Train/Test Accuracy Train/Test Loss Train/Test F1 Epochs/Time

DenseNet 88.3/80.0 0.28/0.49 88.3/79.9 61/2s

SimpleNet 79.4/77.7 0.45/0.48 79.4/77.7 253/6s

VGG16 94.4/84.1 0.19/0.33 94.4/84.0 75/12s

Table 5.3: Recorder best performance results across all classifiers trained with
DoF(annotated) data set.

(a) (b) (c)

Figure 5.3: Training/Validation accuracy history for the total of classifiers trained with
DoF data set: (a) DenseNet, (b) SimpleNet, (c) VGG16

5.3.3 Discussion

Nevertheless the highest performed classifier, the classification problem between an

image with bokeh and no bokeh seems that were successfully approached and tackled
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Figure 5.4: Training/Validation loss history for the total of classifiers trained with DoF
data set: (a) DenseNet, (b) SimpleNet, (c) VGG16

Figure 5.5: Training/Validation F1-score history for the total of classifiers trained with
DoF data set: (a) DenseNet, (b) SimpleNet, (c) VGG16

with a manually annotated dataset. With DoF data set we trained a classifier more

effectively, though it was not a trivial task since most of previous works were based

solely on EXIF metadata [71], [65].

The performance of classifiers trained with DoF data set, outperforms the same

architectures trained with almost 10× more data. In Figures 5.4-5.6 we can observe

that DenseNet model shows smoother fitting and validation loss curves. We observe

something similar in VGG16 but with more overfitting, whereas fitting curve for

validation set in SimpleNet is quite unstable.

Concerning confusion matrices, VGG16 records the less false negatives than oth-

ers, whereas DenseNet has almost the same number of false positives as VGG16.

Motivated by the model’s performance regarding a rather limited amount of

annotated samples, given the annotation process is not trivial and essential pho-

tography perception is required, in the next section we present an active learning

framework that aims to reduce the annotation effort in unlabelled samples and si-

multaneously maximize classification performance. The active learning framework

utilises i) the DoF data set as bootstrap set and ii) sets as an empirical baseline,

the performance of the best report classifiers of this section.
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Figure 5.6: Confusion matrix for the total of classifiers trained with DoF data set: (a)
DenseNet, (b) SimpleNet, (c) VGG16

5.4 Active Learning - Experimental Outline

In the previous sections, we presented a variety of trained classifiers on data sets

with different labelling acquisition methodologies. The winner classifier achieved

the highest performance and at the same time faster to train and more flexible were

identified the DenseNet model based classifier trained on DoF data set.

Demonstrating the aforementioned strategies in Section 5.1, we will provide a

complete deep active learning (DAL) methodology in the following sets of experi-

ments divided into three categories as follows:

• Active learning indicator, a method that will evaluate the feasibility of an

active learning scenario with a selection strategy.

• A/B test, run an active learning experiment with variable number of labelled

batches.

• Simulating active learning, evaluate the classification performance of two

deep learning architectures in randomly and actively selected samples acquired

from the same annotated data pool in variable number of batches and in

incremental training.

5.5 Active learning indicator

When querying an active learner with unlabelled instances, we ask which samples

are going to get annotated next. Those samples are selected based on i) an active
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learning query setting and ii) a query strategy method.

Before applying an active learning strategy, we should assess the “passive”

learned classifier to fulfill certain guarantees.

1. a classifier with relative competent baseline performance will play the role of

an active learner.

2. an evaluative measurement that will show the classifier’s ability to identify

the informativeness in potentially labelled samples, that eventually have the

higher performance impact when they get included to the training set rather

than select them randomly.

Before formulating an active learning algorithm, we will conduct a procedure

to measure the classifier’s ability to identify the most informative and potentially

labelled samples in order to determine an active learning strategy.

So far, in Section 5.3.2 we developed a DenseNet based model, trained on 560/140

images used for training and validation and achieved 80% accuracy on DoF dataset,

using random sampling - requiring a photography expertise to obtain the labels.

In this section, we conduct a procedure that utilises the trained densenet model

as an active learner C, to produce the posterior probabilities from the softmax output

on the poolU containing 12312 unlabelled samples with horizontal images. Next,

we create poolLrnd, by randomly selecting and annotating 1000 balanced samples,

from the unlabelled poolU and perform the same procedure.

The calculated posteriors were sorted and mapped into five posterior probability

bins, as shown in Table 5.4.

Bins Posterior probability range

Bin1 <60%)

Bin2 [60%-70%)

Bin3 [70%-80%)

Bin4 [80%-90%)

Bin5 [90%-100%]

Table 5.4: Posterior probability bins for each corresponded prediction probability range

The cardinality of calculated probabilities from poolU and poolLrnd are illus-
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trated in Figures 5.7, 5.8. We can observe that both figures follow the same dis-

tribution, a good sign that randomly picked samples are independent and identical

distributed(i.i.d).

Figure 5.7: Cardinality of calculated posterior probabilities clustered in 5 probability
bins for 12312 unlabelled samples.

Figure 5.8: Cardinality of calculated posterior probabilities clustered in 5 bins for 1000
randomly selected samples.

To measure the informativeness measure, from the annotated poolLrnd we cal-

culated the accuracy and true positive rate(TPR), for each confidence bin. Fig-

ures 5.9, 5.10 illustrate the results for accuracy and TPR accordingly.

Figure 5.9: Measured accuracy for each posterior probability confidence bin for 1000
randomly selected samples.
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Figure 5.10: Measure True Positive Rate(TPR) for each posterior probability confidence
bin in 1000 randomly selected samples.

Algorithm 2 describes the aforementioned process.

Algorithm 2 Active Learning Indicator

1: procedure Informativeness Measurement
2: Create a poolU of unlabelled samples
3: Randomly select i.i.d samples and create a data set in poolLrnd
4: Query poolLrnd on active learner C
5: Obtain posterior probabilities with softmax
6: Cluster posterior probabilities in 5 probability bins [,.6), [.6,.7), [.7,.8), [.8,.9),

[.9,.1]
7: Obtain labels for poolLrnd
8: Measure accuracy and TPR for each probability bin
9: end procedure

Studying figures 5.9, 5.10 we reach to the following conclusion concerning in-

formativeness measurement on the annotated randomly selected pool. It is clear

that accuracy and TPR shows and incremental performance as the confidence of

the classifier increases. More specifically Bin1 is 49% accurate while Bin5 achieves

89.4% accuracy. Concerning TPR, is measured in the same neighborhood.

For the most uncertain unlabelled samples, although their number is smaller

than of high confident, it is reasonable to ask for queries from the active learner,

send them for annotation and return them to the training set, as they can contribute

to a greater impact on the classifier improving the decision boundary.

The measurements above can justify classifier’s discrimination ability to cor-

rectly classify an unknown pool from the same distribution, where high-confidence

unlabelled instances score a posterior probability above ∼ 90%, meaning that these

instances are close to the learned samples in the CNN’s feature space.
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Thus, pseudo labelling high confident inferences will induce a 10% of error in

training set, is a reasonable data augmentation in weakly-supervised fashion follow-

ing a CEAL [64] practice.

The DenseNet based classifier trained on DoF dataset, shows that can be used as

an active learner to bootstrap an active learning setting as it is capable to correctly

classify high confident samples while the low confident ones are misclassified, based

on the groundtruth. We can safely assume, that choosing samples in an active

selection fashion, by annotating the most uncertain ones is highly possible to achieve

higher performance rates with less annotation budget.

In the next section we perform an A/B test using the baseline classifier as an

active learner and DoF data set as a bootstrap set to initiate the process.
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5.6 A/B test

In this section, we conduct an A/B test, demonstrating the use of an deep active

learning setting along with a regular passive learner. Our objective is to apply an

active learning framework applying uncertainty sapling(US), simultaneously with a

passive learning approach, evaluating both methods. The motivation is to answer

to question if a data-driven selection sample approach can improve the classification

performance with less annotated data over a random/regular selection with passive

learning. Thus we form a hypothesis in order to observe the potential differences

between the two approaches.

The A/B experiment is formed as follows:

• Use DoF data set as bootstrap set and baseline classifier as active learner to

initiate the process.

• Collect a randomly selected data set as regular and obtain labels from a human

annotator.

• Select active learning pool based setting and uncertainty sampling approach

combined with a cost effective selection scheme strategy(pseudolabelling).

• Perform a single active learning round, send the instances that active learner

indicated as less confident/more informative and obtain labels from a human

annotator.

• Create training pools with random-PoolA and actively selected-PoolB sam-

ples.

• Perform two individual experiments for PoolA & PoolB, in distinct training

rounds, using a varying number of batched instances transferred from the pool

to DoF training/validation sets without updating the model’s weights and bias,

train from scratch re-assess the experiment on DoF testing set.

• Plot learning curves of measured accuracies for every learning step.
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To begin with, we will use the baseline densenet model as the active learner C

once. The DoF training/validation set will be used as bootstrap set to initiate the

process and DoF testing set with the identical 500 test samples as in Section 5.1 to

evaluate the model in each training round.

The notion behind the creation of data pools is to evaluate randomly and actively

selected sets using uncertainty sampling and cost effective labelling(pseudolabel)

strategies. Concerning cost effective annotation methodology, in order to not violate

the statistical properties of the experiment, a certain number of high confident in-

stances will used in both pools and will be identical using different groundtruth(real

and pseudolabelled).

5.6.1 Random Selection - Pool A

To obtain a randomly selected pool we utilized pool XU
random ⊆ XU - XL

bootstrap, the

same as generated in Section 5.5.

The majority of samples, almost half of them are belong to the most confident

cluster bin5, whereas the rest are distributed to the other clusters. Using δ =

[90%, 100%), we selected k = 200 samples from bin5 named after RA1 and obtained

labels. Same samples will be used with pseudolabels for active selected pool. The

rest 800 samples were annotated and named after RS1, RS1 ∪RA1 = XL
random.

To form a balanced pool set, we undersampled RS1 from the majority class and

generated a pool consisted of 720 samples named after RS1-b, which contains samples

for all confidence bins. Finally RA1 which contain only high confident samples, is

merged on top of RS1-b creating PoolA, as depicted in Figure 5.11. Algorithm 3

describes the process of randomly selected PoolA generation. PoolA data set is

formulated as follows:

RA1 ⊆ XL
random,RA1 6= RS1,RS1-b ⊆ RS1 (5.1)

PoolA = RS1-b ∪ RA1 (5.2)
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PoolA ⊆ XL
random (5.3)

Figure 5.11: Randomly selected PoolA structure and distribution of posterior probabil-
ities clustered in 5 bins for 720+200 randomly selected and balanced samples.

Algorithm 3 Random PoolA

Input: active learner C, Random selection Xrnd, pseudolabel confidence threshold
δ

1: procedure Create random PoolA
2: Obtain labels for Xrnd

3: Query Xrnd → C
4: Cluster Xrnd posteriors and apply δ
5: Holdout and create a high confident batch RA1
6: PoolA = Xrnd + RA1
7: end procedure

5.6.2 Active Selection - Pool B

The rest of total 11318 unlabelled samples XU
a , leaving out bootstrap XL

bootstrap and

XL
PoolA, are defined as XU

a = XU - XL
bootstrap - XL

PoolA.

XU
a is queried to the active learner to compute the prediction uncertainty given

an informativeness score si ∈ [0.5, 1] for every sample. Informativeness is computed

using the cross-entropy of softmax predictions keeping the dominant prediction.

Scored instances are ranked in ascending order based on their computed uncertainty

and are clustered in five prediction probability bins.
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Clustered instances are prefiltered on the most uncertain by selecting δk ≤ K

where δ = [50%, 60%) probabilities, k the selected instances in δ and K all uncer-

tainty measured instances. Thus bin1 = δk, is send to human oracle to obtain their

labels using membership query synthesis.

More specifically we have actively selected and annotated a pool of 720 equally

balanced samples from bin1, and named after AS1, containing the most uncertain

predicted samples, ranked in ascending order.

RA1 pool will be utilized with pseudolabels obtained from query stage using

the dominant prediction and pass it to an argmax as Eq 5.7 denotes.

ŷ = argmaxyP (ŷ|x; θ) (5.4)

Finally the pseudolabelled RA1 pool named after RA1-aug is merged on top

of AS1 creating PoolB. Algorithm 4 describes the process we followed to gener-

ate actively selected PoolB. PoolB as depicted in Figure 5.12 and is formulated as

follows:

RA1-aug ≈ RA1,AS1 ⊆ XU
a (5.5)

PoolB = RA1-aug ∪ AS1 (5.6)

Figure 5.12: Actively selected PoolB structure and distribution of posterior probabilities
clustered in 5 bins for 720 actively selected and balanced samples + 200 high confident
pseudolabelled samples.
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Algorithm 4 Active PoolB

Input: active learner C, XU , RA1
1: procedure Create active selected PoolB
2: Query unlabelled set XU → C
3: Cluster XU posteriors
4: Obtain labels for the lowest probability cluster
5: Rank labelled samples in ascending order by probability → RS1
6: Pseudolabel RA1 using the predicted class inferred from queries, as

groundtruth → RA1− aug
7: poolB = RS1 + RA1− aug(ranked)
8: end procedure

5.6.3 Experimental setup

To initiate the process we used the training/validation DoF dataset, similarly to

Section 5.3.2, to create the active learner.

In Section 3.11.3, we elaborate on the batch-mode learning where for every learn-

ing cycle, data is systematically added in chunks back to the bootstrap set. Even-

tually when a learning cycle completes a new classifier is trained.

In each training cycle for both randomly/actively selected samples, the classifier

is evaluated on the test set of DoF data set comprised of 500 samples. The test set

is not queried or augmented and is kept intact.

Performance results are drawn in learning curves, for every individual number

of annotated instances picked from random/active pool.

For both experiments random and active, we applied a varying sequential selec-

tion from 100-920 samples per learning round. Every selection round is increased

by 100 samples except from the last one which adds 120. The selected samples are

added to the bootstrap(DoF) set in training/validation splits by 80/20 ratio. Each

learning round picks the next batch from the ranked pool and adds to the DoF set,

always including the previously picked batches. Thus a new classifier is produced

and evaluated in total of 9 learning rounds until the data pool is depleted.

Concerning random selection, samples are selected randomly from PoolA. In ac-

tive selection, the active learner is queried only once on PoolB, before the experimen-

tal process starts, to rank the actively selected pool, as described in Section 5.6.2.
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For each learning cycle, new samples are obtained directly from the pool and nei-

ther the active learner is updated from a new one or human annotator intervenes

in the process. The samples are picked based their uncertainty score in ascending

probability order from the most to the less uncertain prediction.

We measure the classification accuracy and report the mean values for 3 runs

with 3 different random seeds. Throughout the experiments, we use the same hy-

perparameters as the baseline model, since active learner is not updated.

Algorithm 5 Pseudo-algorithm of A/B training process.

Input: DoF bootstrap set X, active learner C, PoolA, PoolB, batch-size k, random
seed[0,10,100] seedsrnd

1: procedure A/B training process
2: batch-size=100, samples that will be picked next
3: for pool in [PoolA, PoolB] do
4: for rs in seedsrnd do
5: apply rs
6: repeat
7: Pick the k from pool and append it to X, Xnew = X + k
8: Train classifier on new Xnew until convergence
9: Evaluate on DoF test set

10: until pool is depleted
11: end for
12: end for
13: end procedure

5.6.4 Results - Discussion

Figure 5.13 shows Accuracy, F1 and Loss for two different experiments using the

same deep learning classifier. We have evaluated the performance of randomly and

actively selected data pools, on the DoF testing set, using pool-based active learning

strategy and selecting the next batch based on uncertainty sampling. Moreover the

last two batches, concerning 800 and 920 samples drawn from PoolB include the

most confident queries that were pseudolabelled using the dominant predicted class

as groundtruth.

It is observed that training the classifier with actively selected set, outperforms

random selection, in the range of low confident posterior samples. The maximum

improvement for actively selected set is measured in 4.7% over the baseline model’s
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(a)

(b)

Figure 5.13: Experimental results for measured (a) Accuracy/F1-macro, (b) Loss in A/B
test. Each chart is the mean of 3 runs with different random seeds, with the deviation of
maximum and minimum measured values.

performance in the sixth batch. The maximum deviation for the blue chart is

measured in 2% above the red one during low confident batch selections.

On the other hand, when high confident batches were selected and pseudolabeled,

the performance in active selection is poor and even lower from the baseline model.

In addition, we have observed severe underfitting in those two particular batches

when training the classifier actively.

Figures 5.14, 5.15, visualise the confusion matrices for the best recorded run in

100 and 700 extra annotated samples, for random and active selection respectively.

We can observe in the former, that there are two more true positives and two less

false positives for actively selected. In the latter, for the total of merged annotations,

actively selected are more accurate to detect photos with bokeh while make less

mistakes for detected the bokeh class. Finally both of them, record the same number
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(a) (b)

Figure 5.14: Confusion matrices of the best recorded run for 100 extra annotated samples
in A/B test: (a) random, (b) active

(a) (b)

Figure 5.15: Confusion matrices of the best recorded run for 700 extra annotated samples
in A/B test: (a) random, (b) active.

of false and true negatives.

In terms of an A/B test we conducted a simple experiment, emphasized on

the collection strategy and training of an active classifier in order to evaluate its

performance versus a passively trained classifier with the same hyperparameters.

Regarding the results, we have observed a clear but not a big difference in active

selection over the random while the pseudolabelled groundtruth did not contributed

at all in the overall performance. Also the poor performance can be also justified as

those two particular batches are the less informative given the active learner while

the induced noise in pseudolabelled groundtruth is ∼ 10%.

There are two take-aways after conducted the A/B test. The first one justifies the

importance of informativeness in queried samples and the power of their contribution

when merging them to the bootstrap set. The second one relies on the fact that
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we haven’t updated the active learner during the experiment in order to obtain new

queries from the “unlabelled” set, instead we used a varying number of batches and

we have asked only once the baseline active learner to obtain the informativeness

values and rank the samples based on their LC.

In the following section, we present a simulation between random and active

selection, in a larger scale set of experiments concerning two classifiers (DenseNet

and VGG16), for two different active learning strategies and settings.

5.7 Simulating active learning

In this section we present the last set of experiments where we simulate an active

learning real-world scenario, using two different classifiers, one trained from scratch

- DenseNet model, and a pretrained one - VGG16 model, as described in Section 5.1.

For the simulation, we created a new setting of “cached” annotations. A closed

sampling pool comprises from random (uniformly) and actively selected samples,

with “cached” annotations obtained once at the bootstrap step, similarly to the

methodology applied in the A/B test.

In Section 3.11.6, we introduced a simulation algorithm that utilises a pre-

annotated pool that bypasses the process of query and annotation, in order to acquire

the next batch and return it to the training set during active learning instantly.

Following, we describe the active learning simulation framework which is imple-

mented in a fully automated pipeline.

In order to simulate an active learning pipeline, we have employed the DoF data

set, used as a bootstrap set and trained a classifier used as active learner to initiate

the simulation process, as we performed in previous section.

It is called a simulation because the “queried” samples are the same for both

random and active learning experiments as part of the same closed data pool. We

have created a pool of 2000 pre-annotated samples comprised from randomly and

actively selected samples. Concerning randomly selected subset, we have used the

total of 1000 randomly, equally balanced annotated samples XL
random, while for the

actively selected, we have extended the 780 annotated samples from XL
a with another
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220 samples, in total of 1000 equally balanced samples.

The extra 220 actively selected samples have obtained from the rest of unlabelled

poolU depicted in Figure 5.7. 50 instances have obtained from bin1 while the rest

170 from bin2. Figure 5.16, depicted a map of the horizontal dataset given the ratio

of the unlabelled samples opposed to the annotated images, namely the DoF dataset

(training/validation/testing) and active learning pool (randomly/actively selected).

Figure 5.16: Horizontal data set map

The distribution of cardinality in actively selected subset contained in the simu-

lation pool is illustrated in Figure 5.17. Figures 5.18, 5.19 show the distribution of

cardinality and accuracy from the simulation pool after a single query to DenseNet

and VGG16 active learner respectively. We can observe that both classifiers per-

form similarly in terms of accuracy in individual confidence bins, but there is quite

difference in cardinality.

A key point to mention is that we have selected the data solely on queries sent

to DenseNet active learner and we also trained VGG16 with the already selected

data, a similar method used in [60]. The assumption we made is that the simulation

is agnostic to the label acquisition since our goal is to implement a fully automated

active learning pipeline.

Finally, the pool dataset used for the simulation is comprised of 2000 annotated

samples and is considered as new “unknown” data set for the simulation process.

The notion behind the simulation mode is to contradict random and active selec-

tion, running in parallel. Since a new batch represents a query to the active learner,
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Figure 5.17: Distribution of cardinalities in actively selected samples in prediction con-
fidence bins for actively selected sub pool (1000 samples)

(a) (b)

Figure 5.18: Distribution of actively selected samples in prediction confidence bins from
DenseNet active learner: (a) cardinality (b) accuracy

we have already performed the query and annotation stage. Every next actively

selected batch chosen by the current selection strategy, is added to the DoF labeled

data set and the process is repeated until the pool is exhausted.

5.7.1 Experimental setup

Reviewing the literature, to the best of our knowledge there isn’t a standard method-

ology for evaluating active learning algorithms with neural networks [59]. Our goal

is to detect the most budget friendly and less time consuming method to obtain

annotations. Thus, we are rather interested to fit the training set as well as possible

by detecting those batches that will: a) maximise the classification accuracy with

the less extra labelled examples, b) achieve the maximum overall performance, than

creating a binary classifier with generalization in mind.
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(a) (b)

Figure 5.19: Distribution of actively selected samples in prediction confidence bins from
VGG16 active learner: (a) cardinality (b) accuracy

A single experiment for each active learning algorithm requires that the active

learner is already queried on the experimental pool and responded with the LC

measure in order to get the samples ranked in the pool. In every intermediate step

we train the model until convergence, and save the weights of the epoch with the

best validation accuracy. Finally, the test accuracy, f1-score and loss upon DoF

test set, of the best model are recorded. Performance results are drawn in curves,

given the number of “queried”-annotated instances. The training process is set

under a deterministic framework as described in Section 5.1, meaning that results

are completely reproducible for the entire set of experiments, if the same seeds

and hyperparameters are set. However, training neural networks is still a stochastic

process and in order to further reduce the variance from the results, each experiment

ran 3 times, each one with a different seed of 0, 10 and 100.

Given the above and based on the methodologies and results of previous sections

we end up with the following algorithms:

• Random: a batch is chosen uniformly as in a regular “passive” supervised

experiment.

• Single Query Active Learning(SQAL): Query the active learner once at the

bootstrap stage, calculate the LC and use the same rank to pick the next

batch throughout the entire experiment, until the pool is exhausted.

• Single Query Active Learning(SQAL) + CEAL: For the high confident >90%

based on LC predicted samples, use the predicted class as groundtruth.

- 94 -



Chapter 5 : Experiments & Results

• Active Learning Loop(ALL): Incrementally train and update the active learner

parameters(weights and biases of the neural network) with the best recorded

model of the new batch. Query the remaining samples of the pool and update

their rank based on the LC. Pick the next batch upon the new rank.

• Active Learning Loop(ALL) + CEAL: For the high confident >90% based on

LC predicted samples, use the predicted class as groundtruth from the previous

best recorded model.

The process for all the aforementioned active algorithms is visualised in Fig-

ures 5.20, 5.21.

Figure 5.20: Active Learning and CEAL single learning algorithm.

5.7.2 Results - Performance

For the simulation we evaluated two CNN based classifiers, a DenseNet trained

from scratch and a pretrained VGG16, on 5 different algorithms. We measured the

classification accuracy, F1-score macro and loss and reported the mean values from
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Figure 5.21: Active learning and CEAL incrementally learning algorithm loop.

3 distinct runs each one with a unique random seed, on the best performed model

in every experiment.

Figures 5.22, 5.23 visualise the measured accuracy/F1-score performance and

loss for DenseNet and VGG16 respectively, for all algorithms.

Bellow the charts, the “ruler” with confidence bin margins, is related only with

SQAL algorithm and denotes the corresponded confidence bin that the current pool

batch participates. On the other hand, concerning ALL algorithm the equivalent

batch participation is shown in Figures 5.27, 5.28.

Concerning DenseNet, a clear initial observation on the results is that almost

until the final batch of the lowest confidence bin1 both active learning algorithms

outperform random sampling. Concerning ALL algorithm, it shows a more consis-

tent performance and dominates over the random selection whereas SQAL does not

perform well when more confident observations are included in dataset.
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(a)

(b)

Figure 5.22: Accuracy/F1 plots of the different algorithms for the DoF active learning
experiments. The results are averaged and the coloured area is the performance deviations
from the minimum to the maximum recorded value: (a) DenseNet, (b) VGG16

As we have mentioned in Section 5.5 we are dealing with the rarity of low confi-

dence samples due to the over confident prediction nature of neural networks. This

seems that it could be a beneficial factor for DenseNet model as the performance

for ALL algorithm is initially maximised in 6th batch (600 queried/annotated sam-

ples) and peaks at the 15th batch with no significant difference. In addition, the

rate in performed accuracy until the 4th batch, is significantly higher that the ran-

dom selection and SQAL, another reason to consider that given a larger volume of
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borderline queries ALL method have potential for even faster performance increase.

On the other hand, random sampling outperforms the other two at the 18th

batch, with almost all the available annotated instances, participating in the training

set.

In parallel, the performance for CEAL experiments cannot be left unnoticed. In

SQAL, CEAL (green-dotted) outperforms the same algorithm (green-solid) with the

real groundtruth while it performs similarly to random selection, given that almost

10% of the pseudo-labelled instances are false.

Concerning te SQAL algorithm, it is worth mentioning that as more confident

samples are added in the training set, approximately from 1000 samples and above,

model underfits on training set, with almost 10% deviation between training and

validation accuracy, meaning that the model complexity is inadequate to fit the data

properly. In batches 1000-1200, it completely fails to fit and its performance is poor.

This effect though is completely absent in ALL algorithm and fitting were regular

in most of the experiments with tolerant amount of overfit or any overfit at all.

Though, the option of tuning the parameters when a new batch arrives, is not

possible for a couple of reasons. We focus in a data-driven performance improve-

ment method while during a fully automated process hyperparameter tuning is not

possible.

In experiments with pretrained VGG16 model in Figure 5.22(b), 5.23(b), an

initial observation tells that all algorithms increase their performance as batches

progress, though there isn’t a consistent winner. For the most of batches random

selection outperforms the others.

SQAL is the most inconsistent but it peaks higher than other settings in the 14th

batch. In addition, an unexpected behavior can be observed in SQAL + CEAL set-

ting, where it clearly outperforms the rest with almost with +5% accuracy deviation

in some cases. It is an obvious domination for CEAL algorithm when pseudolabelling

the groundtruth with the predicted classes, in instances with > 90% confidence from

VGG16 active learner.

Figure 5.24 illustrates the performed mean values for accuracy/F1-score and
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(a)

(b)

Figure 5.23: Loss of the different algorithms for the DoF active learning experiments.
The results are averaged and the coloured area is the standard deviations: (a) DenseNet,
(b) VGG16

loss among all algorithms and classifiers from the three runs, where circle points

represent DenseNet experiments and square points VGG16. Dotted charts visualise

only the CEAL settings for both classifiers.

Comparing the experiments in total, VGG16 outperforms DenseNet in recorded

accuracy/F1-score in most of the algorithms. The winner setting is the SQAL+CEAL

algorithm where outperforms all the others in the final batch, without any substan-

tial gain from same classifier in SQAL in 14th batch.
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(a)

(b)

Figure 5.24: Measured mean accuracy/f1-score and loss for all experiments in Random,
Active and CEAL for single and loop settings: (a) Accuracy/F1-score, (b) Loss

Table 5.5 shows the recorded performance in random and active settings. More

specifically, we provide the maximum recorded value for k10 and k20 samples and

minimum k20 samples. As we mentioned in a previous section, our goal is to find

the setting which performs higher minimizing the number of queries to the ora-

cle. Our findings for the experiments show that within the first 10 batches (1000

annotations), the highest accuracy is 87% for random selection using VGG16 archi-

tecture. Nevertheless, in 6th batch, the ALL setting for both classifiers performs

quite close in 86.6% (VGG16), 86.4% (DenseNet) and given the extra budget of
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400 annotation we can assume that the difference is not substantial. Given all the

available annotated k20 batches the highest recorded accuracy is 90.2%, performed

by SQAL setting with VGG16 model with 14 annotated batches. Given the perfor-

mance margin, the difference in the annotation budget can be considered rational

and in performance substantial. In addition given the architecture properties of

VGG16 which has almost 3850× the parameters of DenseNet model configuration

of this work, this comes with the tradeoff of the time needed to train the network

even though we have freezed the pretrained module.

Setting - Model Maximum-k10 Maximum-20 Minimum-k20

Random
DenseNet 84.8/10 87.1/18 80/5

VGG16 87/10 88/11 81/2

Active

SQAL - DenseNet 85.6/10 87.2/18 55/12

SQAL - VGG16 86/6 90.2/14 79.8/3

SQAL + CEAL - DenseNet - 84.7/17 82.2/15

SQAL + CEAL - VGG16 - 88.8/20 85.8

ALL - DenseNet 86.4/6 86.7/15 79.9/1

ALL - VGG16 86.6/6 86.6/6 81/1

ALL + CEAL - DenseNet - 85.7/17 83.4/16

ALL + CEAL - VGG16 - 86.8/17 84/18

Table 5.5: Maximum and minimum recorded performance for k10 and k20 batch for all
experiments.

(a) (b) (c)

Figure 5.25: Confusion matrices of the top k10 best recorded runs in simulation experi-
ments: (a) random-vgg16, (b) ALL-VGG16, (c) ALL-DenseNet.

5.7.3 Results - Confidence Participation

The key difference between SQAL and ALL algorithms is that for the latter the

active learner is trained incrementally and is updated during the current run, the
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(a) (b) (c)

Figure 5.26: Confusion matrices of the top k20 best recorded runs in simulation experi-
ments: (a) random-vgg16, (b) SQAL-VGG16, (c) SQAL-CEAL-VGG16.

remaining samples in the pool are re-queried and consequently their rank is updated

based on prediction confidence. Then the next batch is picked and so forth.

A family of plots relative with the confidence bin sample participation concerning

ALL algorithm is provided in Figures 5.27- 5.30. The sample participation heatmap

per bin, is equivalent to the “ruler” in Figure 5.22 and shows and percentage of

samples per confidence bin, participating in the current selection from simulation

data pool.

It would be interesting to compare the margins in confidence bins between the two

methods. Figure 5.27 visualise the participation for the three individual experiments

per seed and in comparison with Figure 5.22, we can observe that the margins are

quite different. For example in SQAL algorithm bin1 participates until the 9th

batch, whereas in ALL is depleted in 6th.

Similar condition is observed for the most confident bin5, where in SQAL experi-

ments starts from the 15th batch while in ALL starts from 17th and 18th depending

the run. Intuitively this can be justified by the experiment progression where in

every training cycle, a new classifier is generated on a pool of queried samples where

the classification boundary is most uncertain. As the algorithm learns to fit the less

confident samples, classification boundary is improved and so forth active learner

produces becomes more certain when queried on the remaining samples.

In Figures 5.29, 5.30, heatmaps of CEAL algorithms show a minor change be-

tween the non CEAL method. It can be assumed that pseudolabelling does not
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contribute negatively for the next batch estimation.

(a) (b) (c)

Figure 5.27: DenseNet - ALL - Confidence bin participation per actively selected batch
in training round: (a) seed=0, (b) seed=10, (c) seed=100.

(a) (b) (c)

Figure 5.28: VGG16 - ALL - Confidence bin participation per actively selected batch in
training round: (a) seed=0, (b) seed=10, (c) seed=100.

In model level comparison between DenseNet and VGG16 in ALL algorithm, it

is clear that the latter shows more certainty when querying the latest batches. That

is probably due to the higher expressivity based on the architecture properties of

the network.

5.7.4 Results - Boxplot Distributions

In this final section of results, we compare the deviation in performed accuracy and

F1-score, between algorithms and neural network architectures.
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(a) (b) (c)

Figure 5.29: DenseNet - ALL + CEAL - Confidence bin participation per actively
selected batch in training round: (a) seed=0, (b) seed=10, (c) seed=100.

(a) (b) (c)

Figure 5.30: VGG16 - ALL + CEAL - Confidence bin participation per actively selected
batch in training round: (a) seed=0, (b) seed=10, (c) seed=100.

In model level comparison, in Figure 5.31(a) the deviation for random selec-

tion comparing to other algorithms seems more consistent, but it performs lower in

majority of samples. ALL outperforms the others in most of the samples and the

recorded deviation is similar to random selection. SQAL completely fails to fit for

samples 10-12 but in four cases outperforms the other two.

Figure 5.31(b) shows the same measurements for VGG16, which in an initial

observation can be seen that there isn’t a clear algorithm winner overall. Random

selection outperforms the other two in half of the samples, and probably with the

lower deviation. The larger deviation is observed in 14th samples for SQAL algo-

rithm where simultaneously performs the highest score.

Algorithm level deviation comparison for active learning settings is depicted in
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(a)

(b)

Figure 5.31: Accuracy distribution per classifier: (a) DenseNet, (b) VGG16

Figure 5.32. In (a) the deviation for SQAL between two classifiers is shown. VGG16

is the winner algorithm clearly with more consistent results whereas in (b) DenseNet

deviates a slight more that VGG16 but also it performs quite similar even if is not

the winner for most of samples.

5.7.5 Discussion

In this chapter we presented a method to solve the binary classification problem of

shallow/deep depth-of-field, in terms of photography style. First we applied regu-

lar “passive” learning on an EXIF based annotated data set, achieving maximum

accuracy of 65.1%. Then, we manually annotated a DoF based dataset, where the

performance increase was substantially higher. We achieved a maximum perfor-

mance of 80% with a DenseNet based model trained from scratch and 84.1% with
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(a)

(b)

Figure 5.32: Accuracy distribution per setting: (a) Single, (b) Loop

a pre-trained VGG16 architecture. Motivated by the model performance regarding

a limited amount of annotated samples (one is required to be familiar with photog-

raphy style format in order to produce quality annotations), we presented an active

learning framework which aims to reduce the annotation effort and simultaneously

maximise the classification accuracy.

Based on the existing literature, active learning is conducted on wide spread

data sets, such MNIST, CIFAR-10, skin cancer [59], [57], MRI brain scans, credit

card data sets [72] and CACD, Caltech-256 [64] where they foster data abundance

in minimal resolution as also the majority of deep learning research is based on.

We attempted to solve a non-trivial and real world task, using images from a

recently published open source and high resolution dataset.
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This work’s contributions4 are multiple:

• to the best of our knowledge this is the first dataset in terms of actual DoF

groundtruths in aesthetically high images

• suggest a method to improve active learning strategies for any image classi-

fication task using deep active learning with custom and pre-trained model

architectures

• release the pre-trained models from the best runs for the both deep architec-

tures

• contribute in image aesthetics quality assessment(IAQA) [8], [13] domain

We have explored a number of active learning scenarios and query strategy frame-

works and adapted them the to our problem. Besides, we present an extensive ex-

perimental analysis, demonstrating the feasibility of an active learning scenario, set

an A/B test and finally simulate a fully automated active learning experiment, util-

ising 5 different algorithms combining varying batch selection, incremental training

and cost efficient label acquisition. We have achieved 6.4% gain for the k10 an-

notations and 7.2% gain in total annotation concerning DenseNet and 2.5% gain

for k10 annotation and 5.9% in k20 with VGG16. Although we met a number of

challenges during the experiments namely, overconfidence in sampling strategy with

least confidence measure, using the softmax output in somecases was worse than

random sampling [58], [56] and cases of underfitting in a specific active learning

setting. As far it concerns our case, we have conclude that it is more rational to

apply an active learning strategy where there is abundance in borderline queries as

more certain prediction do not seem that contribute substantially. Nevertheless this

work poses a solid example of a data-centric artificial intelligence approach and sets

a new roadmap to tackle a real-world challenge.

4https://github.com/sniafas/photography-style-analysis/
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Conclusions and Future Work

“Once reached the goal, no one sees the

sacrifices and the process you went through

to get there”

—Sun Tzu, The art of war

6.1 Conclusions

This thesis investigated methods to recognize and quantify image aesthetics in

a certain photography style (Bokeh) which is characterized by the level in depth of

field. The problem is treated as a task in image aesthetics quality assessment which

approached with deep active learning.

The first part of the thesis discusses about photography basics and how pho-

tography styles are related with camera settings. We are referring to aesthetics as

a general philosophical question and study the problem of quantification in image

aesthetics, exploring the domain of IAQA.

The next part attempts to cover the broader domain of artificial intelligence

and machine learning and focuses in computer vision tasks using neural networks

and deep learning. We studied the methodology and techniques to train a machine

learning model and the subjected issue one can come across and possible methods

to tackle them. We cover the topic of convolutional neural networks and related

architectures. We are attempting to connect the deep learning domain with image
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aesthetics by covering the research in this field. The chapter closes with an extended

study in active learning methodologies and scenarios combined with deep learning.

In addition, we suggest a real world methodology that aims to contribute to the

classical active learning approach without the use of closed annotation loop.

Chapter 4 covers the data description where we present a recently publicly ac-

cessible data set with high resolution images and substantial aesthetics quality. We

performed an exploratory data analysis and worked on two different annotation

methods.

The last chapter presents the experimental process we followed to approach the

problem. We utilized the annotated data sets to generate a deep learning classi-

fier using a variety of different models of famous architectures with demonstrated

SoTA results. We figured that the EXIF based data set had a limited reflection of

the target problem thus we produced a carefully generated data set my manually

annotating 1200 images with shallow/deep DoF content. The new DoF data set, al-

most 10× smaller than the EXIF one, recorded substantially improved performance

achieving 80% accuracy and F1-score. We were motivated to increase the clas-

sification performance while effectively reducing the annotation costs by applying

active learning strategies. We performed an extended assessment, comparing reg-

ular “passive learning” with “active learning” techniques. The results were highly

encouraged especially for the DenseNet model, that we trained from scratch, which

recorded 6.4% performance gain with only 600 more actively selected and anno-

tated instances. Although VGG16 (pretrained) trained in random selection scored

the highest accuracy and F1-score, it did not recorded such a gain in respect to the

time budget, as in DenseNet. Also we have to bear into mind that the DenseNet

model architecture we have utilised has almost 3850× less parameters than VGG16,

a substantially less amount of receptive field size, it trains more effectively, effi-

ciently and it’s lightweight during inference without the use of dedicated hardware

acceleration.
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6.2 Future Work

Through the extended experimentation and acquired knowledge in the domain,

we would be able to apply the most simple query strategy framework, concerning ac-

tive learning. The Deep Bayesian Active Learning scheme uses softmax activation to

estimate the informativeness in unlabelled samples can be some times unreliable. An

alternative method would be an uncertainty sampling with Markov Chain dropout

estimations [73], to tackle the overconfidence of output of softmax that sometimes

causes unreliability. To achieve this an architecture with dropout layers should be

utilised and dropout layer should not be disabled during querying time to the active

learner.

We should point out that we started with a well performed classifier trained on

a good amount of samples. We found out that the performance of our case study

task, tops at 90%, hence we already started from high enough.

Having the means of evaluating active learning strategy in mind and not IAQA,

an option could be, to start the bootstrap process and create an active learner with

less samples. This can be assess more effectively the active learning scheme com-

paring to the passive learner, but can also indicate a different response in accuracy

gain rate given the annotation budget.

Another active learning option could be to try varying number of batches, e.g.

smaller than 100 per batch, and repeat the experiments for the ALL strategy.

Finally concerning the IAQA context, trained classifiers, can be used to transfer

knowledge, to other photography styles. Bokeh style is quite semantically similar

with long exposured photos, were most of the objects have smoothed edges.
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Model Architectures

Model: "DenseNet"

__________________________________________________________________________________________

Layer (type) Output Shape Param # Connected to

==========================================================================================

input_1 (InputLayer) [(None, 200, 300, 3) 0

__________________________________________________________________________________________

init_conv2d (Conv2D) (None, 100, 150, 8) 1184 input_1

__________________________________________________________________________________________

init_maxp2d (MaxPooling2D) (None, 50, 75, 8) 0 init_conv2d

__________________________________________________________________________________________

batch_normalization (BatchNorma (None, 50, 75, 8) 32 init_maxp2d

__________________________________________________________________________________________

re_lu (ReLU) (None, 50, 75, 8) 0 batch_normalization

__________________________________________________________________________________________

dense_blk1_rep1_0 (Conv2D) (None, 50, 75, 16) 144 re_lu

__________________________________________________________________________________________

batch_normalization_1 (BatchNor (None, 50, 75, 16) 64 dense_blk1_rep1_0

__________________________________________________________________________________________

re_lu_1 (ReLU) (None, 50, 75, 16) 0 batch_normalization_1

__________________________________________________________________________________________

dense_blk2_rep1_0 (Conv2D) (None, 50, 75, 4) 580 re_lu_1

__________________________________________________________________________________________

concatenate (Concatenate) (None, 50, 75, 12) 0 init_maxp2d

dense_blk2_rep1_0

__________________________________________________________________________________________

__________________________________________________________________________________________

batch_normalization_2 (BatchNor (None, 50, 75, 12) 48 concatenate

__________________________________________________________________________________________

re_lu_2 (ReLU) (None, 50, 75, 12) 0 batch_normalization_2

__________________________________________________________________________________________

trans_layer_rep1_1 (Conv2D) (None, 50, 75, 6) 78 re_lu_2

__________________________________________________________________________________________
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average_pooling2d (AveragePooli (None, 25, 38, 6) 0 trans_layer_rep1_1

__________________________________________________________________________________________

batch_normalization_3 (BatchNor (None, 25, 38, 6) 24 average_pooling2d

__________________________________________________________________________________________

re_lu_3 (ReLU) (None, 25, 38, 6) 0 batch_normalization_3

__________________________________________________________________________________________

dense_blk1_rep2_0 (Conv2D) (None, 25, 38, 16) 112 re_lu_3

__________________________________________________________________________________________

batch_normalization_4 (BatchNor (None, 25, 38, 16) 64 dense_blk1_rep2_0

__________________________________________________________________________________________

re_lu_4 (ReLU) (None, 25, 38, 16) 0 batch_normalization_4

__________________________________________________________________________________________

dense_blk2_rep2_0 (Conv2D) (None, 25, 38, 4) 580 re_lu_4

__________________________________________________________________________________________

concatenate_1 (Concatenate) (None, 25, 38, 10) 0 average_pooling2d

dense_blk2_rep2_0

__________________________________________________________________________________________

batch_normalization_5 (BatchNor (None, 25, 38, 10) 40 concatenate_1

__________________________________________________________________________________________

re_lu_5 (ReLU) (None, 25, 38, 10) 0 batch_normalization_5

__________________________________________________________________________________________

dense_blk1_rep2_1 (Conv2D) (None, 25, 38, 16) 176 re_lu_5

__________________________________________________________________________________________

batch_normalization_6 (BatchNor (None, 25, 38, 16) 64 dense_blk1_rep2_1

__________________________________________________________________________________________

re_lu_6 (ReLU) (None, 25, 38, 16) 0 batch_normalization_6

__________________________________________________________________________________________

dense_blk2_rep2_1 (Conv2D) (None, 25, 38, 4) 580 re_lu_6

__________________________________________________________________________________________

concatenate_2 (Concatenate) (None, 25, 38, 14) 0 concatenate_1

dense_blk2_rep2_1

__________________________________________________________________________________________

global_average_pooling2d (Globa (None, 14) 0 concatenate_2

__________________________________________________________________________________________

dense (Dense) (None, 2) 30 global_average_pooling2d

==========================================================================================

Total params: 3,800

Trainable params: 3,632

Non-trainable params: 168

__________________________________________________________________________________________
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Model: "SimpleNet"

_________________________________________________________________

Layer (type) Output Shape Param #

=================================================================

input_1 (InputLayer) [(None, 200, 300, 3)] 0

_________________________________________________________________

batch_normalization (BatchNo (None, 200, 300, 3) 12

_________________________________________________________________

re_lu (ReLU) (None, 200, 300, 3) 0

_________________________________________________________________

conv2d (Conv2D) (None, 189, 289, 4) 1732

_________________________________________________________________

max_pooling2d (MaxPooling2D) (None, 94, 144, 4) 0

_________________________________________________________________

batch_normalization_1 (Batch (None, 94, 144, 4) 16

_________________________________________________________________

re_lu_1 (ReLU) (None, 94, 144, 4) 0

_________________________________________________________________

conv2d_1 (Conv2D) (None, 90, 140, 4) 404

_________________________________________________________________

batch_normalization_2 (Batch (None, 90, 140, 4) 16

_________________________________________________________________

re_lu_2 (ReLU) (None, 90, 140, 4) 0

_________________________________________________________________

conv2d_2 (Conv2D) (None, 86, 136, 4) 404

_________________________________________________________________

max_pooling2d_1 (MaxPooling2 (None, 43, 68, 4) 0

_________________________________________________________________

batch_normalization_3 (Batch (None, 43, 68, 4) 16

_________________________________________________________________

re_lu_3 (ReLU) (None, 43, 68, 4) 0

_________________________________________________________________

conv2d_3 (Conv2D) (None, 41, 66, 8) 296

_________________________________________________________________

batch_normalization_4 (Batch (None, 41, 66, 8) 32

_________________________________________________________________

re_lu_4 (ReLU) (None, 41, 66, 8) 0

_________________________________________________________________

conv2d_4 (Conv2D) (None, 39, 64, 8) 584

_________________________________________________________________

max_pooling2d_2 (MaxPooling2 (None, 19, 32, 8) 0

_________________________________________________________________

global_average_pooling2d (Gl (None, 8) 0

_________________________________________________________________

dense (Dense) (None, 64) 576

_________________________________________________________________

dropout (Dropout) (None, 64) 0

_________________________________________________________________
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dense_1 (Dense) (None, 2) 130

=================================================================

Total params: 4,218

Trainable params: 4,172

Non-trainable params: 46

_________________________________________________________________

Model: "VGG16"

_________________________________________________________________

Layer (type) Output Shape Param #

=================================================================

input_1 (InputLayer) [(None, 200, 300, 3)] 0

_________________________________________________________________

block1_conv1 (Conv2D) (None, 200, 300, 64) 1792

_________________________________________________________________

block1_conv2 (Conv2D) (None, 200, 300, 64) 36928

_________________________________________________________________

block1_pool (MaxPooling2D) (None, 100, 150, 64) 0

_________________________________________________________________

block2_conv1 (Conv2D) (None, 100, 150, 128) 73856

_________________________________________________________________

block2_conv2 (Conv2D) (None, 100, 150, 128) 147584

_________________________________________________________________

block2_pool (MaxPooling2D) (None, 50, 75, 128) 0

_________________________________________________________________

block3_conv1 (Conv2D) (None, 50, 75, 256) 295168

_________________________________________________________________

block3_conv2 (Conv2D) (None, 50, 75, 256) 590080

_________________________________________________________________

block3_conv3 (Conv2D) (None, 50, 75, 256) 590080

_________________________________________________________________

block3_pool (MaxPooling2D) (None, 25, 37, 256) 0

_________________________________________________________________

block4_conv1 (Conv2D) (None, 25, 37, 512) 1180160

_________________________________________________________________

block4_conv2 (Conv2D) (None, 25, 37, 512) 2359808

_________________________________________________________________

block4_conv3 (Conv2D) (None, 25, 37, 512) 2359808

_________________________________________________________________

block4_pool (MaxPooling2D) (None, 12, 18, 512) 0

_________________________________________________________________

block5_conv1 (Conv2D) (None, 12, 18, 512) 2359808

_________________________________________________________________

block5_conv2 (Conv2D) (None, 12, 18, 512) 2359808

_________________________________________________________________

block5_conv3 (Conv2D) (None, 12, 18, 512) 2359808

_________________________________________________________________

block5_pool (MaxPooling2D) (None, 6, 9, 512) 0
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_________________________________________________________________

avg_pooling (GlobalAveragePo (None, 512) 0

_________________________________________________________________

batch_normalization (BatchNo (None, 512) 2048

_________________________________________________________________

preds (Dense) (None, 2) 1026

=================================================================

Total params: 14,717,762

Trainable params: 2,050

Non-trainable params: 14,715,712

_________________________________________________________________
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