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Περίληψη

ο συνδυασμός της συνεχούς αύξησης του πληθυσμού και της σταδιακής ερήμωσης

των περιοχών της Γης λόγω της κλιματικής αλλαγής θα οδηγήσει στην αδυναμία
παροχής τροφής σε όλους τους ανθρώπους στο μέλλον, οπότε για να βοηθήσουμε την
παραγωγή τροφίμων να αυξηθεί πρέπει να βρούμε λύσεις. Μία λύση είναι να
βοηθήσουμε τους αγρότες να εντοπίσουν πολύ γρήγορα εάν η σοδειά τους είναι
άρρωστη για να αναλάβουν δράση πριν να είναι πολύ αργά. Λαμβάνοντας υπόψη αυτό
αυτή η διατριβή θα μελετήσει τη βιβλιογραφία και θα αναπτύξει μια προσέγγιση που
βασίζεται σε Τεχνητή Νοημοσύνη για την αναγνώριση ανωμαλιών στον φύλλωμα από
διαφορετικές ασθένειες. Ο στόχος είναι να βοηθήσουμε τον άνθρωπο για το εάν θα
ψεκάσει ένα φυτό για μια συγκεκριμένη ασθένεια. Δεδομένου ότι υπάρχει περιορισμένος
αριθμός δεδομένων, οποιαδήποτε λύση δεν μπορεί να βασιστεί αποκλειστικά σε βαθιές
αρχιτεκτονικές που χρειάζονται σχετικά τεράστια σύνολα δεδομένων εκπαίδευσης. Αντ
'αυτού, η διατριβή θα εξετάσει τη χρήση μιας προσέγγισης πολλαπλών μοντέλων, όπου
το καθένα χρησιμοποιώντας διαφορετικές μεθοδολογίες μηχανικής μάθησης, όπως η
μεταφορά μάθησης που χρησιμοποιεί γνώσεις που αποκτήθηκαν από άλλους τομείς.
Ειδικότερα, το πρώτο κομμάτι θα είναι ένας αλγόριθμος ανίχνευσης αντικειμένων το
οποίο αναγνωρίζει εάν υπάρχει ένα "φύλλο" μέσα σε μια εικόνα και ως δεύτερο κομμάτι
θα είναι ένας αλγόριθμος που αποφασίζει για κάθε φύλλο που βρέθηκε από το
προηγούμενο κομματι, εάν είναι υγιές ή άρρωστο και αν το φύλλο βρέθηκε ότι είναι
άρρωστο, το κατηγοριοποιεί μεταξύ τριών κοινών ασθενειών των φύλλων. Για λόγους
απλότητας, το πρώτο κομμάτι θα αναφέρεται ως CP1 και το δεύτερο ως CP2.
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Abstract

The combination of continuous population growth and the gradual

desertification of areas of the Earth due to climate change will lead to the inability
to provide food for all people in the future, so in order to help the food production
to increase we have to find solutions. One solution is to help farmers to detect
very fast if their crop is diseased in order to take action before it's too late.Given
that in mind this thesis will study the literature and develop an AI-based approach
for recognizing anomalies in the canopy, resulting from different diseases. The
goal is to support actuation decisions e.g. whether to spray a plant for a given
disease. Given that there is a limited amount of properly annotated ground truth
data, any solution cannot rely solely on deep architectures that need relatively
huge training datasets. Instead the thesis will examine the use of a multi-model
approach, where a set of components, each using different machine learning
methodologies such as transfer learning, uses knowledge gained from other
domains. More specifically, the first component will be an object detection
algorithm which recognizes if there is a “leaf” inside an image and as second
component will be an algorithm that decides for every leaf, found from the
previous component, if it is healthy or diseased and if the leaf found to be
diseased it categorizes it among three common leaf diseases. For simplicity
reasons the first component will be referred to as CP1 and the second as CP2.
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Chapter 1

Introduction

1.1 Motivation & Contribution

Ever since man began to establish the first permanent settlements in the Neolithic era,
agriculture has been the main source of food for the ever-increasing human population.
According to the International Food and Agriculture Organization [1], 90% of the world's
population could not survive without the agricultural products produced by the
agriculture, livestock and fisheries sectors, most importantly agriculture [2]. Food
production, however, is confronted with current issues such as overpopulation [3] and
climate change [4]. With the increase of the population, the need for greater food
production increases, which can be achieved with more modern ways of production and
care of the fruits but also with the increase of the arable land. Most of the arable land is
already used for crops and finding additional areas involves deforestation and other
natural areas with negative effects on the environment. According to the International
Union for Conservation of Nature, more than half of the world's rainforests have been
deforested since 1960, and today more than one hectare of rainforest is being destroyed or
severely degraded every second [5]. Unfortunately, not only is the expansion of arable land
not easily feasible and sustainable, but, in addition, climate change and soil pollution are
gradually reducing the number of existing ones, as there is a gradual desertification of
areas previously used for agricultural purposes [6]. In addition, rising temperatures change
the suitability of an area for growing certain fruits and lead to a reduction in crop
production, a phenomenon that Chuang Zhao examines for the 4 most common fruits in
agriculture (wheat, rice, corn, soybeans)[7]. The above makes it necessary to continuously
and extensively monitor and record globally grown fruits, in order to facilitate the
management of food production, decision-making and the definition of future strategies.

The goal of this thesis is to support farmers whether to spray a plant for a given disease.
In order to achieve this we will examine the use of a multi-model approach, where a set of
components, each using different machine learning methodologies such as transfer
learning, uses knowledge gained from other domains. More specifically, the first
component will be an object detection algorithm which recognizes if there is a “leaf” inside
an image and as second component will be an algorithm that decides for every leaf, found
from the previous component, if it is healthy or diseased and if the leaf found to be
diseased it categorizes it among three common leaf diseases. For simplicity reasons the
first component will be referred to as CP1 and the second as CP2. The following image
describes the flow of our components.

Additionally we created a web application as a proof of concept that our presented
solution of the above described problem is working.Lastly it is important to say that
everything in this thesis like the used datasets and the base codes , are open and shareable
in order for anyone to check the validity of the results and to contribute furthermore if
wishes.
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Figure 1: Thesis Architecture Workflow

1.2 Thesis Organization

This thesis is organized in 8 chapters.

Chapter 1: A brief reference is made to the motivations and objectives of this thesis.

Chapter 2: An introduction in Data Science and Machine Learning.

Chapter 3: A presentation of Neural Networks Principles.

Chapter 4: A brief description of Convolutional Object Detection & Classification which
are the core of CP1 and CP2 accordingly.

Chapter 5: An overview of the datasets that are used in this thesis.

Chapter 6: Info about the implementation of CP1 and CP2 and about the created web
application. It also contains a short guide for the deployment of the created components.

Chapter 7: A description about the methodology of CP1 and CP2 among the presentation
of the experiments that took place with their results.

Chapter 8: A concise overview of the results and some thoughts about future work.
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Chapter 2

Machine Learning & Neural Networks
Principles

2.1 What is Machine Learning ?

Machine Learning is a subfield of Artificial Intelligence, which deals with the
construction of models that implement specific algorithms that use experimental data to
make useful predictions; or conclusions. These models must have the ability to improve
their performance when they receive additional data without having to be programmed
from the beginning. Mitchell [8] has given the following definition to machine learning:“A
computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks in T, as measured by P, improves
with experience E.”

The training process that is followed is to feed the model with data, usually numerical.
Then, vectors are created from this data, the so-called Feature Vectors with which
appropriate algorithms are fed. Finally, metrics are used to calculate the reliability of each
model. Machine learning algorithms are divided in 3 big categories:

● Supervised Learning
● Unsupervised Learning
● Reinforcement Learning

2.2 Machine Learning Categories

The separation of the categories of machine learning arises from the way in which the
system interacts with its environment during training, in other words. the way in which
feedback is given during the learning.

2.2.1 Supervised Learning

In Supervised Learning the purpose is to approach a function that connects input to
output using existing input-output value pairs (data-tags)[9]. The set of these pairs is called
the set of training and the process of calculating such a function from the above set is
called training. The ultimate goal of supervised learning is the calculation of a function
that sufficiently generalizes to the input data so that it is able to assign to the correct
outputs new input data which it had not used during training.

2.2.2 Unsupervised Learning

Unlike the previous category of machine learning, unsupervised learning does not use
input-output value pairs. Its purpose is to identify patterns in the input without feedback
from output values [10]. A typical example of unsupervised learning is the problem of
clustering. This method aims grouping input data by creating groups whose members are
present similar to each other, but differ significantly from members of other groups.
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2.2.3 Reinforcement Learning

Reinforcement learning differs from the other categories because of a technique that
uses "rewards" and "punishments" from the environment and the model interactions with it
[11]. The choices made to lead to an outcome are judged whether they had a positive or
negative contribution to that outcome. In this way the model can choose whether to make
the same choices again or to follow a different path of action, which may differ in one or
more choices [12].

2.3 Neural Networks

Neural Networks are characterized by their architecture, the site function they perform
and their training method. The network architecture determines the arrangement of
neuron connections as well as the number and type of neurons. Neurons are organized in
the form of layers [13]. If there are several layers in the network then we refer to it as deep
learning. Deep learning is part of a larger family of approaches to machine learning based
on artificial neural networks with representational learning (also known as or hierarchical
learning or deep structured learning) [14][15]. In fields such as computer vision, audio
recognition, speech recognition, natural language processing, machine vision, social
network filtering, medical image analysis, machine translation, drug design,
bioinformatics, content inspection and inspection, deep-learning architectures such as
deep neural networks, deep belief networks, recurrent neural networks and convolutional
neural networks have been implemented [16].

2.3.1 Artificial neural networks

Artificial Neural Networks is a supervised machine learning algorithm that has to
simulate the function of the human brain. Their structural elements are the artificial
neurons, which have been created based on the human neuron. In Figure 2 shows the
architecture of an artificial neuron.

Figure 2: Artificial Neuron Architecture (source:towardsdatascience.com)

Xi are the inputs of the neuron, which are multiplied by the weights Wi and sum together
with a polarity W0 (often found with the symbol b). The final sum is fed to an activation
function f and depending on the sum value, the output is 0 or 1, or as it is otherwise called
the neuron is deactivated or activated. The complete mathematical expression is as
follows:
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In Figure 3 the activation function is the simple step. There are several more functions,
the choice of which depends on the nature of the problem and its designer neural network.
Given the binary output of the artificial neuron it is obvious that it has the ability,
appropriately adjusting the wi weights to sort the input data into two classes if these are
linearly separable [7].

The aforementioned artificial neuron is called Perceptron and Rosenblatt in 1958 was
the first to propose him [18]. The combination of many Perceptrons can create a field of
simple neurons, which functions as both input and output of the network [19], the
so-called a single-level Artificial Neural Network. Every neuron in this network is
independent of the others, so his learning is done independently of the others neurons.
However, Minsky-Papert in 1969 demonstrated that the Artificial Neural Networks of a
level are not capable of solving nonlinear problems [20], which they can achieve with the
Multilevel Neural Networks.

2.3.2 Multilayer Neural Networks

In order to solve more complex problems with great complexity, it is necessary to
combine many different neurons with each other, creating multilevel architectures
Neurons Perceptrons and are called Multi-Layer Perceptrons (MLPs). In MLP the neurons
are organized by levels which are divided into 3 categories:

● Input layer
● Hidden layer
● Output layer

In Figure 3 the input neurons are marked in yellow, the hidden neurons with blue and
the output neurons with green. Every artificial neuron in the network works like referred
to in section 2.1.1. A feature of Artificial Neural Networks separation is the way it is
connected between neurons of all levels. The resulting categories are:

● Fully Connected: networks in which each neuron of a level connects to all neurons
of the next level.

● Partially Connected: networks that exist at each level neurons that are not
connected to all the neurons of the next level.

● Feedforward: networks in which neural connections do not create connection
circles. That is, no neuron promotes its output in neurons of previous levels.

● Feedback: networks that, unlike the previous category, have neurons that advance
their output to previous level neurons.
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Figure 3: Multi-Layer Perceptron (source:deepai.org)

2.3.3 Convolutional Neural Networks

Convolutional neural networks (convnets or CNNs) are specialised feed-forward neural
networks. Primarily used for computer vision. The key difference between the
convolutional Artificial Neural Network (ANN) and the Convolution Neural Network
(CNN) is that only the last layer of a CNN is completely connected, while in ANN, as seen
in Figure 4, each neuron is connected to all other neurons [21][22].

Figure 4: Artificial Neural Networks (ANN) and Convolutional Neural Networks (CNN)
(source:www.researchgate.net)

2.3.4 Activation Functions

The Activation Function is a function that takes the output as input from the sum of the
neuron value and generates an output value that will be forwarded as input to the
subsequent neurons. Its usefulness lies in the fact that the value of the sum in one neuron
can be any number. Using the activation function We can transfer this value at any time it
deems most convenient, so that it is easy to interpret the result. Essentially this function
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works as a filter on produced prices. The following are some of the most common
activation functions.

● Sigmoid function: This function converts its input into space (0, 1) without ever
being able to get the values 0 and 1. The normalization of values in the period leads
to the absence of significant value differences at the exit of the function. This
phenomenon is called Vanishing Gradient. The graphics representation of the
function is shown in Figure 5.

Figure 5: Sigmoid Function (source: wikipedia.org)

and its mathematical formula is as follows:

● Hyperbolic Tangent Function: This function is similar to the sigmoid with
the difference that the values correspond to the interval (−1, 1).

Figure 6: Hyperbolic Tangent Function (source: oreilly.com)

Its mathematical formula is as follows:
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● Rectified Linear Unit, ReLU: This function is the most common activation
function in Neural Network applications. It consists of a part zeroing of
values for negative inputs, and a linear function for positive inputs. This
function is ideal for problems which do not include large entry values.Also
does not face the Vanishing Gradient problem that the two previous
functions have. One of its negatives is inactivation of all neurons that have
negative values, which can greatly affect the solution of the problem,
depending of course on the nature of the problem itself. Its graph is as
follows.

Figure 7: Rectified Linear Unit (source: researchgate.net)

Its mathematical formula is as follows:

2.3.5 Cost Functions

Cost Functions are used to control the performance of Neural Networks. The validation
is made with data of the input samples and their expected output value. Thus, it is possible
to monitor the improvement of the network and its adaptation to minimize the mistakes it
makes. The comparison is made between values predicted by the model and the actual
values. Some cost functions are below.

● Mean Squared Error (MSE): Calculate the average of squares of errors.The
mathematical formula is as follows:
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where Yi are the actual values and Pi are the forecasts.

● Mean Absolute Error (MAE): Calculates the average absolute value of errors.

where Yi are the actual values and Pi are the forecasts.

● Cross Entropy Loss: It is the most common cost function in classification
problems. Its function is to compare the probable distributions of the predicted
values   and of real prices. The more the two distributions diverge, the greater is its
price, so the goal is to get as low prices as possible so the two distributions can be
identified. Characteristic of this function is the fact that it imposes a large penalty
on predictions with a high degree of confidence (confident predictions) but they
are wrong. The mathematical formula is as follows:

where p, q are the probable distributions of the actual values and the predicted
values respectively.

● SVM Loss (Hinge loss): Occurs in categorization problems and the purpose of the
definition is that the sum of the correct predictions is greater than its sum wrong.
As its name suggests, it is used in Vector Machines Support. It is characterized by
the fact that it is not productive but it is very easy to calculate. The mathematical
formula is as follows:

Where θ is the vector of the parameters of each network.
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2.3.6 Backpropagation Algorithm

This algorithm is a member of the Optimization algorithm category and is from the
most famous. It was first proposed by Kelley in 1960 [23] and is widely used in the
Learning also seen in the Feed Forward Neural Networks. The algorithm implements a
small modification to each weight of the network, taking into account the error that
occurs for a specific input, the corresponding desired output and the network recall. Its
application is done in epochs, that is, running through a predetermined one way all input
data each epoch. The network weights are adjusted accordingly how much they
contributed to the overall network error. This adjustment is made following the opposite
direction from the data flow.

The two main ways of presenting data on the network are the following:

● Incremental Training: In this case the input data are presented separately in the
network and for each one the weights are modified.

● Batch Training: In this case everything is presented first input data once, changes
in weights are calculated for each input and at the end the weights are updated.

The total error for all the examples is the sum of their squares errors of output neurons.
An algorithm termination condition is also defined, which is either the total error falling
below a specified threshold or the a predetermined number of training sessions at the
beginning of the whole process.

2.3.7 Optimization Algorithms

Optimization Algorithms are used to maximize or minimize a function. In this case, this
function is some cost function, which must be minimized. In Neural Networks the weights
of the hidden layer have a very key role in the final performance, therefore it is necessary
to continuously renew them until we reach the desired result. This is the purpose of the
algorithms in this category. The following is the most widely used technique of Gradient
Descent and some variants of it. This method aims to minimize the cost function using its
first partial derivative. In each iteration of the algorithm it is subtracted from each
parameter of the network the partial derivative multiplied by a numeric parameter called
learning rate. The mathematical formula is as follows:

In the general case the gradient descent algorithm is executed after a feed forward has
been made for all the data in the network.Often, however, part of the data set is fed to the
network before an update is made.Based on this criterion we distinguish the following
basic cases:

● Batch Gradient Descent: All input samples are fed to the grid and synchronously
The parameters are updated. In this case, it may be unnecessary calculations, as
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slopes are often calculated for similar examples before each parameter update. Of
course, it is certain that it will find the total Most of the Cost Function if used on a
convex error surface. In cases where the input data is too much, problems are
created in calculation due to computational resources.

● Stochastic Gradient Descent-SGD: In contrast to the previous case here the
network parameters are updated for each input sample separately. In the approach
unnecessary calculations do not happen, but problems arise when approaching at a
local minimum of the curve and especially when the slopes of the minimum are
steep, resulting in oscillation on the slopes of this area. It is also sensitive to noisy
input samples as the network parameters are updated based on "bad" input
samples delay the process of finding the minimum. This method was proposed by
Robbins in 1951 [24].

● Mini-Batch Gradient Descent: This method is characterized by random sample
selection but in larger groups. It tries to combine randomness and fast calculation
of the stochastic case using more input data so that it reduces noise from
individual noisy input samples.

2.6 Evaluation Metrics

Evaluation Metrics are very important for drawing conclusions in order to be able to
compare different models with each other in terms of effectiveness there. There is no
strict rule for the use of each metric as to how to evaluate one model depends on the
nature of the problem being addressed. These metrics are applied to the evaluation data
(test set).

● Accuracy: It is the most basic metric evaluation of a model. The measure expresses
the success rate of the model in classifying the samples into the correct ones
categories on the data set.

This metric is avoided when our data classes are not balanced as well; the correct
predictions of the larger class can overshadow the incorrect predictions of the smaller
classes. For example, suppose there is a problem with three classes of which the Class A
has 980 samples, Class B has 10 samples and Class C has 10 samples. If the model predicts
for each sample that it is in class A then the metric accuracy will have a value 980/1000 =
0.98 or 98%. The example shows that it is not possible to extract information on the
classification of data by class and is not the appropriate measure for evaluation of such a
model. This is a problem if it is important to anticipate the other classes are correct. For
this reason, two new metrics are defined, precision and recall.

Before defining these two evaluation metrics, some classes are first defined based on
the predicted and the actual class to which the samples in question belong. The definitions
will be given for a two-class problem (Positive, Negative) but can easily be extended and
for problems of more classes.

● True Positive (TP): The set of samples for which the prediction is the Positive
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category and the actual category is the Positive. So, it's done correctly.

● True Negative (TN): The set of samples for which the prediction is the Negative
category and the actual category is the Negative. So, it takes the correct
classification.

● False Positive (FP): The set of samples for which the prediction is the Positive
category and the actual category is the Negative. Therefore, buried classification.

● False Negative (FN): The set of samples for which the forecast is the Negative
category and the actual category is the Positive. So, it takes place incorrectly.

The following are the definitions of Precision and Recall.

● Precision: It is the ratio of the correct prediction results of a class to the total
number of forecasts in this class.

This metric summarizes the model's ability to return samples related to that class
as results.

● Recall: It is the ratio of the correct prediction results of a class to the total number
of samples in this class.

This metric summarizes the model's ability to find all samples of a particular class.

It is desirable that both metrics have high values. Usually, however, there is a trade-off
between them, but without excluding the fact that the proposed model has a solution to
return high prices on both. One metric that combines the two previous metrics is the
F1-Score.

● F1 Score: It is the harmonious average of Precision and Recall.

The higher this metric the better the results the model returns.

In the case of multiple classes in which an imbalance occurs, often used a variant of
F1-Score that is called micro-F1. The calculation is performed by first summing the
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variables TP, FP, FN from all classes, the metric Precision and Recall, now called
micro-Precision and micro-Recall respectively and finally the metric micro-F1 is
calculated.

2.7 Regularization and Dropout

Regularization is a set of techniques that can prevent overfitting in deep neural
networks can learn very complicated relationships between their inputs and outputs but
they are likely to quickly overfit a training dataset with few examples. In order to reduce
overfitting there have been developed some methods such as stopping the training when
performance on a validation dataset is starting to get worse or weight penalties of several
kinds like  L1 and L2 regularization.

● L1 regularization: is a way to penalize the parameter size and to reduce the
gradient by a constant factor equal to sign (Wi).

Equivalent to MAP estimation with Laplace prior.

● L2 regularization: Drives the weights closer to the origin shrinks the weights vector
by a constant factor on each training step.

Equivalent to MAP estimation with Gaussian prior.

Aside from L2 and L1 regularization, another well-known and effective regularization
method is known as dropout regularization. Dropout regularization is a straightforward
operation. Dropout suggests that during preparation, with any probability P, a neuron of
the neural network is switched off typically by multiplying their outputs by zero.
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Figure 8: Neural Network before and after dropout (source:
https://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf )

Dropout can be seen as practical computationally inexpensive bagging for deep neural
networks.
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Chapter 3

Convolutional Object Detection &
Classification

In this Chapter we address and compare various methods of object detection, using
neural convolutional networks. We are going to, in fact, look at methods that combine
region proposal classification(also called regions of interest) with CNNs. We also take a
look at how classification works and we emphasize in hierarchical classification.

3.1 R-CNN

R-CNN stands for Region Based Convolutional Neural Networks.Krizhevsky [25] achieved
positive outcomes with CNNs in 2012 and after that the next year a method [26] was
published by Girshick to generalize these findings to object detection. This approach is
called R-CNN ("CNN with region proposals").

3.1.1  General Overview

There are several phases of R-CNN forward computation, shown in figure 9. In the first
place, it generates regions of interest(RoIs). Category independent RoIs are bounding
boxes with a high probability of containing an interesting object.Next, to extract features
from each regional proposal, a convolutional network is used. To fit the input size of the
CNN, the sub-image stored in the bounding-box is distorted and then fed to the network.
The features are input to support vector machines (SVM) that provide the final
classification, after the network has extracted features from the input.

Figure 9: Stages of R-CNN forward computation (source: www.semanticscholar.org)

This technique - method is trained in multiple stages, starting with the convolutional
network [20]. After the CNN has been trained, the SVMs are fitted to the CNN features.
Eventually, the region proposal generating method is trained.
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3.1.2  Disadvantages

R-CNN is an important technique since the first practical solution for object detection
using CNNs was presented. Being the first, it has several disadvantages that later
approaches have built on. Girshick mentions three major R-CNN concerns in his 2015
paper for Fast R-CNN[27]. First, and maybe most important, the detection of objects is
sluggish, requiring for each picture nearly a minute, even on a GPU. This is because the
CNNforward computation is performed separately for every object proposal.This happens
even if the proposals originate or overlap each other from the same picture.

3.2 Fast R-CNN

Grishick in 2015 found a more efficient method for object detection and named that
method Fast R-CNN [20]. The core idea is to perform the forward pass of the CNN for the
entire image, instead of performing it separately for each region of interest.

3.2.1  General Overview

Figure 10: Stages of Fast R-CNN forward computation (source: www.semanticscholar.org)

In figure 10 we can see the general structure of Fast R-CNN. The method receives as
input an image plus regions of interest computed from the image. As in R-CNN, the RoIs
are generated using an external method. The image is processed using a CNN that includes
a lot of convolutional and max pooling layers. The convolutional feature map that is
generated after these layers is input to a RoI pooling layer. This extracts a fixed-length
feature vector for each RoI from the feature map. The feature vectors are then input to
fully connected layers that are connected to two output layers: a softmax layer that
produces probability estimates for the object classes and a real-valued layer that outputs
bounding box coordinates computed using regression (meaning refinements to the initial
candidate boxes).

3.2.2  Performance

As authors claim, using the same feature map for each RoI, Fast R-CNN provides
significantly shorter classification time compared to regular R-CNN, taking less than a
second on a state-of-the-art GPU [27]. The overall computation time begins to depend
significantly on the efficiency of the area proposal generation method as the detection time
decreases. Thus, the RoI generation can shape a bottleneck of computation[28]. In
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addition when there are many regions of interest increases the evaluation time.Finally,
Classification time can be accelerated by approximately 30% if the fully-connected layers
are compressed using truncated singular value decomposition [27]. This results in a slight
decrease in precision, however.

3.2.3  Disadvantages

Fast R-CNN does not have as many disadvantages as its predecessor R-CNN, but it also
uses the Selective Search Algorithm, which is slow and time-consuming and it takes
around 2 seconds in a CPU implementation to detect objects in image that often do not
function properly with huge real-life datasets [29].

3.3 Faster R-CNN

Ross Girshick, Shaoqing Renet et al. in 2015 found a more efficient method for object
detection and named that method Faster R-CNN [27] we can consider it as an integrated
method [23].In this thesis it’s the main algorithm that it is used.

3.3.1  General Overview

The innovative idea from the authors was that in order to generate region proposals, we
can use feature maps generated from object detection networks as well. This part of the
network is called region proposal network (RPN) and it is used instead of a selective
search algorithm. RPN has proven to be very efficient till now. The authors used Fast
R-CNN architecture for the detection network.

3.3.2  Architecture and Performance

This algorithm is much faster than the previous ones (figure 11).

Figure 11: Comparison of test-time speed of object detection algorithms (source:
www.towardsdatascience.com)

Faster R-CNN is composed of three main parts. These parts are the convolution layers,
the RPN and classes,bounding boxes.This algorithm’s network is trained by alternating
between training for RoI generation and detection. First, two separate networks are
trained. After that, these networks are combined and fine tuned. While fine tuning is taking
place, certain layers are kept fixed and certain layers are trained in their turn.As input the
trained networks receives an image where the feature maps are generated. As said earlier
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these features are fed to the region proposal network. The RPN output with the feature
maps are the input for the final detection layers where eventually, the final classifications
are computed from these layers with the help of a RoI pooling layer [30]. The performance
boost is coming from the fact that the conputaniom of the region proposals on a CNN can
be realizable on a GPU, rather than older RoI generation methods such as selective search,
which is mentioned earlier, are implemented on a CPU.

Figure 12: Faster R-CNN (source: www.towardsdatascience.com)

3.4 Classification

The process of predicting the class of given data points is known as classification.
Classes are also known as goals, marks, or groups. The role of approximating a mapping
function (f) from discrete input variables (X) to discrete output variables is known as
classification predictive modeling (y).An example of a classification problem is to
categorize an incoming email to “spam” or not. Classification belongs to the category of
supervised learning where the targets also provided with the input data, also there are two
types of learners in classification as eager learners and lazy learners.

Lazy learners simply store the training data and wait until testing data appear. When it
does, classification is conducted based on the most related data in the stored training data.
Compared to eager learners, lazy learners have less training time but more time in
predicting.Famous algorithms that belonging there are the k-nearest neighbor and
Case-based reasoning. On the other hand eager learners construct a classification model
based on the given training data before receiving data for classification. It must be able to
commit to a single hypothesis that covers the entire instance space. Due to the model
construction, eager learners take a long time to train and less time to predict. Known
algorithms in this type are the Decision Tree and Naive Bayes [31].

One sub category of a classification task is the hierarchical classification which is a
classification splitted in more than one step. For example CP2 is an hierarchical
classification task because the first step is to categorize the leaf among “healthy” or
“diseased” and the second step if the leaf is categorized as “diseased” is to further
categorize the leaf into one of the following three categories “Black Measles”,”Black
Rot”,”Leaf Blight”.These categories are common leaf diseases.[32]
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Chapter 4

Datasets - Preprocess

4.1 Datasets

As already mentioned in this thesis two components developed. The first component
which is an object detection, used for training the Leaf Dataset (see 4.1.1) and the second
component, which is about classifying health and diseased leaves, used for training the
rest of the Datasets that are described below (see 4.1.2 - 4.1.7). In our experiments for CP2
we tried to keep a balanced number of images per class.

4.1.1 Leaf Dataset

The content of this dataset is images of plants, trees, or even individual leaves. Each
image has bounding boxes annotated around each leaf, but only for those that can be seen
easily. This dataset has 1140 images with 5346 annotated leafs.[33]

Leaf Dataset

Species Size Classes Format Resolution

Random plants and trees 1140 1 JPG 1024x1024

Table 1: Leaf Dataset description.

Figure 13: Leaf Dataset sample image(source : https://www.kaggle.com/alexo98/datasets)

4.1.2 Plant Village Dataset

The Plant Village Dataset consists of 54303 healthy and unhealthy leaf images divided
into 38 categories by species and disease. Each category has one class of healthy leaf
images and at least one class of images with diseased leaves [34]. From this dataset the
species that were eventually used can be shown below (table 3).
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Plant Village Dataset

Species Size Classes Format Resolution

Various plants 54303 38 JPG 256x256

Table 2: Plant Village dataset description.

Plant Village Dataset Details

Species Size Classes

Apple 3171 4

Cherry 1906 2

Corn 3852 4

Grape 4062 4

Peach 2567 2

Pepper 2475 2

Potato 2152 3

Strawberry 1565 2

Tomato 18160 10

Table 3: Plant Village Dataset details.

Figure 14: Plant Village Dataset sample image (source :
https://www.tensorflow.org/datasets/catalog/plant_village)
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4.1.3 Plant Pathology 2020 Dataset

The Plant Pathology 2020 Dataset provides also annotated field images that depict
real-life symptom images of multiple apple foliar diseases, with variable illumination,
angles, surfaces, and noise.This dataset contains 3642 images, one class of healthy leaf
images and three classes of images with diseased leaves [35].

Plant Pathology 2020 Dataset

Species Size Classes Format Resolution

Apple 3642 4 JPG 2048x1365

Table 4: Plant Pathology 2020 Dataset description.

Figure 15: Plant Pathology 2020 Dataset sample image
(source : https://www.kaggle.com/c/plant-pathology-2020-fgvc7/overview)

4.1.4 Embrapa WGISD Dataset

The Embrapa WGISD dataset provides annotated field images of five different grape
varieties and it consists of .This dataset contains 300 high resolution images ,with five
classes of images with healthy leaves [36].

Embrapa WGISD Dataset

Species Size Classes Format Resolution

Grape 300 5 JPG 5184x3456

Table 5: Embrapa WGISD Dataset description.
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Figure 16: Embrapa WGISD Dataset sample image(source :
https://zenodo.org/record/3361736).

4.1.5 Coffee Dataset

The Coffee Dataset consists of 1747 healthy and unhealthy leaf images of coffee. It has
one class of healthy leaf images and four classes of images with diseased leaves [37].

Coffee Dataset

Species Size Classes Format Resolution

Coffee 1747 5 JPG 2048x1024

Table 6: Coffee Dataset description.

Figure 17: Coffee Dataset sample image(source :
https://drive.google.com/file/d/15YHebAGrx1Vhv8-naave-R5o3Uo70jsm/view).

4.1.6 COCO 2017 Dataset

COCO, short for Common Objects in Context, is a large image recognition/classification,
object detection, captioning, and segmentation dataset and it is one of the most popular
open source object recognition databases used to train deep learning programs. It contains
complex everyday scenes of common objects in their natural context [38]. This Dataset is
used by CP1 in order to evaluate how Transfer Learning [39] performs in our task.

43



COCO Dataset

Train Images Test Images Validation Images Resolution

118000 41000 5000 640x480

Table 7: COCO 2017 Dataset description.

Figure 18: COCO 2017 Dataset sample image (source :
https://www.researchgate.net/figure/Example-images-from-MS-COCO-dataset_fig2_3415966

04).

4.1.7 Production Dataset

In order to evaluate our components in production level (CP1 and CP2) we gathered a
small dataset with real life images of plants. That was a necessary step in order to
approach a more realistic output.

Production Dataset

Validation Images Resolution

50 1536x2048

Table 8: Production Dataset description.

Figure 19: Production Dataset sample image.
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4.2 Data Preprocess

4.2.1 Data preparation

Except from the Leaf dataset that it used only by CP1, the rest datasets had their images
resized to the shape 256×256 pixels. This low resolution selected mainly because if we
were operating on an image that was 1024 by 2048 pixels for example, each layer could
have millions of nodes.Also because of memory limitations in the available hardware that
used in this thesis, it wasn’t possible to handle images with higher resolution.Another
action that was made in datasets of CP1 and CP2 was to transform all the images into
grayscale, in order to compare the results in between color and gray images. The reason
for differentiating such images from any other sort of color image is that less information
needs to be provided for each pixel, which reduces computation complexity.

4.2.2 Data cleaning

Data cleaning is a critically important step in any machine learning project. In text data,
there are many different statistical analysis and data visualization techniques that can be
used in order to clean a dataset in contrast to datasets with images, as in our case, the
cleaning is mainly done manually and usually by domain experts. The quality of data
cleansing has a direct impact on the accuracy of the derived models and conclusions.Data
cleaning main goal is to fill , fix or remove data.As John Adair says “garbage in, garbage
out” [40], the meaning behind this phrase is that incorrect or poor-quality input will
produce faulty output. In our case, our datasets were already “clean”, the only cleaning
was to remove some blur and duplicate images among removing some corrupted images
due to resolution downscale that was made in the previous step(4.2.1).

4.2.3 Data augmentation

In image datasets, data augmentation is used for increasing the size of a dataset. It is
the process where new images are generated by slightly distorting the original images. It
can also act as a regularizer and helps reduce overfitting when training a machine learning
model. In machine learning, as well as in statistics, overfitting appears when a statistical
model describes random noise or error rather than underlying relationship [41]. There are
many modifications that we can do to images, some of them are introduced in the below
list.

● Resize
● Horizontal or vertical flip
● Deform
● Add blur
● Modify colors
● Rotate
● Zoom in or zoom out
● Increase or reduce brightness

In our case in order to increase our dataset we used the rotation among the horizontal and
vertical flip techniques.
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Chapter 5

Implementation and Deployment of the
Application

5.1 Machine Learning Components Code Base

The experiments were developed in Python 3.8 using Jupyter Notebooks [42] for
ease. All the experiments regarding the CP1 component were conducted using an open
source library named PyTorch [43]. On the other hand the CP2 component was built using
an open source library named Keras [44]. Finally, in table 9 are presented the basic
characteristics of the machine that is used in order to train all of the experiments.

Hardware and Software Characteristics

Memory 16.0 GB

Processor Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz

Graphics NVIDIA GeForce GTX 960M

Operating System Linux Ubuntu 18.02 64 bits

Table 9: Basic machine characteristics.

5.2 API

In order to demonstrate and evaluate this thesis' main concept an API [45] was
developed. The API is written in NodeJs[46] and takes as input an image (with leaves in
order to have meaningful results) and returns a response in JSON [47] format that contains
the corresponding results, a sample response is shown in figure 20. The endpoint of the
API is “http://dev.scio.services:7001/sso” and as already said, it takes as argument the path
of an image. In order to transfer the image to the server we have to encode it with base64,
we can achieve that using a python library named accordingly. Below we can see a
python script example of how we can call the API.

import requests

import json

import base64

with open("/content/image_sample.jpg", "rb") as img_file:

my_string = base64.b64encode(img_file.read())

base64Image = "data:image/png;base64,"+my_string.decode('utf-8')
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data = {'base64Image': base64Image}

json.dumps(data)

url = 'http://dev.scio.services:7001/sso'

headers = {'Content-type': 'application/json', 'Accept':

'text/plain'}

response = requests.post(url, data=json.dumps(data), headers=headers)

print(response.text)

Figure 20: API json format response.
An explanation of the results can be found in table 10.

Key Value

bbox An array that contains the bounding boxes of
the found leaves

totalLeafs The amount of total leaves that are found.

healthy How many of the found leaves are Healthy

diseased How many of the found leaves are Diseased

blackrot How many of the found leaves has the black rot
disease

blackMeasles How many of the found leaves has the black
measles disease

leafBlight How many of the found leaves has the leaf
blight disease

healthyPercentage This percentage is calculated by dividing the
total number of leaves with CP2s prediction
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number about the healthy class

diseasedPercentage This percentage is calculated by dividing the
total number of leaves with CP2s prediction
number about the diseased class

Table 10: API Results explanations

5.3 Demo Application

In order to demonstrate and evaluate this thesis' main concept, an application was
developed. The application has two parts, the user interface (UI) and the API part that was
explained earlier. The UI is written in React Js[48]. The web application can be seen from
the following figures (figure 21, 22, 23) where we uploaded an image containing two
“diseased” leaves (figure 22), the results are shown in figure 23. It also can be accessed in
this url “http://dev.scio.services:7000/”, which will be active until the end of 2021.

Figure 21: Application Main Page

48



Figure 22: Application Page with inserted image.

Figure 23: Application results page.
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5.4 Deployment & Open Source Code

In order to contribute to the community everything in this thesis is publicly accessible
from a Github [49] repository that has been created for this cause. Also in order to help
someone to run the described application and its components to his infrastructure,
another repository in Dockerhub [50][51] has been created that contains a containerized
version of our components. Now it follows a small guide about the deployment using
Docker technology. Docker [52] in simple words it's a container engine that is used for
running applications. It is very useful because there is no need to install anything else like
libraries or other technologies because everything is inside a docker container.

Prerequisites

● Physical or Virtual machine of Linux distribution.
● Install Docker.
● Install docker-compose.

Now in order to run our API and our application we create a docker-compose.yml file that
contains configuration about the listening ports of our services, this file should be like the
following figure 24.

Figure 24: docker-compose.yml file example

After the creation of the above file, we have to execute the following command in order to
start our services:

● docker-compose up -d
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Chapter 6

Methods - Experiments -Results

6.1 CP1 Methodology & Experiments

CP1 is our first component and it is trained for finding leaf or leaves inside an image.
The approach for CP1 is to evaluate ResNet and AlexNet architectures among the
Faster-RCNN algorithm. We also examine training the model from scratch or using transfer
learning from the “COCO” dataset. Also, another aspect that was examined was the
performance between color and gray scale images. Finally the dataset was splitted in two
parts (train - test). The size of the split can depend on the size and specifics of the dataset,
so two different cases were examined. Next we will describe the two architectures that we
mentioned above.

● Residual Network: (ResNet) is a Convolutional Neural Network (CNN)
architecture which can support hundreds or more convolutional layers .Resnet
models were proposed in “Deep Residual Learning for Image Recognition” [53].
While previous CNN architectures had a drop off in the effectiveness of additional
layers, ResNet can add a large number of layers with strong performance.

● AlexNet: is a CNN architecture which uses GPU to boost performance and is
considered one of the most popular for object detection tasks. This architecture
consists of 5 convolution layers, followed by 3 fully connected layers ,and finally
ending with a softMax layer [54].

In order to sum up the following experiments were examined.

1) Deep learning architecture:
● ResNet
● AlexNet

2) Training mechanism:
● Transfer Learning
● Training from Scratch

3) Dataset type:
● Gray scale
● Color

4) Choice Of Training - Testing set distribution:
● Train: 80%, Test: 20%
● Train: 60%, Test: 40%,

In order to have a fair comparison between the results of all the experimental
configurations, we used the same hyper-parameters across all the experiments.

● Learning rate : 0.005
● Momentum : 0.9
● Weight decay: 0.0005

51



● Batch size : 16
● Solver type : Stochastic Gradient Descent

Each of these 16 experiments runs for a total of 25 Epochs, where one epoch is defined as
the number of training iterations in which the particular neural network has completed full
pass of the whole training set. The choice of 25 epochs was made based on the empirical
observation that in all of these experiments, the learning always converged well within 25
epochs across all the experiments. Finally, the methodology about the transfer learning
with the COCO dataset (4.1.6), the first step was to take the network with its structure and
its pretrained weights. We removed the last layer which is also the output layer and we
added a new one. So the “second” training was made with our other dataset (see 4.1.1) and
in our case we didn’t modify the weights of the pretrained network only our newly added
layers which as already mentioned it is a small dataset and that's why we chose this
technique.

6.2 CP1 Results & Evaluation

In order to evaluate our experiments, the metric that is used was the F-measure or
balanced F-score (𝐹1 - score) which is the mean of precision and recall [55] (figure 25). 𝐹1
score reaches its best value at 1 (perfect precision and recall) and worst at 0.

Figure 25: F1 Score formula (source : towardsdatascience.com).

AlexNet Resnet

Transfer Scratch Transfer Scratch

Grayscale
80% - 20% 0.8175 0.7375 0.8374 0.7675

60% - 40% 0.8678 0.8248 0.8846 0.8352

Color
80% - 20% 0.7754 0.7175 0.7811 0.7504

60% - 40% 0.8345 0.8145 0.8447 0.8114

Table 11: MeanF1 score across various experimental configurations at the end of 25
epochs.

In order to refer to a specific experiment from the above table the following notation is
used Architecture:TrainingMechanism:DatasetType:Train-Test-Set-Distribution.
The winning configuration (marked with green color in table 11) was the following
ResNet::TransferLearning::GrayScale::60–40, and the worse was
AlexNet::FromScratch::Color::80–20.

After finding the best configuration we tried to tune our hyper parameters in order to
achieve a better F1 score. As a tuning technique we used Grid search which is a process
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that searches exhaustively through a manually specified subset of the hyper parameter
space of the selected algorithm [56]. The final hyper parameters that are shown below
achieved only a small change in our best F1 score only by +0.0081% :

● Learning rate : 0.004
● Momentum : 0.85
● Weight decay: 0.0005
● Batch size : 16
● Solver type : Stochastic Gradient Descent

So the final F1 score of our winning algorithm was 0.8927%.

The last step for evaluating the CP1 was to validate it with the Production dataset(see
5.1.7). The F1 score was lower by -0.0603 % which sums up to 0.8324%.

6.3 CP2 Methodology & Experiments

CP2 is our second component and it is trained for classifying an image that contains a
leaf if it is healthy or diseased, if the component predicts the leaf inside the image is
“diseased” then it classify it further with available categories being “leaf blight” , “black
measles” , “black rot”. For that reason we have 2 classifiers, the first one is a binary
classifier that predicts if a leaf is healthy or not and we will analyze in section 6.3.1 and
after we have a multiclass classifier that predicts in which “diseased” category our leaf
belongs , accordingly we will analyze it in section 6.3.2

6.3.1 CP2 binary classifier

In our network of this binary classifier we used 26 layers. The main idea was convolution
=> relu => pool => dropout and in each new convolution layer we doubled the number
of filters.We did that because as we move forward in the layers the patterns get more
complex, and we want to capture as many combination patterns as possible. We also tried
with more layers with the same logic but it led to overfitting. The activation functions that
we used were “relu” [57] and “softmax” [58]. We used relu because it had higher accuracy,
and it was much faster during training than swiss or sigmoid. Furthermore we used the
softmax function in the last layer because we want the neural network to predict
probability scores during the classification tasks. In other words the softmax activation
function forces the values of output neurons to take values between zero and one, so they
can represent probability scores in a binary class classification. We also tried Kullback
Leibler Divergence Loss but with no better accuracy. We also used L2 regularisation in
order to avoid overfitting with regularization factor = 0.001. We also tried L1 regularization
and a combination of L1 and L2 but the accuracy wasn't better [59]. We used RMSprop
optimizer [60], which is an optimizer that utilizes the magnitude of recent gradients to
normalize the gradients. We used RMSprop optimizer because it led to better accuracy
than “AdaDelta” [61] and “SGD” [62]. Finally we validated the model with 15% data after
every epoch which is also shuffled after each epoch. The Hyper-parameters we used were :

● Batch size = 32
● Epochs = 100
● Optimizer Learning rate = 0.0001
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● Loss Function = binary cross entropy
● Weight Decay = 1e-6

We also have to note that we used as input the Gray scale type of dataset, because it led to
better accuracy.

Figure 26: Network overview of binary classifier.

6.3.2 CP2 multiclass classifier
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In the network of this multiclass classifier we tried the same logic as the binary classifier
that we saw in the previous section (6.3.1) but it led to overfitting. In order to solve that
made some modifications to our network, one of them was to decrease the number of
layers from 26 to 18 but with the same logic which again was convolution => relu => pool
=> dropout and in each new convolution layer we doubled the number of filters. We did
that because as we explained in the previous section while moving forward in the layers
the patterns get more complex, and we want to capture as many combination patterns as
possible. The activation functions that we used were “relu” and “softmax” [63].
Furthermore we used the softmax function in the last layer for the same reason we did
with the CP2 binary classifier (6.3.1). The loss function that we chose was the Categorical
Cross Entropy [64] because our problem is multi-class classification. To avoid overfit
other than decreasing the number of layers we also use L2 regularisation with
regularization factor = 0.001. Finally, the optimizer that gave us better results was the
“SGD”, and we validated the model with 15% data after every epoch which is also shuffled
after each epoch.

The Hyper-parameters we used were :

● Batch size = 32
● Epochs = 100
● Optimizer Learning rate = 0.0001
● Loss Function = categorical cross entropy
● Weight Decay = 1e-6

In this model we used as input the images that were predicted with the label “diseased”
from the previous binary classifier.
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Figure 27: Network overview of multiclass classifier.

6.4 CP2 Results & Evaluation

In order to evaluate our experiments, the metric that was used in both of our classifiers
was the “accuracy” which calculates how often predictions equal labels.

Figure 28: Accuracy formula (source : towardsdatascience.com).

More analytically, among other things in 6.4.1 we will see the accuracy of our binary
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classifier and accordingly in 6.4.2 about our multiclass classifier.

6.4.1 CP2 binary classifier

In this section we can see some plots of our binary classifier.

Figure 29: Binary classifier Precision-Recall curve

Figure 30: Binary classifier ROC curve

Our final model achieved accuracy 0.889 %  in training and 0.866 % in the test dataset.
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Figure 31: Binary classifier accuracy

As we did in the CP1 the last step for evaluating the CP2 binary classifier was to validate it
with the Production dataset(see 4.1.7). The Accuracy score was a little lower and more
specifically was 0.831 %.

6.4.2 CP2 multiclass classifier

In this section we can see some plots of our multiclass classifier.

Figure 32: Multiclass classifier Precision-Recall curve
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Figure 33: Multiclass classifier ROC curve

Our final model achieved accuracy 0.799 % in training and 0.766 in the test dataset. We
have to note that without the use of convolutional neural networks the best accuracy that
we managed to achieve was 0.58.

Figure 34: Multiclass classifier accuracy

Once again the last step for evaluating the CP2 multiclass classifier was to validate it with
the Production dataset(see 4.1.7). The Accuracy score was a little lower and more
specifically was 0.704 %.
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Chapter 7

Epilogue

7.1 Summary and conclusions

In this thesis we presented a solution for recognizing leafs from images and classifying
them among some of the most known leaf diseases. Also an end to end web app has been
created. There are various methods in computer vision plant disease identification and
classification systems, but this research area is still underdeveloped. Furthermore, there
are no commercial options available on the market, with the exception of those concerned
with plant species identification based on leaf photographs. The developed components
were able to detect leaf presence and distinguish between healthy leaves and 3 different
diseases, which can be visually diagnosed. The complete workflow was described,
respectively, from gathering the images used for training and validation to image
preprocessing and augmentation and finally the procedure of training CP1 and CP2 and
fine-tuning. Different test cases were performed in order to check the performance.
Importantly, while the training of the model takes a lot of time(multiple hours on a high
performance GPU computer),the classification itself is very fast(less than a few seconds
on a CPU),and can thus easily be implemented on a smartphone.This presents a clear path
toward smartphone-assisted crop disease diagnosis on a massive global scale of newly
created model. New plant disease image database was created, more than 60,000 images
using appropriate transformations. The CP1 achieved F1 score in validation dataset 0.89%
and in production dataset 0.83%.In the other hand CP2 managed to achieve overall
accuracy 0.86% in validation dataset and 0.83% in production dataset. Fine-tuning has not
shown significant changes in the overall F1 score in CP1 or accuracy in CP2, but the
augmentation process had greater influence to achieve respectable results. As far as we
know, no connection with similar findings using the exact approach has been made
because the presented procedure has not been applied in the field of plant disease
identification.

7.2 Related Work

To date, much work has been done to classify the type of a leaf and in particular to
classify their diseases, which use machine learning algorithms but also deep learning.
Widespread algorithms and architectures are used in the various approaches, as well as
specially designed or adapted architectures. Random Forest (RF), Support Vector
Machines (SVM) and k-Nearest Neighbors (k-NN) algorithms have prevailed in the most
recent research. The use of these algorithms is often combined with other approaches to
data preprocessing, such as the selection of special features that make class separation
easier or the reduction of available features to minimize computational costs. without
losing the accuracy of the results [65]. In addition to machine learning algorithms, deep
learning approaches using neural networks have been tested. The use of Artificial Neural
Networks (ANN), although it brings relatively good results, does not manage to exceed the
success rates of the aforementioned machine learning algorithms [66]. In addition, it is
interesting to use Convolutional Neural Networks (CNN) with one-dimensional (1-D) and
two-dimensional (2-D) convulsions. The application of one-dimensional convolutions
seems to produce better results both from the SVM and RF algorithms and from
implementations with Long Short-Term Memory (LSTM) and the XGBoost algorithm. In
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another study [67] the implementation of a two-dimensional convergent neural network
led to better results than the one-dimensional one. Of particular interest are
implementations that combine neural networks to create unique architectures. For
example, the combination of CNN with Recursive Neural Networks (RNN) [68]. In such
implementations the goal is to make the most of the properties of the different networks,
extracting as much information as possible. The results of the above research show that
such specially designed implementations are able to produce better results than machine
learning algorithms and simple neural network implementations.

7.3 Future Work

As future work could be the following. An extension of this study will be on gathering
images for enriching the database and improving accuracy of the model using different
techniques of fine-tuning and augmentation. The main goal for the future work will be
developing a complete system consisting of server side components containing a trained
model and an application for smart mobile devices with features such as displaying
recognized diseases or giving to users the option to verify the results. Having the user to
verify the results will lead to retraining our components based on user opinion, in order
for this to be successful the user must be a domain expert. Furthermore, future work will
involve spreading the usage of the model by training it for plant disease recognition on
wider land areas, combining aerial photos of orchards and vineyards captured by drones
and convolution neural networks for object detection. By extending this research, in fruits,
vegetables , and other plants , based on leaf images captured by the mobile phone camera.

This application will serve as an aid to farmers (regardless of the level of
experience),enabling fast and efficient recognition of plant diseases and facilitating the
decision-making process when it comes to the use of chemical pesticides. Furthermore,
future work will involve spreading the usage of the model by training it for plant disease
recognition on wider land areas, combining aerial photos of orchards and vineyards
captured by drones and convolution neural networks for object detection. Finally by
extending this research, we hope to achieve a valuable impact on sustainable
development, affecting crop quality for future generations.
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