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ABSTRACT 

Real world environments consist of different acoustic scenes. From a hectic city street 
to a calming suburban village, sounds do not come from a unique outcome, but it is a 
combination of a wide range of sounds that derive from different origins.  

Environmental audio scene and sound event recognition is the main topic of the present 
Thesis. It will utilize and analytically present modern Deep Learning and Transfer 
Learning techniques in order to analyze and study the quality of different environments. 
For this purpose, it will use real-world data that have been collected and annotated by 
human annotators. 

In the present Thesis many experiments under a wide range of setups have been made, 
including classic Deep Learning as far as modern and top-tier Transfer Learning 
techniques to solve the audio classification problem. 

The goal of this work is to provide DL developers with an end-to end solution on audio 
analytics and recognition of soundscape quality in both urban and rural areas, which 
may lead to strong tools to reduce noise pollution for a better and more sustainable 
urban living. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SUBJECT AREA: Auditory Scene Analysis 

KEYWORDS: soundscape analysis, audio classification, deep learning, transfer 
learning, audio analysis, sound recognition 





 

 

ΠΕΡΙΛΗΨΗ 

Ο πραγματικός κόσμος αποτελείται από διάφορες και ποικίλες ακουστικές σκηνές. Από 
δρόμους γεμάτους κίνηση των σύγχρονων μεγαλουπόλεως μέχρι ήρεμα εξοχικά χωριά, 
οι διάφοροι ακουστικοί ήχοι δεν προέρχονται από μια και μοναδική πηγή αλλά είναι ένας 
συνδυασμός διαφόρων ακουστικών προελεύσεων. 

Η ανάλυση των περιβαλλοντικών ηχητικών σκηνών καθώς και η αναγνώριση γεγονότων 
αποτελεί το κύριο θέμα της παρούσας Διπλωματικής Εργασίας. Χρησιμοποιούνται και 
παρουσιάζονται αναλυτικά οι πλέον σύγχρονες τεχνικές Νευρωνικών Δικτύων και 
Βαθιάς Μάθησης με στόχο την ανάλυση και μελέτη της ποιότητας των διαφόρων 
ακουστικών πηγών σε μια πληθώρα διαφορετικών περιβαλλόντων. Προς το σκοπό 
αυτό, όλα τα δεδομένα για την ανάλυση έχουν συλλεχθεί και αναγνωρισθεί με τη 
βοήθεια ανθρώπινου παράγοντα. 

Στη παρούσα Διπλωματική Εργασία έχουν διατυπωθεί και αναλυθεί πολλά και διάφορα 
πειράματα, με διαφορετικές παραμέτρους κάθε φορά, όπως κλασσικές αρχιτεκτονικές 
Βαθιάς Μάθησης και Νευρωνικών Δικτύων καθώς και κορυφαίες τεχνικές μεταφοράς 
γνώσεις μεταξύ διαφόρων Νευρωνικών Δικτύων για προβλήματα κατηγοριοποίησης. 

Απώτερος σκοπός της παρούσας Εργασίας είναι να προσφέρει και να καθοδηγήσει 
νέους προγραμματιστές Νευρωνικών Δικτύων μια ολοκληρωμένη λύση στην ανάλυση 
ηχητικών σκηνών τόσο σε ήρεμα όσο και σε πολύ θορυβώδη περιβάλλοντα, που ίσως 
τους οδηγήσει μελλοντικά στη δραστική μείωση του θορύβου εντός των μεγαλουπόλεων 
για μια πιο βιώσιμη κατοίκιση εντός αυτών. 
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1. INTRODUCTION 

1.1. Motivation 

Real life includes many diverge acoustic environments. From a very calm village area to 
a hectic downtown street, different sounds do not derive from a unique source, but it is a 
complex combination of a diversity of sounds that derive from different origins.  

The present Master Thesis was inspired by the problem of soundscape quality and 
sound recognition and it is addressed in the context of which sound / audio gathered 
from different environments and corresponds to either a bad or good quality, in terms of 
sound pollution.  

For this analysis, there is a vast array of different areas that systems dealing with the 
problem can be applied; amidst them, event detection, noise pollution among cities and 
during siesta hours, IoT etc. 

To this end, it would be very beneficial for the researcher to be able to analyze sound 
clips from different environments and take measures accordingly for enhancing and 
improving humans’ life. 

1.2. Approach 

Environmental audio scene and sound event recognition is the main topic of the present 
Thesis. It will utilize and analytically present modern Deep Learning and Transfer 
Learning techniques in order to analyze and study the quality of different environments. 
For this purpose, it will use real-world data that have been collected and annotated by 
human annotators.  

In order to train and validate the models, Python programming environment is used and 
the main library is Deep Audio Features Package (DAFP). DAFP takes the audio clip as 
input, transforms the audio part into MEL Spectrograms and then applies CNN and DL 
techniques in order to classify the sound clips to different classes according to their 
quality. 

1.3. Structure 

In Chapter 2 of the present Thesis, basic concepts and background are presented; 
Terms like Machine Learning, Deep Learning, Reinforcement Learning, Linear 
Regression and classification are stated. 

In Chapter 3, there is an introduction of Auditory Scene Analysis, Event Detection and 
Machine Listening. Also, there are proposed some Deep Learning methods for 
analyzing and predicting auditory scenes. Finally, the main dataset used for the 
purposes of the present Thesis is proposed and described. 

In Chapter 4, all the experiments done are presented. The models evaluated are 
described meticulously and there is a small discussion at the end. 

Finally, in Chapter 5 the overall conclusion is stated as far as future work and further 
analysis. 

1.4. Related Work 

The present Master Thesis is inspired by a lot of related work that has been made so far 
in the field of Soundscape Analysis and Event Detection. 

Bregman proposed in [23], Auditory Scene Analysis focuses on the problem of hearing 
complex auditory environments, using a series of creative analogies to describe the 
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process required of the human auditory system as it analyzes mixtures of sounds to 
recover descriptions of individual sounds. In a unified and comprehensive way, 
Bregman establishes a theoretical framework that integrates his findings with an 
unusually wide range of previous research in psychoacoustics, speech perception, 
music theory and composition, and computer modeling. 

Related work [26] proposed many methods for extracting different audio features 
according to any occasion. The solid audio feature selection plays a crucial role in audio 
surveillance of the environment. In fact, audio features are intended to grab the 
discriminative information useful for classification purposes while decreasing 
background noises and other redundancies. The complex recognition task with more 
data as discussed in related work [26], can be effectively managed by DL methods 
where classic ML methods cannot guarantee a very good performance.  

CNN is one of the most popular NN architectures used in DL. The DL approach for ASA 
has been proposed in Petetin et al. (2015) using MFCC, spectral centroid, and spectral 
flatness features. DL model-based techniques outperformed the classical ML 
classifiers1. The results have been significantly good for DL with cepstral and frequency 
features compared with well-known features such as HOG classified by the SVM 
approach. In Han and Lee (2016), multi-width frequency-delta data augmentation was 
applied on input features for training using the CNN models. The frequency-delta 
features and Melspectrograms are used as input features for data augmentation to 
represent examples with same labels.  

Another related work in Mafra et al. (2016) reviewed different time aspects when 
combining the features using different classic ML classifiers. This specific 
representation with temporal averaged Mel-log spectrograms using SVM achieved 
better recognition accuracy.  

Also, the authors in Phan et al. (2017) suggested an approach called Convolutional 
Neural Network–Label Tree Embeddings (CNN-LTE) strategy. Using the CNN-LTE 
approach, the features were represented in the form of label tree embedding images. 
Then these features were learned using the simple 1D pooling layers of CNNs.  

As far as the dataset is concerned and according to related work [27], ATHens Urban 
Soundscape (ATHUS) is a dataset of audio clips of audio clips from urban 
environments, which has been humanly annotated by proposing a specific soundscape 
quality for each clip.  

The dataset was made publicly available (in 
http://users.iit.demokritos.gr/~tyianak/soundscape) as an audio feature representation 
form. In addition, in [27] is presented a basic method that shows how the specific 
dataset can be used to train supervised models in order for a developer to predict 
soundscape quality levels in different environments. In other words, the main purpose of 
this attempt was to provide to different developers and ML engineers, an introduction to 
audio recognition and soundscape analysis in different and diverge urban spaces, which 
could lead to powerful assessment tools in the hands of policy makers with regards to 
noise pollution and sustainable urban living. 

 

 

 
1 SVM classifiers 
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2. BACKGROUND 

2.1. Artificial Intelligence 

2.1.1. Introduction 

In the modern times, most people are neither confident nor familiar with the term of 
Artificial Intelligence (AI). When 1,500 senior business leaders in the United States in 
2017 were asked about AI, only 17 percent said they were familiar with it [12]. In spite of 
this lack of familiarity, AI is a tool that is transforming every sector of peoples’ daily life 
and perspective. It is a super technology that makes humans to rethink how to analyze 
and process large amount of information, deal with a vast array of data, and use the 
resulting insights to improve decision making.  

A very brief and naive answer to the question “what is AI?” depends on who is asked. 
One with a shallow knowledge of technology would link it to robots and complex 
machines. A researcher or programmer would claim that it is a set of rules or orders that 
can produce results without having to be explicitly instructed to do so. 

AI is one of the newest scientific sectors in modern engineering and sciences. This 
attempt started after World War II, and the name itself was founded in 1956. AI is 
commonly referred as the “field I would most like to be in” by scientists of other 
disciplines. A student in physics might, without doubt, feel that all the good ideas have 
already been taken by Newton, Galileo and Einstein. AI currently is related to a huge 
variety of subfields, such as playing chess, proving mathematical theorems, writing 
poetry, driving a car on a crowded street, and diagnosing diseases. 

AI, at the beginning, was treated with fear, followed by disappointment and the loss of 
enough funding. After that temporary crisis, AI research has tried and discarded many 
different approaches since its founding, including simulating the brain, modeling human 
problem solving, large databases of knowledge and imitating animal behavior. In the 
first decades of the 21st century, highly mathematical statistical machine learning has 
dominated the field, and this technique has proved highly successful, helping to solve 
many challenging problems throughout industry and academia. 

AI is an exciting subfield of modern technology in the modern times, since it promises to 
change the world in the near future. AI had been a science fiction concept for many 
decades. People could never imagine that a simple machine can perceive humans’ 
behavior, interact with them in an intermediate or even in a very advanced level.  

Past decade has been proved a stepping stone for the development of AI. It has 
achieved a great invasion in humans’ daily lives, for a vast array of tasks. It is not 
undoubted that in the near future, AI could probably give the trigger for a machine 
building that would be able to think, act and feel as an integrated human. Indisputably, 
driving force for this majestic concept is Machine Learning. 

 

https://en.wikipedia.org/wiki/Symbolic_AI#Cognitive_simulation
https://en.wikipedia.org/wiki/Symbolic_AI#Cognitive_simulation
https://en.wikipedia.org/wiki/Symbolic_AI#Knowledge-based
https://en.wikipedia.org/wiki/Machine_learning
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Figure 2.1: AI, ML and DL domains (Source: Google) 

 

The difference between ML and AI is frequently misunderstood (Figure 2.1). ML learns 
and predicts based on past observations, whereas AI implies an agent interacting with 
the environment to learn and take actions that maximize its chance of successfully 
achieving its goals. 

2.1.2. Types of Artificial Intelligence 

AI can be categorized into two (2) different types; Weak AI and Strong AI. 

As Week AI can be named this type of AI that is mainly trained and focused to perform 
specific everyday jobs. In other words Weak AI drives most of the AI that surrounds 
humans on everyday activities. Some of them are Apple's Siri, Amazon's Alexa, IBM 
Watson, and self-driving vehicles. 

Strong AI, on the other hand is a type of AI in a rather theoretical form, where a 
machine could hold intelligence equal to humans. Furthermore, it could have an inherit 
consciousness and ability to learn how to solve problems and make specific plans for 
the near future. Strong AI is also known as super intelligence and surpasses both the 
intelligence and ability of the common human brain. While strong AI is still a theoretical 
notion with no practical examples yet, it does not mean that AI developers are not in 
favor of exploring and developing it further. 

The fields that AI has a general application are the following: 

▪ Automation process consists of a type of software that automates tasks 
traditionally done by humans. When combined with machine learning and AI 
tools, can automate bigger portions of enterprise jobs, enabling RPA's tactical 
bots to pass along intelligence from AI and respond to process changes. 
 

▪ Machine Learning constructs algorithms that learn from data in order to make 
appropriate predictions. Such algorithms take into consideration experimental 
data in order to provide with exclusive data driven predictions. 
 

▪ Deep Learning is a ML technique that tries to teach a machine to manipulate 
and understand input data in order to forecast, make inferences, classify or 
predict the desired result. 
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▪ Computer Vision gives to a machine the ability to see. This architecture 
analyzes visual information using a camera and digital signal processing and it is 
often compared to human eyesight. 
 

▪ Cognitive Computing, algorithms try to imitate a human’s brain and intelligence 
by processing and analyzing objects2 in a way that a human performs and tries to 
give the desired result. 
 

▪ Natural Language Processing (NLP), is the processing of human language by 
a computer program. One of the most known examples of NLP is spam 
detection, which looks at the subject line and text of an email and decides if it's 
junk. Current approaches to NLP are based on machine learning. NLP tasks 
include text translation, sentiment analysis and speech recognition. 
 

▪ Robotics is the field of engineering focuses on the design and manufacturing of 
robots.  
 

▪ Self-driving cars are vehicles that use a combination of computer vision, image 
recognition and deep learning to build automated skill at piloting a vehicle 

2.1.3. Advantages and Disadvantages of Artificial Intelligence 

AI technologies are quickly evolving, primarily because AI processes large amounts of 
data much faster and makes predictions more accurately than humanly possible. 

While the huge volume of data being created on a daily basis would bury a human 
researcher, AI applications that use machine learning can take that data and quickly 
turn it into actionable information. As of this writing, the primary disadvantage of using 
AI is that it is expensive to process the large amounts of data that AI programming 
requires. 

Advantages 

▪ Keen on detail-oriented jobs usually performed by humans 
▪ Reduced time for data-heavy tasks performed by humans 
▪ Delivers consistent results with the best possible guidance. 

Disadvantages 

▪ Implementation can be sometimes expensive 
▪ Requires deep knowledge of maths and statistics, as well as very good technical 

expertise 
▪ If the models have not built in a meticulous base, it lacks the ability to generalize 

from one task to another. 

 

 

 
2 Objects can be text, speech, images, videos, sound etc. 
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2.2. Machine Learning 

2.2.1. Introduction 

Machine Learning (ML) is a Computer Science (CS) field that has been arisen after 
meticulous studying of Computer Theory, Pattern Recognition and Maths (most 
statistics and probability theory). In fact, ML constructs algorithms that learn from 
observations in order to perform appropriate predictions. Such algorithms take into 
consideration some experimental, past data and previous experience in order to provide 
with exclusive data driven predictions. 

Generally, ML is the technological bridge where a machine learns to operate prediction 
or estimation task based on past experience that it is represented by historical data. 

In terms of Mathematics, ML is the employment of mathematical functions and 
equations in order to learn imitate and represent real-world scenarios. The reason why 
ML models are called function approximation is because it will be extremely tough to 
extract exact functions which can be utilized to solve or estimate real world problems. 

ML is applied to a vast array of computational tasks such as spam filtering, Optical 
Character Recognition (OCR), search engines, computer vision tasks, forecasting, 
hypotheses testing, audio recognition, event detection etc. It is sometime confused with 
data mining techniques which are mostly focused on data analysis and exploration 
rather than prediction and making decisions.  

Tom M. Mitchell suggested a more official term for ML: “A computer program is said to 
learn from experience E with respect to some class of tasks T and performance 
measure P, if its performance at tasks in T, as measured by P, improves with 
experience E”. 

In the era of data analytics, ML is a tool or method that is used for implementing and 
deploying algorithms that lead to forecasting and prediction. The method that allows 
predicting and forecasting is the uncovering of hidden patterns that are strongly 
correlated between the data (pattern uncovering). 

If one tries to think how the human brain works, will easily conclude that there is no way 
of injecting knowledge into it. In fact, humans learn with the observation method and 
come to specific findings. In other words, they learn by interacting with their close 
environment. For instance, when a child sees an object for first time, would not be able 
to interpret what exactly observers.  

ML performs with a similar logic; Instead of dealing with every possible parameter, 
programmers develop algorithms which process a large amount of different information. 
In other words, the algorithm based on the information given, tries to construct its own 
logic and adapts its functionality.  

In order this concept to be crystal clear, a simple example is stated below: 

 

Table 2.1: Simple Logic Example 

1 1 

2 8 

3 27 

4 ? 
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What is the missing value of the above Table 2.1? A human brain can easily understand 
that the missing value is not anything else than 64, because one can understand that 
the values on the right part of Table 2.1 are the values on the left part to the power of 
three (3). So, people can experiment with the data given on any conditions and try to 
find a relation between them. 

A simple program, responsible for solving the above toy problem, would probably 
starting by setting random numbers (1, 2, 3, 4,… etc.) in the question mark position. 
When it has reached the real value (64) it would require a simple confirmation that the 
correct answer is 64, or else the algorithm would continue to put numbers up until there 
would be no enough memory. 

Developers should be able then to partially guide their algorithms to the mostly 
acceptable solution by feeding them with data in order for the program to have a 
specific baseline. 

Via ML, programmers try to give to machines partial logic. They seek to make 
computers learn based on observations and gain an experience like human brains. 

2.2.2. How Machine Learning works 

ML consists of three (3) main parts: 

▪ Decision Process, where ML algorithms are used to make a general prediction 
which is based on input data (either labeled or unlabeled) 
 

▪ Loss Function, which is employed in order to evaluate the prediction and the 
accuracy of the model3. 
 

▪ Model Optimization, which is the technique of updating and evaluating the 
model again and again up until a specific threshold of either accuracy or other 
metrics, is met.   

2.2.3. Types of Machine Learning 

2.2.3.1. Supervised Learning 

It is an attempt to deploying ML and AI tasks, where an algorithm is trained in a specific 
set of input data (Training Set) that has been labeled for a particular output4. The model 
is trained until it is capable of uncovering hidden relationships and patterns between the 
input and the output data. During the training phase the model is provided with a vast 
array of labeled data with an input / output relation. This means that for a specific 
training pattern of the input set, corresponds a specific label value. Then the trained 
model is presented with test data in order to fine tune the accuracy and other metrics of 
the initial model. In other words, the main purpose of the test set is to measure how 
accurately the algorithm performs on data without labels. 

 
3 More about Error and Loss functions will be discussed in the next Chapters 
4 Labeled data are those samples that have been already annotated with a specific characteristic. 
Labeled data are used more often in Supervised ML algorithms 
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Picture 2.1: Supervised Learning Architecture (Source: Google) 

 

Supervised learning uses a training set to “teach” a model to yield a desired output. The 
training dataset includes correct input / output pairs and allows the model to learn 
iteratively over the time. 

This ML type is preferred in most cases for classification and regression problems. 

 

 

Picture 2.2: Types of Supervised Learning 

 

Classification Algorithms, try to fit all the training parameters in a given, a priori 
known, number of categories (classes), based on the labeled data that it was trained on. 
In such problems the machine learns to predict discrete values. These algorithms can 
be used for email spam filtering, object recognition, handwritten digit classification or 
any other classification problem solved by Supervised Learning. Some of the most 
famous algorithms that perform classification tasks are: 

▪ Logistic Regression (Binary Classification) 
▪ Random Forest (Bagging Algorithms of ensembling techniques) 
▪ Decision Trees 
▪ Support Vector Machines (SVM) 
▪ Neural Networks 

Regression Algorithms, approach the problem in a diverse way; they expect the 
model to produce numerical relations between the output and the input data. The output 
is not a class result as in the classification problems, but a continuous value between 
given ranges. In such problems the machine is forced to predict the value of a 
continuous response variable. The most popular regression algorithms are: 
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▪ Linear Regression 
▪ Polynomial Regression 
▪ Non-Linear Regression (SVM with non linear kernels) 
▪ Neural Networks 

2.2.3.2. Unsupervised Learning 

In this approach of ML, the algorithm learns and uncovers patterns and relationships 
from unlabeled data. They discover hidden patterns without the need of human 
intervention (training and testing). Also unsupervised learning allows programmers to 
perform more complex tasks compared to supervised learning. This type of learning can 
be more unpredictable in accordance to other natural learning methods.  

The most important reasons for using Unsupervised Learning are the following: 

▪ It uncovers unknown/hidden patterns between the data 
▪ It is easier to process unlabeled data rather than labeled which need manual 

intervention. 
▪ It may find out extra features that can be useful for further categorization 

The most common unsupervised algorithm is clustering.  

 

Picture 2.3: Clustering data into different groups based on similarities (Source: Google) 

 

Clustering, as it can be inferred by the above Picture 2.3, is a data mining technique 
that groups unlabeled data either on their similarities or differences. This algorithm is 
good at dealing with raw and unclassified data in the way of categorizing them into 
different clusters depending on their similarities. Some well-known clustering algorithms 
are: k-means (distance based clustering algorithms), DBSCAN (density based 
clustering algorithms), hierarchical clustering, k-NN (k Nearest Neighbors), PCA 
(Principal Components Analysis), SVD (Singular Value Decomposition) etc.  

2.2.3.3. Reinforcement Learning 

Reinforcement learning is the training of machine learning models to make a sequence 
of decisions. To this end, an agent is employed. The agent learns to achieve a goal in 
an uncertain, potentially complex environment.  

In reinforcement learning, an AI faces a game-like situation. The computer employs trial 
and error to come up with a solution to the problem. To get the machine to do what the 
programmer desires, AI gets either rewards or penalties for the actions it performs. Its 
goal is to maximize the total reward. 
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Although the designer sets the reward policy (that is the rules of the game) they give the 
model no hints or suggestions for how to solve the game. It’s up to the model to figure 
out how to perform the task to maximize the reward, starting from totally random trials 
and finishing with sophisticated tactics and superhuman skills.  

 

 

Figure 2.2: Reinforcement Learning Architecture (Source: Google) 

 

By leveraging the power of search and many trials, reinforcement learning is currently 
the most effective way to hint machine’s creativity. In contrast to human beings, AI can 
gather experience from thousands of parallel game plays if a reinforcement learning 
algorithm is run on a sufficiently powerful computer infrastructure. 

Examples of reinforcement learning 

Applications of reinforcement learning were in the past limited by weak computer 
infrastructure. However, as Gerard Tesauro’s 37 backgammon AI superplayer 
developed in 1990’s shows, progress did happen. That early progress is now rapidly 
changing with powerful new computational technologies opening the way to completely 
new inspiring applications. 

Training machines that control self-driving cars is an excellent example of the possibility 
of application of reinforcement learning. In an ideal situation, the computer should get 
no guidance on driving a car. The developer would avoid anything connected with the 
task and allow the machine to learn from its own errors.  

For example, in some circumstances an autonomous vehicle is required to put safety 
first, minimize ride time, reduce pollution, offer passengers comfort and obey the rules 
of law. With an autonomous race car, in the opposite, an emphasis should put on speed 
much more than the driver’s comfort. The developer cannot predict everything that 
could happen on the street. Instead of building lengthy “if-then” instructions, the 
programmer prepares the reinforcement learning agent to be capable of learning from 
the system of rewards and penalties. The agent gets rewards for reaching specific 
goals. 

2.2.3.4. Transfer Learning 

Transfer learning (TL) is an applied problem in ML that focuses on transferring 
knowledge previously acquired while solving one problem and applying it to a different 
but correlated problem. 
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TL is a modern method of ML where the application of knowledge obtained from a 
model used in one previous task and can be used again as a foundation point for 
another process. 

ML algorithms use previous experience as inputs to make inference and produce new 
output values. They are typically designed to conduct isolated tasks. A source task is a 
task from which knowledge is transferred to another target task. A target task is where 
improved learning occurs because of the transfer of knowledge from a source task. 

During TL phase, the knowledge used from a source task is leveraged to improve the 
learning and development to a new target process. The application of knowledge is 
using the source task’s attributes and characteristics, which will be applied and mapped 
onto the new target task (Picture 2.4). 

When the TL comes to increase the performance of the new process, then it is called a 
positive transfer and when there is a decrease in the performance, it is called a 
negative transfer. One of the major priorities when dealing with TL methods is being 
capable of providing and ensuring the positive transfer between related tasks while 
avoiding the negative transfer. 

 

Picture 2.4: TL architecture of an image classification problem (Source: Google) 

 

TL consists of three (3) different types, which are stated below: 

▪ Inductive Transfer Learning 

In this type of TL, both the source and target processes are the identical. The model 
uses inductive biases from the source task to help improve the performance of the 
target task. The source task can contain labeled data, further leading to the model using 
multitask learning. 

▪ Unsupervised Transfer Learning 

Unsupervised TL is when an algorithm is subjected to being able to identify patterns in 
datasets that have not either been labeled or classified. In this scenario, both the source 
and target are similar. The task here is different, if the data is unlabeled in both source 
and target. Techniques such as dimensionality reduction and clustering are well known 
in unsupervised TL learning. 

 



Deep Learning Methods for Auditory Scene Analysis 

G. Charitos                                                                                                                                                                                         39 

▪ Transductive Transfer Learning 

In this type of TL, the source and target processes share similarities but the domains 
are not similar. The source domain consists of labeled data, whereas there is a lack of it  
in the target domain, in order for the model to use specific adaptation. 

The benefits of utilizing TL techniques are summarized below: 

• Better initial model. In non TL models, the researcher needs to construct a 
model without prior knowledge. TL offers a better zero point and can handle 
processes at some level of experience without training. 

• Higher learning rate. TL offers a higher learning rate during the training phase 
because the problem has already trained for another similar job. 

• Higher accuracy. With a better zero point and higher learning rate, TL provides 
a ML model to converge at a higher performance level, providing with more 
robust results. 

• Faster convergence. The process of learning can acquire the desired result 
faster than traditional ML methods because it utilizes a pre-trained model. 

2.2.4. Mathematics and Concepts of Machine Learning 

ML is all about mathematics, which in turn helps in creating algorithms that can learn 
from data and make accurate predictions / inferences. The prediction could be as 
simple as classifying amidst dogs and cats from a given set of pictures or what kind of 
products to recommend to a customer based on past purchases. Nevertheless, it is very 
important to completely understand the math concepts behind any basic ML algorithm. 
This fact, may help one picks all the right algorithms for their project in Data Science 
(DS) and ML. 

ML is primarily built on mathematical prerequisites so as long as it is understood why 
the Maths is used, one will find it more satisfying. With this, it could be crystal clear why 
to pick one ML algorithm over the other and how it affects the performance of the 
model. 

 

Figure 2.3: Mathematical Concepts for ML (RED) and DS (BLUE) (Source: Google) 
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The Mathematical concepts that are totally important for ML and further DS 
implementation belong in a wide range of categories, as following: 

▪ Linear Algebra 

The importance of linear equations is a fundamental component in developing basic ML 
concepts. Linear algebra is applied in ML algorithms in loss functions, regularization, 
covariance matrices, SVD, Matrix Operations, and SVM. It is also applied in ML 
algorithms like linear regression. These are the concepts that are needed for 
understanding the optimization methods used for machine learning. 

In order to perform a Principal Component Analysis (PCA) that is used to reduce the 
dimensionality of data, we use linear algebra. Linear algebra is also primarily used in 
neural networks for the processing and representation of networks.  

▪ Calculus 

Many students / learners who did not find learning calculus fascinating at school will be 
in a shock as it is an integral part of ML. Undoubtedly, there is no need for one to 
master calculus but it is only important to learn and understand the basic components / 
principles of it. Furthermore, a thorough understanding of the practical applications of 
ML through calculus during model construction is required. 

For instance, the derivative of the function returns its rate of change in calculus, and 
one should be able to understand the concept of gradient descent. Gradient descent, 
finds the local minima for a function and so on. Also, some of the necessary topics to 
ace the calculus part in DS are Differential and Integral Calculus, Vector-Values 
Functions, Partial Derivatives, Directional Gradients etc. 

▪ Descriptive Statistics 

Descriptive statistics is a foundamental concept that every aspiring data scientist needs 
to learn to understand ML when working with classifications tasks like logistic 
regression, distributions, discrimination analysis, and hypothesis testing. 

Statistics is very essential in order for one to become a successful data scientist. 
Statistics is the main part of mathematics for ML. Some of the fundamental statistics 
needed for ML are Axioms, Bayes’ Theorem, Expectation / Maximization, Variance and 
Expectation, Random Variables, Conditional, and Joint Distributions. 

▪ Discrete Maths 

Discrete mathematics is concerned with non-continuous numbers, most often integers. 
Many applications necessitate the use of discrete numbers. For instance, when 
scheduling a taxi fleet, cannot be sent 0.88 taxis to pick up a client.  

Many of the structures in AI are discrete. A NN, has an integer number of nodes and 
interconnections between the nodes. Thus, the mathematics used to construct a neural 
network must include a discrete element, the integer representing the number of nodes 
and interconnections. 

▪ Probability Theory 

To properly work through a ML predictive modeling project, it would be reasonable to 
conclude that probability is essential. ML is the process of creating prediction models 
from ambiguous or partially unknown data. Working with faulty or incomplete 
information is what uncertainty matters. 

Uncertainty is crucial to ML, yet it is one of the components that create the most 
difficulties for newcomers, particularly those coming from a programming background. 
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In ML, there are three major sources of uncertainty:  

• Noisy data,  

• Imperfect models, 

• Limited coverage of the problem area. 

However, with the help of the right probability tools, solving a problem can be estimated. 
Finally, probability is essential for hypothesis testing and distributions like the Gaussian 
distribution and the probability density function (PDF). 

2.2.5. Machine Learning Metrics 

Choosing the correct metric while deploying and evaluating ML models is crucial. In 
some applications looking at a single metric may not give you the whole picture of the 
problem being solved, and one may want to use a subset different metrics to have a 
solid evaluation of a model. 

Without doubt, different metrics are used for different ML tasks, so a brief discussion will 
be provided for each type of ML problem. 

2.2.5.1. Classification Related Metrics 

Classification is one of the most widely used problems in ML with various industrial 
applications, from face recognition, video categorization, content moderation, medical 
diagnosis, video summarization to text classification and hate speech detection on 
social media. 

Models such as SVM, logistic regression, decision trees, random forest, Xgboost, 
Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) are some of 
the most popular classification models. 

 

 

Figure 2.4: Confusion Matrix of a Binary Classification Problem 

 

There are various ways to evaluate a classification model. Some of them are provided 
below. 

▪ Classification Accuracy 

Classification accuracy is perhaps the simplest and the most popular amidst the metrics 
one can imagine and is defined as the number of correct predictions divided by the total 
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number of predictions, multiplied by 100. So taking Figure 2.4 into consideration, 
accuracy is given by the following equation: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝐴𝑙𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

▪ Precision  

There are many cases where classification accuracy is not a good metric of a model 
performance. One of these scenarios is when a class distribution is imbalanced5. In this 
case, even if one predicts all samples as the most frequent class they would get a high 
accuracy rate, which does not make sense at all, because the model is not learning 
anything, and is just predicting everything as the top class.  

So, one needs to look at class specific performance metrics too. Precision is one of 
such metrics, which is defined as: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 

𝐴𝑙𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

It actually shows the percentage of the Correct Positives over the total number of 
positives predicted by the classifier. 

Precision is also known as Specifity of a model 

▪ Recall 

Recall is another important metric, which is defined as the fraction of samples from a 
class which are correctly predicted by the model. In mathematical formation: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 

𝐴𝑙𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
=  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

It actually shows the percentage of the Correct Positives over the total number of 
positives. 

Recall is also known as Sensitivity of a model 

▪ F1 – Score  

Depending on application, one may want to give higher priority to recall or precision. But 
there are many applications in which both recall and precision are significant. To this 
end, it is natural to consider of a way to combine these two metrics into a single 
one. One popular metric which combines precision and recall is called F1-score, which 
is the harmonic mean of precision and recall defined as: 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 
𝑟𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

 
5 Imbalanced data refers to those types of datasets where the target class has an uneven distribution of 
observations, i.e one class label has a very high number of observations and the other has a very low 
number of observations. 
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All the above metrics are summarized as following: 

 

 

Picture 2.5: Most popular Classification Metrics 

 

2.2.5.2. Regression Related Metrics 

Regression models are another family of machine ML and statistical models, which are 
used to predict a continuous target values. They have a wide range of applications, from 
house price prediction, e-commerce pricing systems, weather forecasting, stock market 
prediction, to image super resolution, feature learning via auto-encoders, and image 
compression. 

Metrics used to evaluate these models should be able to work on a set of continuous 
values6, and are therefore slightly different from classification metrics. 

Some Regression Metrics are the following: 

▪ Mean Squared Error 

Mean Squared Error (MSE) is perhaps the most well known metric used for regression 
problems. It essentially computes the average squared error between the predicted and 
actual values. 

Assuming a regression model which predicts the house prices in Athens area (show 
them with ŷᵢ) and for each house there is an actual price the house was sold for 
(denoted with yᵢ). Then the MSE can be calculated as: 

MSE =
1

N
∑(ŷi −  yi)

2

N

i=1

 

Where ŷi is the predicted price of the house and yi is the actual price. 

▪ Mean Absolute Error  

Mean Absolute Error (MAE) is another metric which finds the average absolute distance 
between the predicted and target values. MAE is defined as following: 

MAE =
1

N
∑|ŷi −  yi|

N

i=1

 

 
6 Prerequisite is the variables to be continuous and have infinite cardinality 
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Where ŷi is the predicted price of the house and yi is the actual price. 

▪ Root Mean Squared Error 

Root Mean Squared Error (RMSE) is nothing but the standard deviation of the 
prediction error (residuals). In mathematical form, is the squared root of the MSE and it 
is given by the following mathematical type: 

 

RMSE = √
1

N
∑(ŷi −  yi)2

N

i=1
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2.3. Artificial Neural Networks 

2.3.1. Introduction 

The human brain, its functionality and the way it works and in general, inspired the 
creation and the development of Artificial Neural Networks (ANN). AI and ML play an 
essential part in this task. It starts working when a developer enters data and builds a 
ML algorithm, mostly using simple “if … else …” clauses of building a program.  

 

 

Picture 2.6: Human brain’s neurons architecture (Source: Google) 

 

The deep neural network does not only work according to the algorithm but also can 
predict a solution for a task and make conclusions using its previous experience7. In this 
case, there is no need of using either programming or coding to get an answer. 

2.3.2. Deep Neural Networks 

The field of AI is essentially on the condition when machines can do tasks that typically 
require human intelligence. It utilizes ML, where machines can learn by experience and 
acquire skills without human intervention. DL is a subset of ML where ANN algorithms 
inspired by the human brain that learn from large amounts of data. Similarly, to how a 
human brain learns from experience, the DL algorithm would perform a task repeatedly, 
each time changing it a little to improve the desired result. It is mostly referred as DL 
because the NN have various layers that enable and enhance learning. Just about any 
problem that requires “thought” to figure out is a problem that DL can learn to solve. 

The amount of data generated every day is astonishing8 and it’s the resource that 
makes DL feasible. Furthermore, DL algorithms benefit from the stronger computing 

 
7 Past data in the form of training sets 
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power that is available in the modern times as well as the proliferation of AI as a 
Service. AI has given smaller organizations access to AI technology and specifically the 
AI algorithms required for deep learning without a large initial investment. 

DL allows machines to solve complex problems even when using a data set that is very 
diverse, unstructured and interconnected. The more DL algorithms acquire knowledge, 
the better they perform. 

Nodes are little parts of the system, and they are like neurons of the human brain. When 
a stimulus hits them, a process takes place in these nodes. Some of them are 
connected and marked, and some are not, but in general, nodes are grouped into layers 
as the Figure 2.5 depicts.  

The system must process layers of data between the input and output to solve a 
specific problem. The more layers it has to process to get the result, the deeper the 
network is considered. There is a concept of Credit Assignment Path (CAP)9 which 
means the number of such layers needed for the system to complete the task. The 
neural network is deemed as deep if the CAP index is greater than two. 

 

Figure 2.5: DNN Architecture (Source: Google) 

 

A deep neural network is beneficial when you need to replace human labor with 
autonomous work without compensating for its efficiency. The DNN usage can acquire 
various applications in real life that will be discussed in the following Paragraphs.  

The DNN, in general, consist of the following layers (Figure 2.5): 

Input Layer  

The input layer takes input values (raw input) from the domain. No computation or other 
manipulation is performed at this layer. Nodes here just pass on the features 
(information) to the next hidden layer.  

Hidden Layer 

 
8 Currently estimated at 2.6 quintillion bytes daily 
9 CAD index implies the number of hidden layers a NN Architecture has. Architectures with CAD index 
greater than 2 are considered to be deep architectures. If CAD index is less than 2, architectures are 
classified as shallow. 
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At this phase, the nodes of this layer are not exposed. They provide an abstraction to 
the neural network.  

The hidden layer performs all kinds of computation on the features entered through the 
input layer and transfers the result to the next layer (output layer). 

Output Layer 

It is the final layer of the network that brings the information learned through the hidden 
layer and delivers the final value as a result.  

2.3.2.1. Training Artificial Neural Networks 

Training ANN is a quite complex process. Some things that one should bear in mind are 
the following: 

Back Propagation 

Back-propagation is the need of NN training. It is a way of fine-tuning the weights of a 
NN based on a specific error index (i.e. loss) obtained in previous training iterations10. 
Proper tuning of the weights ensures lower error rates, making the model reliable by 
increasing its generalization and stability. 

Gradient Descent 

Gradient descent is an iterative first-order optimization algorithm used to find a local 
minimum (in the field of optimizing ANN algorithms) of a given function. This method is 
widely utilized in ML and DL algorithms, in order to minimize the cost function. Gradient 
descent algorithm does not work for all functions. In DL algorithms functions are convex 
and they usually converge in a minimum.   

2.3.2.2. DNN in Real Life 

Some real examples that DNN help people into their daily lives and routines are the 
following: 

Virtual assistants 

Whether it is Alexa or Siri, the virtual assistants of online service providers use DL 
techniques to help recognize one’s speech and the language humans use when they 
interact with them and provide the best possible services in accordance to their 
problem. 

Machine Translations 

In a similar way, DL algorithms can automatically translate between different languages 
from almost all over the world. This can be powerful for travelers and people in the 
industry. 

Self-Driving Cars 

The way an autonomous vehicle understands the realities of the road and how to 
respond to them whether it is a stop sign, a ball in the street or another vehicle is 
through DL architectures. The more data the algorithms receive, the better they are able 
to act human-like in their information processing, even knowing that a STOP sign 
covered with snow is still a STOP sign depending on its shape and size. 

Chatbots 

 
10 Iterations in NN are well known as Epochs 
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Chatbots that provide customer service for lots of companies are capable of responding 
in a rather intelligent and helpful way to an increasing amount of auditory and text 
questions. 

Image Colorization 

Transforming black & white images into colorful was formerly a task done meticulously 
by human hands. In the modern times, DL architectures are capable of using the 
context and objects in the images to color them. The results are very impressive and so 
accurate. 

Event Detection 

In the era of event detection, DL and ANN architectures play a crucial role. Using such 
architectures and techniques many events can be recognized (fires, explosions, high 
sound pollution in urban areas) automatically without the need of a human observer 
24/7. 

Face recognition 

DL is being used for face recognition not only for security purposes but also for tagging 
people on social media posts automatically. The challenges for DL algorithms for facial 
recognition is to know exactly that it is the same person even when they have changed 
hairstyles, grown or shaved off a beard or if the image taken is poor due to bad lighting 
or an obstruction. 

Medicine and Pharmaceuticals 

From disease and growth diagnoses to personalized medicines created specifically for 
an individual’s genome, DL in the medical field has the attention of many of the largest 
pharmaceutical and medical companies in the globe. 

Entertainment 

Ever wonder how Netflix comes up with suggestions for what you should watch next? 
Or where Amazon comes up with ideas for what you should buy next and those 
suggestions are exactly what you need but just never knew it before? Totally, it is DL 
algorithms that do this complex job. 

2.3.3. Loss and Loss Functions in DL 

2.3.3.1. What is Loss and Loss Functions 

Loss and loss functions in general, are nothing else but  a method of evaluating how 
well a DL algorithm fits / models data. If the predictions are fully different from the 
ground truths, the loss function will result to a higher value than expected. On the other 
hand If they are pretty good and inside the desired tolerance, it will output a lower value. 
By changing elements of the program in order to improve your model, the loss function 
will change accordingly (either gets higher or smaller). 

The model loss is related to the model accuracy and in mathematical form can be noted 
as the difference between the ground truth (actual value) and the predicted value. The 
general mathematical type for the loss is the following: 

 

Loss = |ypred −  yactual| 
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2.3.3.2. Types of Loss Functions 

Many types of loss functions can be found in DL problems. To which loss can one 
utilize, depends on the type of the algorithm. For instance, different types of losses are 
used for either classifications or regression problems. Some of the most common loss 
functions are stated in the next paragraphs. 

▪ Mean Squared Error (MSE) 

This type of metric was mentioned in previous Chapters, as a very common metric for 
evaluating regression problems in the era of ML. But MSE is also a great and popular 
loss function referred to DL when dealing with regression issues. The mathematical type 
is the same as: 

MSE =
1

N
∑(ŷi −  yi)

2

N

i=1

 

The less value of MSE a model outputs, the most accurate model is in terms of 
returning more realistic predictions. 

 

 

▪ Binary Cross Entropy (Log Loss for binary classification) 

This type of loss is most commonly used for binary classification problems. Binary cross 
entropy compares each of the predicted probabilities to actual class output which can 
be either 0 or 1. It then calculates the score that penalizes the probabilities based on the 
distance from the expected value. That means how close or far from the actual value. 
The mathematical type of the Binary Cross entropy is the following: 

 

Log Loss = −
1

N
 ∑[yilog(pi) + (1 − yi) log(1 − pi)]

N

i=1

 

 

Where N is the length of the training data, y is the value of the corresponding data and p 
is the referring probability. 

▪ Categorical Cross Entropy (Log Loss for multiclass classification) 

This type of loss is used for multiclass classification problems. These are tasks where 
an example can only belong to one out of many possible categories, and the model 
must decide which one. In other words, this loss is a very good measure of how 
distinguishable two discrete probability distributions are from each other. The 
mathematical type of the Categorical Cross Entropy is the following 

 

Log Loss = −
1

N
 ∑yilogyî

N

i=1

 

Where, yî is the model’s output value, yi is the ground truth target value and N is the 
length of the training data. 
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2.3.4. Activation Functions in DL 

Activation Functions decide if a neuron needs to be activated or not. It will decide whether 
the neuron’s input to the network is significant in the process of prediction. To achieve this 
simple mathematical operations are used. 

The role of the Activation Function is both to derive output from a set of input values fed to 
a node and add the sense of non-linearity into the NN model. In other words, activation 
functions add an additional step at each layer during the forward propagation.  

2.3.4.1. Types of Activation Functions 

▪ Binary Step Function 

This type of activation functions is based on a specific threshold value that decides 
whether a neuron should be activated or not.  

 

Figure 2.6: Binary Step Function 

 

The input data to the activation function is compared to a specific threshold. If the input 
is greater than it, then the neuron is activated, else it stays deactivated and the output is 
not forwarded to the next layer. 

The mathematical type of Step Function is the following: 

 𝑓𝑠𝑡𝑒𝑝(𝑥) =  {
0, 𝑥 < 0
1, 𝑥 ≥ 0

 

▪ Linear Activation Function 

The linear activation function is that function where the output is proportional to the 
input.  
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Figure 2.7: Linear Activation Function 

 

The above linear activation function shown above is simply a linear regression model 
problem.  

Due to its limited power, this does not allow the model to create complex mappings 
between the network’s inputs and outputs. In order to solve this limitation, non linear 
activation functions are used for complex DL models. 

The mathematical type of the Linear Function is the following: 

𝑓𝑙𝑖𝑛𝑒𝑎𝑟(𝑥) =  𝑥  

 

▪ Sigmoid Activation Function 

The Sigmoid function takes real values as input and maps values in the range of [0, 1].  

The greater the input, the closer the output value will be to 1, whereas the smaller the 
input, the closer the output will be to 0, as the above figure depicts. 

 

Figure 2.8: Sigmoid Activation Function 
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The sigmoid function is most commonly used in models where it is needed to predict the 
probability as an output. Since probability bounds between the range [0, 1], this function 
is the best possible choice. 

The mathematical type of the Sigmoid Function is the following: 

𝑓𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =  
1

1 + 𝑒−𝑥
  

▪  Hyperbolic Tangent Activation Function (tanh function) 

Hyperbolic Tangent Activation Function is very close to the sigmoid activation function, 
with the difference in the output range which is in the range of [-1, 1].  

 

Figure 2.9: Hyperbolic Tangent Activation Function 

 

In Hyperbolic Tangent Activation Function, the greater the input, the closer the output 
value will be to 1, whereas the smaller the input, the closer the output will be to -1. 

The output of the above activation function is zero-centered. Thus, one can easily map 
the output values as strongly negative, neutral, or strongly positive. 

The mathematical type of the Hyperbolic Tangent Activation Function is the following: 

𝑓𝑡𝑎𝑛ℎ(𝑥) =  
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
  

▪ Rectified Linear Unit (ReLU) Activation Function 

At first glance it gives the impression of a linear function. ReLU allows backpropagation 
and simultaneously making the computations more efficient.  
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Figure 2.10: ReLU Activation Function 

 

ReLU does not activate all the neurons at the same time. Specifically, the neurons will 
only be activated if the output of the linear transformation is greater than 0. 

Since only a specific number of neurons are activated, ReLU is very computationally 
efficient when compared to other activation functions (ex. when compared with sigmoid 
or tanh activation function). 

ReLU makes faster convergence of gradient descent to the global minimum of the loss 
function due to its linear property. 

The mathematical type of the ReLU Activation Function is the following: 

𝑓𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥)  

▪ Leaky ReLU Activation Function 

Leaky ReLU is another more improved version of ReLU function.  

 

Figure 2.11: Leaky ReLU Activation Function 

 

The pros of Leaky ReLU are more or less the same as that of the normal ReLU, in 
addition to the fact that it does enable backpropagation, even for negative input values.  
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By enabling negative values to pass, the gradient of the left side of the graph comes out 
to be a non-zero value. Therefore, we would no longer encounter dead neurons in that 
region.  

The mathematical type of the Leaky ReLU Activation Function is the following: 

𝑓𝐿𝑅𝑒𝐿𝑈(𝑥) =  {
𝑥, 𝑥 > 0

𝑎𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Where 𝑎 is a user hyperparameter 

▪ Softmax Activation Function 

Softmax function can be described as a combination of many sigmoid functions. 

 

 

Figure 2.12: Softmax Activation Function 

 

It outputs the relative probabilities. Similar to the sigmoid activation function, the 
Softmax returns the probability of each class on a multiclass classification problem. 

It is most commonly used as an activation function for the last layer of the neural 
network in the case of multiclass classification.  

The mathematical type of the Softmax Activation Function is the following: 

𝑓𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧) =  
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝐾
𝑖=1
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3. AUDITORY SCENE ANALYSIS 

3.1. What is Sound? 

Sound is produced when an object’s vibrations move through a medium until they enter 
the human eardrum. In physics, sound is produced in the form of a pressure wave. If an 
object moves rapidly, it causes the surrounding air molecules to move too, initiating a 
chain reaction of sound wave vibrations throughout the medium. While the physiological 
definition includes a subject’s reception of sound, the physics definition recognizes that 
sound exists independently of an individual’s reception [25]. 

 

Picture 3.1: The sound perception of a human brain (Source: Google) 

3.1.1. Types of Sounds 

There are so many different types of sounds and categories. Some of them are stated 
below: 

▪ Infrasounds 

Infrasounds have frequencies under 20000Hz, which makes them inaudible to the 
human ear. Scientists use infrasound to detect earthquakes and volcanic eruptions, to 
map rock and petroleum formations underground, and to study activity in the human 
heart. Despite our inability to hear infrasound, many animals use infrasonic waves to 
communicate in nature. Whales, hippos, rhinos, giraffes, elephants, and alligators all 
use infrasound to communicate across impressive distances [25]. 

▪ Ultrasounds 

Ultrasounds have frequencies higher than 20000Hz. Because ultrasounds occur at 
frequencies outside the human hearing range, it is not audible to the human ear. 
Ultrasounds are most often used by medical specialists who use sonograms to examine 
their patients’ internal organs. Some lesser-known applications of ultrasound include 
navigation, imaging, sample mixing, communication, and testing. In nature, bats emit 
ultrasonic sounds to locate prey and avoid obstacles [25]. 

 

Figure 3.1: Frequencies of sound and average range of hearing (Source: Google) 
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3.2. Introduction to Auditory Scene Analysis 

Auditory Scene Analysis (ASA) refers to the process of deploying complex acoustic 
input into different auditory objects such as audio clips, music, human interactions, 
which form the sound waves reaching human ears.  

Hearing is one of the five basic human senses. People use this awesome capability 
naturally in their daily lives, but they often regret its importance. They communicate with 
other people by talking, feel and perceive this world through acoustic information along 
with other sensory data. 

As Bregman proposed in [23], ASA focuses on the problem of hearing complex auditory 
environments, using a series of creative analogies to describe the process required of 
the human auditory system as it analyzes mixtures of sounds to recover descriptions of 
individual sounds. In a unified and comprehensive way, Bregman establishes a 
theoretical framework that integrates his findings with an unusually wide range of 
previous research in psychoacoustics, speech perception, music theory and 
composition, and computer modeling. 

All landscapes include sounds that definitely vary from time to time during the same day 
or from day to day throughout a year. Natural habitats are dominated by sounds from 
living organisms / creatures, such as insects, snakes and birds, and non-living particles 
such as lakes, rivers or even gusts of wind. On the other hand, urban landscapes 
accommodate human activities that tend to dominate sounds, such as building 
machines, tires braking on the street, different types of sirens or even people 
conversations. Sounds derived from a landscape produce its unique soundscape which 
is a combination of a wide range of distinct components. Soundscape ecology is a 
relatively new and very active field of research that studies the relationships between 
soundscape composition, biodiversity patterns, and the definitely the interactions of 
organisms with their environment live in. 

Soundscape ecology originated from the relatively era of bioacoustics, which has been 
the study of animal communication and behavior for many years. This fact has 
indisputably led to a new way of grasping biodiversity surveillance, from the perspective 
of the individual species to assessing the overall biological diversity that generates the 
soundscapes. 

More formally, a soundscape is a dedicated sound event or a combination of sound 
events that derive from the outer environment. Generally, the study of soundscape 
environments is a field of the soundscape ecology11.  

The grasp of the soundscape term refers to both the natural surroundings, consisting of 
sounds like animal vocalizations, biophony12 and geophony13. Without doubt, the term 
soundscape also consists of the listener's perception of sounds heard. One can claim 
that the term soundscape can also refer to either different audio recordings or 
performances of sounds that create the feeling of a specific acoustic environment. 

The philosophy of the soundscape concept can be used to evaluate and describe 
acoustic environments. Basically the focus is not on whether the sounds are loud, but 
on how humans perceive them in a specific situation. Taking this into consideration, 
studying meticulously the soundscape analysis can be used for: 

▪ Urban planning, 

 
11 Soundscape ecology is the study of the acoustic relationships between living creatures or humans and their 

environments 
12 Biophony is referred to collective habitat expression 
13 Geophony is referred to sounds of the weather and other natural elements 
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▪ Noise control and monitor, 
▪ Event detection 

3.3. Event Detection 

Monitoring of human and social activities is becoming increasingly important in the living 
habitat from public security to safety applications. The recognition of dangerous or 
rather suspicious events is significant in all environments (indoor and outdoor), such as 
smart-homes, residential areas, offices, elevators and undoubtedly in all modern smart 
cities.  

Environmental audio scene and sound event recognition are the basic processes 
involved in many audio surveillance applications. Despite numerous approaches have 
been arisen, robust environmental audio surveillance remains a big challenge because 
of various reasons, like background noises and the lack of universal and multi-modal 
datasets.  

Event detection is the task of manipulating or analyzing different events in order to 
uncover sets of common patterns within the same event. These patterns define the 
event type. If some events match a specific pattern, then a specific event occurs. Some 
examples of these events can be an unexpected explosion, a fire outbreak, a movement 
in CCTV bank systems, traffic, construction activities during siesta hours, industrial, and 
social activity, etc. The analysis typically entails filtering and aggregation of events.  

In the era of soundscape analysis, Sound Event Detection (SED) is mostly analyzed 
and studied. The main goal of SED methods is to recognize what is happening in an 
audio signal and when it is happening. In other words, the target is to recognize at what 
temporal instances different sounds are active within an audio signal.  

In other words, it can be claimed that SED is a process of automatically detecting sound 
events from an audio source. This benefits many applications such as smart homes, 
smart speakers, smart house appliances, mobile devices, etc. 

Event detection and sound analysis has caught a lot of researchers’ eyes in the recent 
years, because a sound does not often come from a single source but it is commonly a 
combination of sounds from many different sources.  

3.4. Machine Listening 

Machine Listening is the audio substitute for Computer Vision. It combines and 
leverages modern techniques (ex. signal processing, ML, DL) to develop intelligent 
systems to grab significant and meaningful information from different sounds. Such 
information can be car engines, vehicle horns, police sirens, construction machines etc. 
Detecting such sounds is quite challenging taking into consideration the complexity and 
the variety of the sound sources, the auditory scenes and the background of the modern 
urban acoustic environments.  

It can be claimed that speech and sound recognition is one of the most widely evolved 
technology in the modern industry which allows people to interact and communicate 
with computers in a more natural way. In the past It was very hard for computers to 
perceive human’s speech, but the technological level of it enhanced from 2010 and on, 
when modern DL techniques came into play. 

Computer vision, NLP, and speech recognition in general, are highly significant 
technologies for AI. However, modern technology miss an important thing; Sound. 
Speech is nothing else but sound. Despite existing millions or even billions of sounds in 
the whole environment (ex. urban, rural etc.), machines still do not well understand what 
is going on around them.  
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Machine listening, then can be described as a research area to make a system 
understand non-verbal information from an audio. A formal definition from the machine 
listening research laboratory from Queen Mary, University of London is the following: 

“Machine listening is the use of signal processing and machine learning for making 
sense of natural / everyday sounds, and recorded music”. 

People’s voices contain linguistic information. Besides this information, humans are also 
capable of guessing different clues from the voice. Such characteristics could be the 
age, the gender, a possible emotion etc. Music is another type of audio that contains 
even more complex information such as genre, mood, tempo etc.  

 

 

Picture 3.2: Voice and music characteristics (Source: Google) 

 

Undoubtedly, either voices or music are a very small percentage of what one hears 
during the day. Actually, humans do not know how many sounds can distinguish and 
there are no clear boundaries between different sounds. In machine listening, all other 
sounds are often called environmental sounds and they are divided into two main 
groups of topics which are the acoustic scenes and the acoustic events. 

 

 

Picture 3.3: Acoustic scenes and Acoustic events (Source: Google) 
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The acoustic scenes are location-related information such as buses, parks, libraries, 
cafes or city centre sounds. It is impossible to recognize the scene with very short 
audio, so normally researchers assume that at least 10 seconds of audio is required to 
estimate the scene. On the contrary, acoustic events terminology is normally used for 
shorter sounds that include specific events such as glass break, knock, car horn, or dog 
bark. It might be a very short sound like 0.1 seconds, but also can be quite long like 
continuous water flow. 

Despite the machine listening sector has been actively researched since more than a 
decade ago, it was still quite far away from the point that can be widely applied to real-
world problems and applications, even after modern DL techniques and NN algorithms 
were introduced. Finally, developers have made a breakthrough and DL techniques and 
approaches outperformed classic ML methods in 2017. 

 

Figure 3.2: ML (red) vs DL (blue) techniques on Machine Listening Problem (Source: Google) 

 

Advanced ML and NN architectures arose millions of opportunities that can give a 
positive impact on the quality of our daily life. Future machine listening techniques need 
to aim for general auditory intelligence that can be used in a real-world scenarios. To do 
so, it requires a range of domain knowledge in vast array of sectors such as signal 
processing, cognitive sciences, music, psychoacoustics, acoustics, and ML, because 
the real-world environment and auditory perception of human are rather highly 
complicated. 

 

 

Figure 3.3: Prerequisite domains for Machine Listening (Source: Google) 
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3.5. Audio Sampling 

The term Audio Sampling refers to the conversion of a continuous signal to a discrete 
signal. A sample is a specific point of the signal at a specific time or space. To this end, 
the original signal can be reconstructed by the samples. Sampling can be performed in 
the era of time, space or other dimension. When referring to time, the sampling can be 
performed by measuring the value of the continuous signal every T seconds. This value 
of T is usually called as Sampling Period. On the other hand, the number of samples 
gained in a time period of 1 sec is usually referred as Sampling Rate. 

In order to rebuild the continuous signal from many samples, special interpolation 
algorithms are employed. The Whittaker–Shannon interpolation formula is 
mathematically equivalent to an ideal low-pass filter whose input is a sequence of Dirac 
delta functions that are modulated (multiplied) by the sample values.  

When the time interval between adjacent samples is a constant (T), the sequence of 
delta functions is called a Dirac comb. Mathematically, the modulated Dirac comb is 
equivalent to the product of the comb function with s(t). That purely mathematical 
abstraction is sometimes referred to as impulse sampling [17]. 

In other and more simple words, discrete time refers to the fact that although in nature 
time runs on a continuum, in the digital world we can only manipulate samples of the 
real-world signal that have been drawn on discrete-time instances. This process is 
known as sampling and it is the first stage in the creation of a digital signal from its real-
world counterpart [18].  

To provide with a toy example, the first sample may have been taken at time 0 (the time 
when measurement commenced), the second sample at 0.001 sec, the third one at 
0.002sec, and so on. In this scenario, the time instances are equidistant and if we 
compute the difference between any two consecutive time instances the result       
is 𝑇𝑠 = 0.001𝑠𝑒𝑐, where Ts is the sampling period. In order to go from the time to 

frequency domain the mathematical type 𝐹𝑠 =  
1

𝑇𝑠
 is employed. So for this specific 

example, the sampling frequency is Fs = 1000Hz, which means 1000 samples for every 
1 sec. 

A major issue in the context of sampling is how high the sampling frequency should be 
(or equivalently, how short the sampling period has to be) as proposed in [18] and [19]. 
It turns out that in order to successfully sample a continuous-time signal, the sampling 
frequency has to be set equal to at least twice the signal’s maximum frequency [19]. 

3.5.1. Applications of Audio Sampling 

Sampled or Digital Audio is mainly used for reproducing a sound. The phases followed 
are: Analog to Digital conversion, transmission, Digital to Analog conversion and 
storage. When one needs to capture the human hearing frequencies14, audio is typically 
sampled at 44.100Hz, 48.000Hz, 88.200Hz or 96.000Hz.  

The Audio Engineering Society (AES)15 suggests sampling rate at 48.000Hz for almost 
all aspects and applications of life. 

 

 

 

 
14 Human hearing grasps frequencies between 20 – 20.000Hz 
15 The AES is a professional body for engineers, scientists, other individuals with an interest or 
involvement in the professional audio industry. 
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Table 3.1: Sampling rates and usage 

Sampling 
Rate 

Usage 

8.000Hz Telephones, microphones, voice to voice telecommunications 

11.025Hz MPEG audio, low quality CDs 

16.000Hz VoIP communications 

22.050Hz Low quality CDs, MPEG audio, AM Radio 

32.000Hz miniDV video format, video tapes, high quality microphones 

44.056Hz NTSC videos 

44.100Hz Audio CDs, PAL videos 

48.000Hz 
Standard Sampling Rate for videos, tape recorders etc. Also used 
for DVDs and digital TVs 

96.000Hz Blu-Ray Discs, High Quality DVDs, 

176.400Hz 
Used by High Quality CD cameras and other professional CD 
applications 

192.000Hz 
DVDs, Blu-Ray Discs, High Definition CDs and other professional 
audio applications 

352.800Hz 
Digital Extreme Definition, used for recording and editing Super 
Audio CDs, 

2.822.400Hz Super Audio CD (SACD) and Direct Stream Digital 

5.644.800Hz Direct Stream Digital at 2x the rate of the SACD. 

11.289.600Hz Direct Stream Digital at 4x the rate of the SACD 

22.579.200Hz Direct Stream Digital at 8x the rate of the SACD 

3.6. STEREO and MONO Audio 

As proposed to [20], MONO or sound utilizes only one channel in order to convert a 
signal into a specific sound. Despite being multiple speakers available, the same signal 
will go the same to all of them. This then gives the effect that the sounds, even if they 
are coming from separate speakers, are coming from one single and unique source. 

On the other hand, STEREO sound utilizes more than one channel when converting a 
signal into a sound, and each signal which is sent out, is unique. 
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Figure 3.4: STEREO vs. MONO sound architectures (Source: Google) 

STEREO sound, in other words, gives the effect of sound coming from completely 
different sources and positions, which is typical and very common in today’s technology, 
especially in speakers that are produced for the surround sound effect. 

MONO sound is when only one channel is used whereas STEREO sound is when 
multiple channels are used to convert multiple signals to sounds. 

3.7. Audio Spectrograms 

A spectrogram is a visual representation of signal strength over time at different 
frequencies present in a particular waveform [21]. In other words, a spectrogram is a 
detailed view of audio, able to represent time, frequency, and amplitude all on the same 
graph. Not only can one distinguish if more or less energy exists at specific frequencies, 
but also understand how energy levels change over time, and present the evolution of 
the signal in the time frequency domain. 

In other fields of science spectrograms are mainly used to depict frequencies of sound 
waves produced by humans, machinery, animals, whales, jets, etc., as recorded by 
microphones.  In the seismic world, spectrograms are increasingly being used to look at 
frequency content of continuous signals recorded by individuals or groups of 
seismometers to help distinguish and characterize different types of earthquakes or 
other vibrations in the earth [21]. 

`  

Figure 3.5: Spectrogram (Source: Google) 

 

Spectrograms are colored two-dimensional graphs. Time runs from left (oldest) to right 
(most recent), along the x axis. The y axis represents frequency, which can also be 
thought of as pitch or tone, with the lowest frequencies at the bottom and the highest 
frequencies at the top.  The amplitude (or energy or “loudness”) of a particular 
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frequency at a particular time is represented by color, with dark blues corresponding to 
low amplitudes and brighter colors up through red corresponding to progressively 
stronger (or louder) amplitudes. 

3.8. Auditory Scene Analysis and Sound Event Recognition in Surveillance 

As discussed in [26], capturing of both human and other social activities is becoming 
increasingly spreading in peoples’ living environment for general safety. The recognition 
of suspicious events is significant in both outdoor and indoor surroundings. These could 
be smart-homes, residential areas, child-care centers, dwellings, offices, lifts, and smart 
cities.  

ASA and sound event recognition are the fundamental activities involved in many audio 
surveillance applications. Despite a vast number of approaches have been proposed so 
far, solid environmental audio surveillance remains a huge challenge because of a wide 
range of reasons, such as different types of overlapping audio sounds, background 
noises, and lack of universal and multi-modal datasets dedicated for such purposes. 

The main goal then is to review various features of representing audio scenes and 
sound events and provide appropriate ML techniques for audio surveillance activities. 

3.8.1. Features for Audio Surveillance Systems  

Related work [26] proposed many methods for extracting different audio features 
according to any occasion. The solid audio feature selection plays a crucial role in audio 
surveillance of the environment. In fact, audio features are intended to grab the 
discriminative information useful for classification purposes while decreasing 
background noises and other redundancies.  

Most  feature extraction approaches are based on frame-based processing involves 
dividing an audio signal into frames. In other words, features are extracted from different 
frames and this sequence of feature vectors is used to represent an audio signal. 
Feature extraction can be split into two (2) main categories, according to Cowling and 
Sitte 2003:  

• Stationary 

• Non - Stationary 

Stationary feature extraction produces meticulous frequency contents from the whole 
signal. But, it is not able to recognize where these frequencies are available in the 
signal.  

Stationary feature extraction consists of eight (8) main features commonly used in non-
speech sounds as following: 

1. Frequency, 
2. Homomorphic Cepstral Coefficients, 
3. Mel Frequency Cepstral Coefficients (MFCC), 
4. Linear Prediction Cepstral (LPC) coefficients, 
5. Mel Frequency LPC Coefficients, 
6. Bark Frequency Cepstral Coefficients, 
7. Bark Frequency LPC Coefficients and  
8. Perceptual Linear Prediction (PLP) features 

On the other hand, non-stationary feature extraction breaks the signals into discrete 
time units. This helps to analyze and uncovers the occurrence of each frequency 
component in a specific part of the signal in order to understand the nature of it.  



Deep Learning Methods for Auditory Scene Analysis 

G. Charitos                                                                                                                                                                                         64 

The main features, that use different algorithms to obtain a Time-frequency 
Representation (TFR) of a signal and are commonly referenced in general literature 
(Cowling and Sitte 2003) are the following:  

1. Short-time Fourier Transform (STFT),  
2. Fast Wavelet Transform (FWT), 
3. Continuous Wavelet Transform (CWT) and  
4. Wigner-Ville Distribution (WVD).  

It is stated that in the present Thesis, the MEL Spectrograms method is used and 
analyzed. All the other methods are simply mentioned. 

3.8.2. Deep Learning Approaches for Auditory Scene Analysis 

The complex recognition task with more data as discussed in related work [26], can be 
effectively managed by DL methods where classic ML methods cannot guarantee a 
very good performance. Table 3.2 depicts many DL approaches used for auditory scene 
analysis tasks.  

CNN is one of the most popular NN architectures used in DL. The DL approach for ASA 
has been proposed in Petetin et al. (2015) using MFCC, spectral centroid, and spectral 
flatness features. DL model-based techniques outperformed the classical ML 
classifiers16. The results have been significantly good for DL with cepstral and 
frequency features compared with well-known features such as HOG classified by the 
SVM approach. In Han and Lee (2016), multi-width frequency-delta data augmentation 
was applied on input features for training using the CNN models. The frequency-delta 
features and Melspectrograms are used as input features for data augmentation to 
represent examples with same labels.  

Another related work in Mafra et al. (2016) reviewed different time aspects when 
combining the features using different classic ML classifiers. This specific 
representation with temporal averaged Mel-log spectrograms using SVM achieved 
better recognition accuracy.  

In another related work, the authors in Phan et al. (2017) suggested an approach called 
Convolutional Neural Network–Label Tree Embeddings (CNN-LTE) strategy. Using the 
CNN-LTE approach, the features were represented in the form of label tree embedding 
images. Then these features were learned using the simple 1D pooling layers of CNNs.  

 

Table 3.2: DL Approaches for Auditory Scene Analysis 

FEATURES METHODS REFERENCES DATASET 

MFCC features, spectral 
centroid and spectral 
flatness 

DNN Petetin et al. 2015 LITIS Rouen  

MEL Spectrograms CNN Han and Lee 2016 TUT-DCASE 2016 

MEL LOG Spectrograms SVM Mafra et al. 2016 DCASE 2013 

Parametrized MFCC 
features 

CNN 
Eghbal-zadeh et al. 
2017 

TUT-DCASE 2016 

 
16 SVM classifiers 



Deep Learning Methods for Auditory Scene Analysis 

G. Charitos                                                                                                                                                                                         65 

 

It is mentioned that in the Present Thesis all the TL techniques performed, used the 
TUT-DCASE 2017 as reference and will be discussed more in the following sections 
(Appendix A). 

3.9. ATHens Urban Soundscape Dataset 

3.9.1. Dataset Description 

When referring to soundscape one can understand an auditory environment (either 
urban or rural). As proposed to related work [27], ATHens Urban Soundscape (ATHUS) 
is a dataset of audio clips of audio clips from urban environments, which has been 
humanly annotated by proposing a specific soundscape quality for each clip.  

To this end, a vast array of different users have perceived and recorded audio sounds 
by using a simple Android application. Then, each recording was annotated in terms of 
the level of pleasantness of the soundscape, in a range of 1 (unbearable) to 5 (optimal). 

The dataset and according to [27], was made publicly available (in 
http://users.iit.demokritos.gr/~tyianak/soundscape) as an audio feature representation 
form. In addition, in [27] is presented a basic method that shows how the specific 
dataset can be used to train supervised models in order for a developer to predict 
soundscape quality levels in different environments. In other words, the main purpose of 
this attempt was to provide to different developers and ML engineers, an introduction to 
audio recognition and soundscape analysis in different and diverge urban spaces, which 
could lead to powerful assessment tools in the hands of policy makers with regards to 
noise pollution and sustainable urban living. 

3.9.2. Audio Collection and Annotations 

All the audio files were collected in Athens, Greece in many different locations as 
Picture 3.4. suggests. The files have taken place in a period of almost 4 years, by 10 
different humans using 13 different types of smart phone devices. There were 979 
recordings and each recording was around 27 seconds of average duration. Some of 
their statistics are shown in the following table 3.3. 

 

Table 3.3: ATHUS Dataset Statistics 

Total Number of Audio Clips: 979 

Min Duration: 11.40 sec 

Max Duration: 78.83 sec 

Avg. Duration: 26.99 sec 

Total Duration: 7.33 hrs 
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Each audio file were annotated by a specific user that performed the file by using a an 
Android application.  

 

 

 

Picture 3.4: Distribution of ATHUS recordings in Athens 

 

The application is available online at: 

(http://users.iit.demokritos.gr/~tyianak/soundscape/).  

Prior to starting the recording process, the application grabs the geospatial coordinates 
using the GPS sensor of the mobile phone, and the user provides some demographic 
information such as their age, gender and educational level.  

Then, the recording process starts, and as soon as the user stops it, they finally 
provides with the perceived soundscape quality, in a range between 1 and 5 (1 
corresponds to unbearable soundscape quality and 5 to optimal quality respectively). 

Figure 3.6 depicts the distribution of the audio clips per class (1 to 5) and Figure 3.7 
shows the distributions of the data after the Train/Test split. It is mentioned that in order 
to perform the experiments and for testing reasons, the dataset split into 

{train: 80%, test: 20%} partitions. 
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Figure 3.6: ATHUS samples per class 

 

 

Figure 3.7: ATHus Dataset (Train / Test Distributions) 
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4. EXPERIMENTS - ATHUS DATASET CLASSIFICATION  

4.1. Experimental Setup 

In this Chapter will be discussed and analyzed all the experiments performed with the 
corresponding results. For the present Thesis the ATHUS dataset has been used, which 
proposed in related work [27] and presented meticulously in previous Chapters. For the 
TL techniques the TUT 2017 dataset has been used, as related work [28], information of 
it presented in Appendix A. 

The main problem studied and analyzed, is a classification task. The training set is the 
ATHUS dataset. The main purpose is to classify audio clips in terms of urban quality. As 
proposed in [27], quality (1) represents unbearable soundscape quality and (5) 
represents quality. To this end, the dataset has been separated into [train, dev] = [80%, 
20%] before moving into the ANN architectures.  

The ANN architecture consists of seven (7) layers; four (4) CNN and three (3) linear at 
the end. More about the DAFP are stated in Appendix B. 

The dataset was transformed many times in order to be trained and fitted in many 
different models. The first approach, presented in this Chapter, was to transform the 
audio clips into 8KHz and MONO. The same engineering also performed into the TUT 
dataset, used for the TL evaluation. 

The second approach, was to train the dataset as it is and without any other user 
intervention (44kHz and MONO). The same engineering also performed into the TUT 
dataset, used for the TL evaluation.  

Finally, the third approach was to train the dataset by transforming it into 8kHz and 
MONO. In addition, 1 sec segmentation was applied to all datasets (1 sec segmentation 
performed to every single audio clip) used (in both ATHUS and TUT 2017). 

The problem has been developed in a Linux Operating System (OS), Python 3 
developing environment and has been used all the modern packages and libraries that 
deal with ML approaches including the DAFP library developed by Theodoros 
Giannakopoulos (Appendix B). The package utilizes all the modern DL callbacks 
classes such as the Early Stopping17, Save Best Model18 and Reduce Learning Rate on 
Plateaus19.   

For the needs of the present Chapter more than 60 models have been trained and 
evaluated and 34 are presented in the present Chapter. 

All the experiments of the present Thesis are summarized in the following table 4.1. 

 

 

 

 

 

 

 
17 Early Stopping stops the training phase at an optimal point where no further improvement of the model 
is taking place. 
18 Save only the best model produced on the training phase. 
19 Reduce learning rate when a metric has stopped improving. 
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Table 4.1: Experiments 
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MODEL 

Basic Training Of Soundscape 

Transfer Learning of Soundscape with TUT as Source Model (No 
Freezing Layers Techniques) 

Transfer Learning of Soundscape with TUT as Source Model 
(Freezing CNN Layers) 

Transfer Learning of 5 class approach Soundscape with TUT as 
Source Model (No Freezing Layers Techniques) 

Transfer Learning of 5 class approach Soundscape with TUT as 
Source Model (Freezing CNN Layers) 

Transfer Learning of 3 class approach Soundscape with TUT as 
Source Model (No Freezing Layers Techniques) 

Transfer Learning of 3 class approach Soundscape with TUT as 
Source Model (Freezing CNN Layers) 

Transfer Learning of 3 class approach Soundscape with TUT as 
Source Model (Freezing 3 out of 4 CNN Layers) 
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Basic Training Of Soundscape 

Transfer Learning of Soundscape with TUT as Source Model (No 
Freezing Layers Techniques) 

Transfer Learning of Soundscape with TUT as Source Model 
(Freezing CNN Layers) 

Transfer Learning of 5 class approach Soundscape with TUT as 
Source Model (No Freezing Layers Techniques) 

Transfer Learning of 5 class approach Soundscape with TUT as 
Source Model (Freezing CNN Layers) 

Transfer Learning of 3 class approach Soundscape with TUT as 
Source Model (No Freezing Layers Techniques) 

Transfer Learning of 3 class approach Soundscape with TUT as 
Source Model (Freezing CNN Layers) 

Transfer Learning of 3 class approach Soundscape with TUT as 
Source Model (Freezing CNN Layers with class weighting 
balance) 

Transfer Learning of 5 class approach Soundscape with TUT as 
Source Model (Freezing 3 out of 4 CNN Layers) 
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Source Model (No Freezing Layers Techniques) 
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Transfer Learning of 5 class approach Soundscape with TUT as 
Source Model (Freezing CNN Layers) 

Transfer Learning of 3 class approach Soundscape with TUT as 
Source Model (No Freezing Layers Techniques) 

Transfer Learning of 3 class approach Soundscape with TUT as 
Source Model (Freezing CNN Layers) 

Transfer Learning of 3 class approach Soundscape with TUT as 
Source Model (Freezing 3 out of 4 CNN Layers) 
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4.2. ATHUS Basic Training using DAFP 

The first approach to the classification problem is a simple / basic training of the ATHUS 
dataset using the DAFP library. The dataset used has been transformed into MONO 
and 8kHz.  

The model trained for 20 epochs and produced the results below: 

▪ F1-Score = 33% (testing amidst of 20% of the samples during training), 
▪ F1-Score = 31% (testing on the unseen development dataset). 

With the following confusion matrix: 

 

Figure 4.1: Confusion Matrix of ATHUS basic training using DAFP (8kHz and MONO) 

The second approach, to the classification problem and similar to the previous, is a 
simple / basic training of the ATHUS (44.1kHz and MONO this time) dataset using the 
DAFP library. 

The model trained for 22 epochs and produced the results below: 

▪ F1-Score = 35% (testing amidst of 20% of the samples during training), 
▪ F1-Score = 30% (testing on the unseen development dataset). 

With the following confusion matrix: 
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 Figure 4.2: Confusion Matrix of ATHUS basic training using DAFP (44.1kHz and MONO) 

The third approach, to the classification problem, is a simple / basic training of the 
ATHUS (8kHz, 1sec segmentation and MONO) dataset using the DAFP library. 

The model trained for 53 epochs and produced the results below: 

▪ F1-Score = 55% (testing amidst of 20% of the samples during training), 
▪ F1-Score = 41% (testing on the unseen development dataset). 

With the following confusion matrix: 

 

Figure 4.3: Confusion Matrix of ATHUS basic training using DAFP (8kHz, MONO and 1sec 
segmetation) 
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4.3. TUT 2017 Basic Training using DAFP 

In order to perform TL technique a reference dataset is required. For this purpose the 
TUT Acoustic Scenes 2017 dataset is employed. To this end, the TUT dataset was 
trained used DAFP.  

Again, here, there are three (3) approaches as the ATHUS dataset follows; The first 
approach is to train the TUT dataset in 8kHz and MONO. Thus: 

The model trained for 50 epochs and produced the results below: 

▪ F1-Score = 79% (testing amidst of 20% of the samples during training) 
▪ F1-Score = 77% (testing on the unseen development dataset) 

 

With the following confusion matrix: 

Figure 4.4: Confusion Matrix of TUT 2017 basic training using DAFP (in 8kHz and MONO) 

 

The second approach followed, is the basic train of the original TUT dataset (44.1kHz 
and MONO) using DAFP.  

The model trained for 71 epochs and produced the results below: 

▪ F1-Score = 81% (testing amidst of 20% of the samples during training) 
▪ F1-Score = 76% (testing on the unseen development dataset) 

With the following confusion matrix: 
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Figure 4.5: Confusion Matrix of TUT 2017 basic training using DAFP (in 44.1kHz and MONO) 

Finally, the third approach is to train the TUT dataset (8kHz and MONO) in 1 sec 
segmentation. To this end, the original TUT (8kHz, 1sec segmentation and MONO) 
dataset was trained again used DAFP.  

The model trained for 54 epochs and produced the results below: 

▪ F1-Score = 94% (testing amidst of 20% of the samples during training) 
▪ F1-Score = 91% (testing on the unseen development dataset) 

With the following confusion matrix: 

 

Figure 4.6: Confusion Matrix of TUT 2017 basic training using DAFP (in 8kHz, MONO and 1 sec 
segmentation) 
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4.4. Transfer Learning using DAFP (From TUT to ATHUS) 

4.4.1. Transfer Learning with Strategy 0 

In this experiment the TUT dataset has been utilized in order to provide TL techniques 
to ATHUS dataset. The Strategy used was 0 which means the model does not perform 
any freezing to CNN layers [all layers (both CNN and linear) are used to train and 
finetune the model]. 

In this part of the experiment three (3) different approaches are proposed (as in 
previous sections discussed), as follows: 

• From TUT to ATHUS  (8kHz and MONO) 

• From TUT to ATHUS (44.1kHz and MONO) 

• From TUT to ATHUS (8kHZ, MONO and 1 sec segmentation). 

As the first approached implies, the TL model trained for 48 epochs and produced the 
results below: 

▪ F1-Score = 37% (testing amidst of 20% of the samples during training) 
▪ F1-Score = 36% (testing on the unseen development dataset) 

With the following confusion matrix: 

 

Figure 4.7: Confusion Matrix of TL using DAFP and Strategy 0 [From TUT to ATHUS (8kHz, 
MONO)] 

In the second experiment the original TUT (44.1kHz and MONO) dataset has been 
utilized in order to provide TL techniques to ATHUS dataset. The TL model trained for 
48 epochs and produced the results below: 

▪ F1-Score = 38% (testing amidst of 20% of the samples during training) 
▪ F1-Score = 38% (testing on the unseen development dataset) 

With the following confusion matrix: 
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Figure 4.8: Confusion Matrix of TL using DAFP and Strategy 0 [From TUT to ATHUS (44.1kHz, 
MONO)] 

 

In the last (third approach) experiment the TUT (8Hz, 1sec segmentation and MONO) 
dataset has been utilized in order to provide TL techniques to ATHUS dataset. The TL 
model trained for 36 epochs and produced the results below: 

▪ F1-Score = 63% (testing amidst of 20% of the samples during training) 
▪ F1-Score = 42% (testing on the unseen development dataset) 

With the following confusion matrix: 

 

Figure 4.9: Confusion Matrix of TL using DAFP and Strategy 0 [From TUT to ATHUS (8kHz, MONO 
and 1 sec segmentation)] 
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4.4.2. Transfer Learning with Strategy 1 

In this experiment the TUT dataset has been utilized in order to provide TL techniques 
to ATHUS dataset. The Strategy used was 1 which means the model performs freezing 
to CNN layers [only linear layers are used to train and finetune the model]. 

Again and as discussed in the previous section, three (3) different approaches are 
proposed (as in previous sections discussed), as follows: 

• From TUT to ATHUS  (8kHz and MONO) 

• From TUT to ATHUS (44.1kHz and MONO) 

• From TUT to ATHUS (8kHZ, MONO and 1 sec segmentation). 

As the first approached implies, the TL model trained for 24 epochs and produced the 
results below: 

▪ F1-Score = 37% (testing amidst of 20% of the samples during training) 
▪ F1-Score = 36% (testing on the unseen development dataset) 

With the following confusion matrix: 

 

Figure 4.10: Confusion Matrix of TL using DAFP and Strategy 1 [From TUT to ATHUS (8kHz, 
MONO)] 

 

In the second experiment the TUT dataset has been utilized in order to provide TL 
techniques to ATHUS dataset. The TL model trained for 27 epochs and produced the 
results below: 

▪ F1-Score = 37% (testing amidst of 20% of the samples during training) 
▪ F1-Score = 31% (testing on the unseen development dataset) 

With the following confusion matrix: 
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Figure 4.11: Confusion Matrix of TL using DAFP and Strategy 1 [From TUT to ATHUS (44.1kHz, 
MONO)] 

 

In the last approach the TUT dataset has been utilized in order to provide TL techniques 
to ATHUS dataset (8kHz, 1 sec segmentation and MONO sound).  

The TL model trained for 47 epochs and produced the results below: 

▪ F1-Score = 59% (testing amidst of 20% of the samples during training) 
▪ F1-Score = 40% (testing on the unseen development dataset) 

With the following confusion matrix: 

 

Figure 4.12: Confusion Matrix of TL using DAFP and Strategy 1 [From TUT to ATHUS (8kHz, 
MONO and 1 sec segmentation)] 
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4.5. TUT 2017 Basic Training using DAFP: A 5 class approach 

In order to apply highly optimized TL techniques from the TUT 2017 to the ATHUS 
dataset another approach is employed. The TUT 2017 dataset retrained with only 5 
classes. For this purpose and after many different experiments, the classes were 
chosen in a way that describes the ATHUS problem best.  

To this end, the new classes that have been constructed are the following: 

▪ City Center,  
▪ Metro Station, 
▪ Park, 
▪ Forest Path,  
▪ Library  

that fit best to the ATHUS classes (from 1 to 5 respectively). 

Three (3) different approaches are proposed, as follows: 

• From TUT to ATHUS  [5 class approach (8kHz and MONO)] 

• From TUT to ATHUS [5 class approach (44.1kHz and MONO)] 

• From TUT to ATHUS [5 class approach (8kHZ, MONO and 1 sec segmentation)]. 

As the first approached implies, the model trained for 48 epochs and produced the 
results below: 

▪ F1-Score = 86% (testing amidst of 20% of the samples during training) 
▪ F1-Score = 86% (testing on the unseen development dataset). 

With the following confusion matrix: 

 

Figure 4.13: Confusion Matrix of TUT 2017 basic training using DAFP (5 class approach, 8kHz and 
MONO) 

 

The second approach reveals that the model trained for 44 epochs and produced the 
results below: 

▪ F1-Score = 84% (testing amidst of 20% of the samples during training) 
▪ F1-Score = 85% (testing on the unseen development dataset). 
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With the following confusion matrix: 

 

Figure 4.14: Confusion Matrix of TUT 2017 basic training using DAFP (5 class approach, 44.1kHz 
and MONO) 

 

According to the last approach, the model trained for 40 epochs and produced the 
results below: 

▪ F1-Score = 96% (testing amidst of 20% of the samples during training) 
▪ F1-Score = 94% (testing on the unseen development dataset). 

With the following confusion matrix: 

 

Figure 4.15: Confusion Matrix of TUT 2017 basic training using DAFP (5 class approach, 44.1kHz, 
MONO and 1 sec segmentation) 
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4.6. Transfer Learning using DAFP (From TUT to ATHUS – 5class approach) 

4.6.1. Transfer Learning with Strategy 0 

In this experiment the 5 class approach of the TUT dataset has been utilized in order to 
provide TL techniques to ATHUS dataset. The Strategy used was 0 which means the 
model does not perform any freezing to CNN layers [all layers (both CNN and linear) 
are used to train and finetune the model]. 

In the first approach the TL model trained for 36 epochs and produced the results 
below: 

▪ F1-Score = 36% (testing amidst of 20% of the samples during training) 
▪ F1-Score = 33% (testing on the unseen development dataset) 

With the following confusion matrix: 

 

Figure 4.16: Confusion Matrix of TL using DAFP and Strategy 0 [From 5 class TUT to ATHUS (8kHz 
and MONO)] 

 

In the second experiment, the TL model trained for 21 epochs and produced the results 
below: 

▪ F1-Score = 41% (testing amidst of 20% of the samples during training) 
▪ F1-Score = 49% (testing on the unseen development dataset) 

With the following confusion matrix: 
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Figure 4.17: Confusion Matrix of TL using DAFP and Strategy 0 [From 5 class TUT to ATHUS 
(44.1kHz and MONO)] 

 

In the last experiment, the TL model trained for 34 epochs and produced the results 
below: 

▪ F1-Score = 62% (testing amidst of 20% of the samples during training) 
▪ F1-Score = 42% (testing on the unseen development dataset) 

With the following confusion matrix: 

 

Figure 4.18: Confusion Matrix of TL using DAFP and Strategy 0 [From 5 class TUT to ATHUS 
(44.1kHz, MONO and 1 sec segmentation)] 
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4.6.2. Transfer Learning with Strategy 1 

In this experiment the TUT dataset with the 5 class approach has been utilized in order 
to provide TL techniques to ATHUS dataset. The Strategy used was 1 which means the 
model performs freezing to CNN layers [only linear layers are used to train and finetune 
the model]. 

In the first approach the TL model trained for 33 epochs and produced the results 
below: 

▪ F1-Score = 37% (testing amidst of 20% of the samples during training) 
▪ F1-Score = 36% (testing on the unseen development dataset) 

 

With the following confusion matrix: 

 

Figure 4.19: Confusion Matrix of TL using DAFP and Strategy 1 [From 5 class TUT to ATHUS (8kHz 
and MONO)] 

 

In the second experiment the TUT dataset with the 5 class approach has been utilized 
in order to provide TL techniques to ATHUS dataset (44.1kHz and MONO).  

The TL model trained for 24 epochs and produced the results below: 

▪ F1-Score = 39% (testing amidst of 20% of the samples during training) 
▪ F1-Score = 47% (testing on the unseen development dataset) 

With the following confusion matrix: 
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Figure 4.20: Confusion Matrix of TL using DAFP and Strategy 1 [From 5 class TUT to ATHUS 
(44.1kHz and MONO)] 

 

In the third experiment the TUT dataset with the 5 class approach has been utilized in 
order to provide TL techniques to ATHUS dataset (8kHz, 1 sec segmentation and 
MONO). The Strategy used was 1 which means the model performs freezing to CNN 
layers [only linear layers are used to train and finetune the model]. 

The TL model trained for 53 epochs and produced the results below: 

▪ F1-Score = 57% (testing amidst of 20% of the samples during training) 
▪ F1-Score = 39% (testing on the unseen development dataset) 

With the following confusion matrix: 

 

Figure 4.21: Confusion Matrix of TL using DAFP and Strategy 1 [From 5 class TUT to ATHUS 
(8kHz, MONO and 1 sec segmentation)]
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4.7. TUT 2017 Basic Training using DAFP: A 3 class approach 

In this section another approach is employed; In order to apply more optimized TL 
techniques from the TUT 2017 to the ATHUS, the TUT 2017 dataset retrained with only 
3 classes. In this experiment all the TUT classes merged into 3.  

To this end, the new classes that have been constructed are the following: 

▪ Bad 
This category contains all the initial classes of the TUT dataset that are deemed 
as low quality soundscape environments. These are the following: 

• City Centre, 

• Metro Station, 

• Train, 

• Tram and 

• Bus 
▪ Mid 

This category contains all the initial classes of the TUT dataset that are deemed 
as mid range soundscape environments in terms of quality. These are the 
following: 

• Café / Restaurant, 

• Grocery Store, 

• Beach, 

• Residential Area, 

• Car 
▪ Good 

This category contains all the other initial classes that are not among the above. 
This category contains all the initial classes that are deemed as high quality 
soundscape environments and contains the following: 

• Forest Path, 

• Home, 

• Library, 

• Office, 

• Park 
 

It is stated that the above categorization has been made after many experiments and 
many different combinations in order to come up with this specific solution mentioned 
above. 

Three (3) different approaches are proposed, as follows: 

• TUT [3 class approach (8kHz and MONO)] 

• TUT [3 class approach (44.1kHz and MONO)] 

• TUT [3 class approach (8kHZ, MONO and 1 sec segmentation)]. 

As the first approached implies, the model trained for 59 epochs and produced the 
results below: 

▪ F1-Score = 79% (testing amidst of 20% of the samples during training) 
▪ F1-Score = 77% (testing on the unseen development dataset) 

With the following confusion matrix: 
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Figure 4.22: Confusion Matrix of TUT 2017 basic training using DAFP (3 class approach, 8kHz and 
MONO) 

 

In the second approach, the model trained for 59 epochs and produced the results 
below: 

▪ F1-Score = 89% (testing amidst of 20% of the samples during training) 
▪ F1-Score = 87% (testing on the unseen development dataset) 

With the following confusion matrix: 

 

Figure 4.23: Confusion Matrix of TUT 2017 basic training using DAFP (3 class approach, 44.1kHz 
and MONO) 

 

In the last, third approach, the model trained for 70 epochs and produced the results 
below: 

▪ F1-Score = 93% (testing amidst of 20% of the samples during training) 
▪ F1-Score = 92% (testing on the unseen development dataset) 

With the following confusion matrix: 
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Figure 4.24: Confusion Matrix of TUT 2017 basic training using DAFP (3 class approach, 8kHz, 
MONO and 1 sec segmentation) 
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4.8. Transfer Learning using DAFP (From TUT to ATHUS – 3 class approach) 

4.8.1. Transfer Learning with Strategy 0 

In this experiment the TUT dataset (3 class approach) has been utilized in order to 
provide TL techniques to ATHUS dataset. The Strategy used was 0 which means the 
model does not perform any freezing to CNN layers [all layers (both CNN and linear) 
are used to train and finetune the model]. 

As expected, three (3) different approaches are proposed, as follows: 

• From TUT to ATHUS  [3 class approach (8kHz and MONO)] 

• From TUT to ATHUS [3 class approach (44.1kHz and MONO)] 

• From TUT to ATHUS [3 class approach (8kHZ, MONO and 1 sec segmentation)]. 
 

In the first approach, the TL model trained for 48 epochs and produced the results 
below: 

▪ F1-Score = 33% (testing amidst of 20% of the samples during training) 
▪ F1-Score = 28% (testing on the unseen development dataset) 

With the following confusion matrix: 

 

Figure 4.25: Confusion Matrix of TL using DAFP and Strategy 0 (3 class approach, 8kHz, MONO) 

 

In the second approach, the TL model trained for 20 epochs and produced the results 
below: 

▪ F1-Score = 36% (testing amidst of 20% of the samples during training) 
▪ F1-Score = 48% (testing on the unseen development dataset) 

With the following confusion matrix: 
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Figure 4.26: Confusion Matrix of TL using DAFP and Strategy 0 (3 class approach, 44.1kHz, 
MONO) 

 

In the last, third approach, the TL model trained for 20 epochs and produced the results 
below: 

▪ F1-Score = 62% (testing amidst of 20% of the samples during training) 
▪ F1-Score = 44% (testing on the unseen development dataset) 

With the following confusion matrix: 

 

Figure 4.27: Confusion Matrix of TL using DAFP and Strategy 0 (3 class approach, 8kHz, MONO 
and 1 sec segmentation) 
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4.8.2. Transfer Learning with Strategy 1 

In this experiment the TUT dataset with the 3 class approach has been utilized in order 
to provide TL techniques to ATHUS dataset. The Strategy used was 1 which means the 
model performs freezing to CNN layers [only linear layers are used to train and finetune 
the model]. 

Three (3) different approaches are proposed, as follows: 

• From TUT to ATHUS  [3 class approach (8kHz and MONO)] 

• From TUT to ATHUS [3 class approach (44.1kHz and MONO)] 

• From TUT to ATHUS [3 class approach (8kHZ, MONO and 1 sec segmentation)]. 

During the first approach, the TL model trained for 48 epochs and produced the results 
below: 

▪ F1-Score = 40% (testing amidst of 20% of the samples during training) 
▪ F1-Score = 32% (testing on the unseen development dataset) 

With the following confusion matrix: 

 

Figure 4.28: Confusion Matrix of TL using DAFP and Strategy 1 (3 class approach, 8kHz, MONO) 

 

During the second approach, the TL model trained for 20 epochs and produced the 
results below: 

▪ F1-Score = 50% (testing amidst of 20% of the samples during training) 
▪ F1-Score = 49% (testing on the unseen development dataset) 
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With the following confusion matrix: 

 

Figure 4.29: Confusion Matrix of TL using DAFP and Strategy 1 (3 class approach, 44.1kHz, 
MONO) 

 

In the third approach, the TL model trained for 43 epochs and produced the results 
below: 

▪ F1-Score = 55% (testing amidst of 20% of the samples during training) 
▪ F1-Score = 41% (testing on the unseen development dataset) 

With the following confusion matrix: 

 

Figure 4.30: Confusion Matrix of TL using DAFP and Strategy 1 (3 class approach, 8kHz, MONO 
and 1 sec segmentation) 



Deep Learning Methods for Auditory Scene Analysis 

G. Charitos                                                                                                                                                                                         93 

4.9. Transfer Learning with Medium Freeze and Class Weighting Balance 

In this Section, the top models20 acquired trained again with a different freeze method. 
In all the above cases, freezing either all or only linear layers provided really worth 
mentioning results.  

In this attempt the top 3 models trained again by freezing 3 out of 4 CNN layers. The 
models trained for this purpose are: 

1. TL from TUT source model to ATHUS (original sampling at 44.1kHz) in the 5 
class approach  

2. TL from TUT source model to ATHUS (resampled at 8kHz) in the 3 class 
approach  

3. TL from TUT source model to ATHUS (resampled at 8kHz with 1 sec 
segmentation) in the 3 class approach. 
 

Thus, the architecture of the model remained for the training: 

• 1 CNN 

• 3 Linear Layers 

The first model trained for 33 epochs and produced the results below: 

▪ F1-Score = 0.40% (testing amidst of 20% of the samples during training) 
▪ F1-Score = 0.33% (testing on the unseen development dataset) 

 

With the following confusion matrix: 

 

Figure 4.31: Confusion Matrix of TL using DAFP and 3 layers frozen (5 class approach, 44.1kHz, 
MONO) 

 

 

 
 

20 In terms of f1 score on unseen / test data from each of the categories (original, 8kHz and 1 sec 
segmentation) 
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The second model trained for 21 epochs and produced the results below: 

▪ F1-Score = 0.45% (testing amidst of 20% of the samples during training) 
▪ F1-Score = 0.38% (testing on the unseen development dataset) 

 

With the following confusion matrix: 

 

Figure 4.32: Confusion Matrix of TL using DAFP and 3 layers frozen (3 class approach, 8kHz, 
MONO) 

The last third model trained for 51 epochs and produced the results below: 

▪ F1-Score = 0.51% (testing amidst of 20% of the samples during training) 
▪ F1-Score = 0.42% (testing on the unseen development dataset) 

With the following confusion matrix: 

 

Figure 4.33: Confusion Matrix of TL using DAFP and 3 layers frozen (3 class approach, 8kHz, 
MONO with 1 sec segmentation) 
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The top model as shown in Table 5.1 is considered to be the TL training of the ATHUS 
dataset, using the TUT as source model into a 3 class approach when all CNN are 
frozen (only linear layers in the training phase).  

For this overall top model class weighting balance has been performed in order to 
acquire even better results. So the top model trained again and provided with the 
following: 

The top model trained for 29 epochs and produced the results below: 

▪ F1-Score = 0.48% (testing amidst of 20% of the samples during training) 
▪ F1-Score = 0.42% (testing on the unseen development dataset) 

With the following confusion matrix: 

 

Figure 4.34: Confusion Matrix of TL using DAFP and class weighting (3 class approach, 44.1kHz, 
MONO with strategy 1) 

 

 

Table 4.2: Metrics for all models 

8
k

H
z
 a

n
d

 M
O

N
O

 

MODEL 
F1 SCORE 

TRAIN TEST 

BASIC TRAINING OF SOUNDSCAPE 0.33 0.31 

TL (TUT TO SOUNDSCAPE, STRAT 0) 0.37 0.36 

TL (TUT TO SOUNDSCAPE, STRAT 1) 0.37 0.31 

TL (5CLASS TUT TO SOUNDSCAPE, 
STRAT 0) 

0.36 0.33 

TL (5CLASS TUT TO SOUNDSCAPE, 
STRAT 1) 

0.38 0.36 
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TL (3CLASS TUT TO SOUNDSCAPE, 
STRAT 0) 

0.33 0.28 

TL (3CLASS TUT TO SOUNDSCAPE, 
STRAT 1) 

0.40 0.32 

TL (3CLASS TUT TO SOUNDSCAPE, 
layers freeze 3) 

0.45 0.38 

SOURCE MODEL FOR TL  
F1 SCORE 

TRAIN TEST 

BASIC TRAINING OF TUT 0.79 0.77 

BASIC TRAINING OF 5 CLASS TUT 0.86 0.86 

BASIC TRAINING OF 3 CLASS TUT 0.79 0.77 

4
4

.1
k

H
z
 a

n
d

 M
O

N
O

 

MODEL 
F1 SCORE 

TRAIN TEST 

BASIC TRAINING OF SOUNDSCAPE 0.35 0.30 

TL (TUT TO SOUNDSCAPE, STRAT 0) 0.38 0.38 

TL (TUT TO SOUNDSCAPE, STRAT 1) 0.37 0.31 

TL (5CLASS TUT TO SOUNDSCAPE, 
STRAT 0) 

0.41 0.49 

TL (5CLASS TUT TO SOUNDSCAPE, 
STRAT 1) 

0.39 0.47 

TL (3CLASS TUT TO SOUNDSCAPE, 
STRAT 0) 

0.36 0.48 

TL (3CLASS TUT TO SOUNDSCAPE, 
STRAT 1) 

0.50 0.49 

TL (3CLASS TUT TO SOUNDSCAPE, 
STRAT 1 with class weighting balance) 

0.48 0.42 

TL (5CLASS TUT TO SOUNDSCAPE, 
layers freeze 3) 

0.40 0.33 

SOURCE MODEL FOR TL  
F1 SCORE 

TRAIN TEST 

BASIC TRAINING OF TUT 0.81 0.76 
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BASIC TRAINING OF 5 CLASS TUT 0.84 0.85 

BASIC TRAINING OF 3 CLASS TUT 0.89 0.87 

8
k

H
z
, 
M

O
N

O
 a

n
d

 1
s
e
c

 s
e

g
m

e
n

ta
ti

o
n

 
MODEL 

F1 SCORE 

TRAIN TEST 

BASIC TRAINING OF SOUNDSCAPE 0.55 0.41 

TL (TUT TO SOUNDSCAPE, STRAT 0) 0.63 0.42 

TL (TUT TO SOUNDSCAPE, STRAT 1) 0.59 0.40 

TL (5CLASS TUT TO SOUNDSCAPE, 
STRAT 0) 

0.62 0.42 

TL (5CLASS TUT TO SOUNDSCAPE, 
STRAT 1) 

0.57 0.39 

TL (3CLASS TUT TO SOUNDSCAPE, 
STRAT 0) 

0.62 0.44 

TL (3CLASS TUT TO SOUNDSCAPE, 
STRAT 1) 

0.55 0.41 

TL (3CLASS TUT TO SOUNDSCAPE, 
layers freeze 3) 

0.51 0.42 

SOURCE MODEL FOR TL  
F1 SCORE 

TRAIN TEST 

BASIC TRAINING OF TUT 0.94 0.91 

BASIC TRAINING OF 5 CLASS TUT 0.96 0.94 

BASIC TRAINING OF 3 CLASS TUT 0.93 0.92 

 

The above table 4.2 concludes all the metrics acquired from all the experiments. 

 

Discussion and final conclusion will be made in the following Chapter. 
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5. CONCLUSION – FUTURE WORK 

5.1. Conclusion 

In the present Thesis a meticulous overview of an end-to-end approach of Auditory 
Scene Analysis has been made.  

As mentioned from the beginning, earth is full of different acoustic environments that 
includes from quite and calm to very busy and noisy soundscapes. 

The present Master Thesis was inspired by the problem of soundscape quality and 
sound recognition and it is addressed in the context of which sound / audio gathered 
from different environments and corresponds to either a bad or good quality, in terms of 
sound pollution.  

It is very crucial and because of a very big intervention of human in the planet, to be 
able to measure and control this noise pollution, especially in very hectic and busy 
downtown areas. Thus, it would be very beneficial for the researcher to be able to 
analyze sound clips from different environments and take measures accordingly for 
enhancing and improving humans’ life. Undoubtedly, many technologies can help this 
effort. By using sensors and IoT infrastructures this attempt can be done more easily. 
Monitoring city areas with the use of audio sensors can prevent overwhelming noise 
among cities especially during siesta hours. Also, this can detect almost simultaneously 
events that can possibly harm human consistency. Such activities could possibly refer 
to sudden explosions, fires and all events that are related to sound event detection.  

To this end and because of the significance of sound analysis especially amidst cities, 
environmental audio scene and sound event recognition is proposed and analyzed in 
detail in the present Thesis.  

Modern Deep Learning and Transfer Learning techniques were applied in order to 
analyze and study the quality of different environments. Without doubt this could not 
have been achieved if there were no appropriate and real life data. A real world dataset 
that collected and annotated by human annotators has been used in order to imitate 
and train the best possible DL models for this approach. 

In order to solve the audio classification problem, one top tier and method has been 
presented and analyzed in high detail among the present Thesis. This method takes the 
audio clip as input, transforms the audio part into MEL Spectrogram and then applies 
CNN and DL techniques in order to classify the sound clips to different classes 
according to their quality.  

The method divided in three (3) main sub-approaches. 

▪ In the first sub-approach, the dataset was transformed many times in order to be 
trained and fitted in many different models. The first approach was to transform 
the audio clips into 8KHz and MONO. The same engineering also performed into 
the TUT dataset (dataset used for the TL part). In this approach the ATHUS 
dataset trained into three (3) different permutations: 
 
✓ Original training phase with the whole dataset was included in the training 

phase, 
 

✓ A 5 class case where only 5 of the classes of the TUT dataset used to for the 
TL process and  
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✓ A 3 class case where all the classes of the TUT dataset used have been 
merged into 3 (bad, mid, good) to for the TL process. 

 
▪ In the second sub-approach, the target was to train the dataset as it is and 

without any other user intervention (44kHz and MONO). The same engineering 
also performed into the TUT dataset, used for the TL evaluation. In this approach 
again the ATHUS dataset trained into three (3) different permutations as follows: 
 
✓ Original training phase with the whole dataset was included in the training 

phase, 
 

✓ A 5 class case where only 5 of the classes of the TUT dataset used to for the 
TL process and  
 

✓ A 3 class case where all the classes of the TUT dataset used have been 
merged into 3 (bad, mid, good) to for the TL process. 

 
▪ Finally, during the third approach the main goal was to train the dataset by 

transforming it into 8kHz and MONO. In addition, 1 sec segmentation was 
applied to all datasets (1 sec segmentation performed to every single audio clip) 
used (in both ATHUS and TUT 2017). In the last approach again the ATHUS 
dataset trained into three (3) different permutations as follows: 
 
✓ Original training phase with the whole dataset was included in the training 

pahse, 
 

✓ A 5 class case where only 5 of the classes of the TUT dataset used to for the 
TL process and  
 

✓ A 3 class case where all the classes of the TUT dataset used have been 
merged into 3 (bad, mid, good) to for the TL process. 

From the all above models the one that overcomes all the others in terms of f1-score 
and overall accuracy is the application of the TL techniques on soundscape ATHUS 
dataset when the TUT source model was categorized into three (3) main 
categories. Also in this model the training phase frozen the CNN layers and used 
only the linear for the training phase. The f1 score acquired was equal to 0.49 on 
unseen dataset, as summarized in the following Tables 5.2 – 5.4. 
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Table 5.1: Metrics for models (8kHz and MONO) 

MODEL 

(8kHz, MONO) 

F1 SCORE 

TRAIN TEST 

BASIC TRAINING OF SOUNDSCAPE 0.33 0.31 

TL (TUT TO SOUNDSCAPE, STRAT 0) 0.37 0.36 

TL (TUT TO SOUNDSCAPE, STRAT 1) 0.37 0.31 

TL (5CLASS TUT TO SOUNDSCAPE, STRAT 0) 0.36 0.33 

TL (5CLASS TUT TO SOUNDSCAPE, STRAT 1) 0.38 0.36 

TL (3CLASS TUT TO SOUNDSCAPE, STRAT 0) 0.33 0.28 

TL (3CLASS TUT TO SOUNDSCAPE, layers freeze 3) 0.45 0.38 

TL (3CLASS TUT TO SOUNDSCAPE, STRAT 1) 0.40 0.32 

SOURCE MODEL FOR TL  

(8kHz, MONO) 

F1 SCORE 

TRAIN TEST 

BASIC TRAINING OF TUT 0.79 0.77 

BASIC TRAINING OF 5 CLASS TUT 0.86 0.86 

BASIC TRAINING OF 3 CLASS TUT 0.79 0.77 

 

The above Table 5.1, depicts the results (basic DL and TL training phases) for the 
ATHUS dataset when both have been resampled to 8kHz and MONO. 

Transformation of the TUT source model into a 3 class problem overcomes the baseline 
model that involves simple DL techniques by 22.5% 
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Table 5.2: Metrics for models (44.1kHz and MONO) 

MODEL 

(44.1kHz, MONO) 

F1 SCORE 

TRAIN TEST 

BASIC TRAINING OF SOUNDSCAPE 0.35 0.30 

TL (TUT TO SOUNDSCAPE, STRAT 0) 0.38 0.38 

TL (TUT TO SOUNDSCAPE, STRAT 1) 0.37 0.31 

TL (5CLASS TUT TO SOUNDSCAPE, STRAT 0) 0.41 0.49 

TL (5CLASS TUT TO SOUNDSCAPE, STRAT 1) 0.39 0.47 

TL (3CLASS TUT TO SOUNDSCAPE, STRAT 0) 0.36 0.48 

TL (5CLASS TUT TO SOUNDSCAPE, layers freeze 3) 0.40 0.33 

TL (3CLASS TUT TO SOUNDSCAPE, STRAT 1 with class 
weighting balance) 

0.48 0.42 

TL (3CLASS TUT TO SOUNDSCAPE, STRAT 1) 0.50 0.49 

SOURCE MODEL FOR TL  

(44.1kHz, MONO) 

F1 SCORE 

TRAIN TEST 

BASIC TRAINING OF TUT 0.81 0.76 

BASIC TRAINING OF 5 CLASS TUT 0.84 0.85 

BASIC TRAINING OF 3 CLASS TUT 0.89 0.87 

 

The above Table 5.2, depicts the results (basic DL and TL training phases) for the 
ATHUS dataset in their original form (44.1kHz and MONO) 

Transformation of the TUT source model into a 3 class problem overcomes by far the 
baseline model that involves simple DL techniques by 63% on unseen data. 
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Table 5.4: Metrics for models (8kHz, MONO and 1sec segmentation) 

MODEL 

(8kHz, MONO and 1sec segmentation) 

F1 SCORE 

TRAIN TEST 

BASIC TRAINING OF SOUNDSCAPE 0.55 0.41 

TL (TUT TO SOUNDSCAPE, STRAT 0) 0.63 0.42 

TL (TUT TO SOUNDSCAPE, STRAT 1) 0.59 0.40 

TL (5CLASS TUT TO SOUNDSCAPE, STRAT 0) 0.62 0.42 

TL (5CLASS TUT TO SOUNDSCAPE, STRAT 1) 0.57 0.39 

TL (3CLASS TUT TO SOUNDSCAPE, STRAT 0) 0.62 0.44 

TL (3CLASS TUT TO SOUNDSCAPE, layers freeze 3) 0.51 0.42 

TL (3CLASS TUT TO SOUNDSCAPE, STRAT 1) 0.55 0.41 

SOURCE MODEL FOR TL  

(8kHz, MONO and 1sec segmentation) 

F1 SCORE 

TRAIN TEST 

BASIC TRAINING OF TUT 0.94 0.91 

BASIC TRAINING OF 5 CLASS TUT 0.96 0.94 

BASIC TRAINING OF 3 CLASS TUT 0.93 0.92 

 

The above Table 5.4, depicts the results (basic DL and TL training phases) for the 
ATHUS dataset in 8kHz, MONO and with 1 sec resampling. 

Transformation of the TUT source model into a 3 class problem overcomes the baseline 
model that involves simple DL techniques by 7% on unseen data. 

Undoubtedly Transfer Learning Techniques to all the different approaches studied and 
presented in the present Thesis overcame all the baseline models that refer to simple 
application of CNN. TL combines previous knowledge of a source model and a new one 
in order to fine tune the problem as much as possible. 

5.2. Implementation Issues 

Despite all TL models returned higher scores than the baseline models, the original 
dataset (no other resampling or segmentation) provided the best possible solution with 
the highest  f1 score. Nevertheless, applying TL techniques require extra time and effort 
in order to wrangle and clean the source model efficiently. To this end and for such 
problems, it is highly recommended to use segmentations and train the date with the 
baseline model for accurate and trustworthy results. This will add more data to the 
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training pool (in circumstances that there is a lack of many data) and give a fast and 
worth mentioning solutions for almost all the cases. 

5.3. Future Work 

In the present Thesis the soundscape classification problem studied meticulously and 
covered almost all the possible aspects that involve different, top-tier DL and NN 
architectures. 

This effort undoubtedly can be enhanced in the future by using and developing other 
types of architectures.  

Wav to Vec architectures, that are considered state of the art in speech recognition can 
be parameterized accordingly in order to provide stable and very accurate results for the 
Soundscape analysis problem. This approach achieved the best published result to date 
on the popular WSJ benchmark while using two orders of magnitude less labeled 
training data than a comparable system. The algorithm works with existing ASR 
systems and uses raw audio as training data, without the need for written transcriptions, 
demonstrating that self-supervision can make even high-performing speech recognition 
models more effective.  

Also, model agnostic meta learning and learning to learn techniques can be used in the 
future for such problems. Such systems are trained by being exposed to a large number 
of tasks and are then tested in their ability to learn new tasks; a good  example of a task 
is classifying a new image within 5 possible classes, given one example of each class, 
or learning to efficiently navigate a new maze with only one traversal through the maze. 
This differs from many standard machine learning techniques, which involve training on 
a single task and testing on held-out examples from that task. So this technique can be 
applied to the soundscape classification problem and make the model learn with very 
low supervision and with less data available. 
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ACRONYMS 

 

AES Audio Engineering Society 

AI Artificial Intelligence 

ANN Artificial Neural Networks 

ASA Auditory Scene Analysis 

ATHUS ATHens Urban Soundscape 

CAP Credit Assignment Path 

CM Confusion Matrix 

CNN Convolutional Neural Networks 

CS Computer Science 

DAFP Deep Audio Features Package 

DBSCAN Density-Based Spatial Clustering Of Applications With Noise 

DL Deep Learning 

DL Deep Learning 

DNN Deep Neural Networks 

DS Data Science 

FWT Fast Wavelet Transform 

MAE Mean Absolute Error 

MFCC Mel Frequency Cepstral Coefficients 

ML Machine Learning 

MSE Mean Squared Error 

NLP Natural Language Processing 

NN Neural Network 

OCR Optical Character Recognition 

PCA Principal Component Analysis 

PDF Probability Density Function 

PLP Perceptual Linear Prediction 

ReLU Rectified Linear Unit 

RMSE Root Mean Squared Error 

RNN Recurrent Neural Networks 

SED Sound Event Detection 

STFT Short-time Fourier Transform 

SVD Singular Value Decomposition 
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SVM Support Vector Machines 

TFR Time-frequency Representation 

TL Transfer Learning 

WVD Wigner-Ville Distribution 

 

 

 

 



Deep Learning Methods for Auditory Scene Analysis 

G. Charitos                                                                                                                                                                                         107 

APPENDIX A 

A.1. TUT Acoustic Scenes 2017 Dataset 

TUT Acoustic Scenes dataset has been used for TL techniques in the original ATHUS 
dataset of previous Chapter.  

The dataset consists of audio files from various cases, with all of them having distinct 
recording locations in Finland. For each recording location, 3-5 minute long audio 
recording was captured. The original recordings were then split into segments with a 
length of 10 seconds. These audio segments are provided in individual files. The 
classes of the dataset depending on the content of the recording are the following: 

▪ Bus 
▪ Cafe / Restaurant  
▪ Car  
▪ City center  
▪ Forest path 
▪ Grocery store 
▪ Home  
▪ Beach  
▪ Library 
▪ Metro station  
▪ Office 
▪ Residential Area  
▪ Train  
▪ Tram  
▪ Park 

As proposed in related work [28], for all acoustic scenes, the recordings were captured 
each in a different location: different streets, different parks, different homes. 
Recordings were made using a Soundman OKM II Klassik/studio A3, electret binaural 
microphone and a Roland Edirol R-09 wave recorder using 44.1 kHz sampling rate and 
24 bit resolution. The microphones are specifically made to look like headphones, being 
worn in the ears. As an effect of this, the recorded audio is very similar to the sound that 
reaches the human auditory system of the person wearing the equipment. 

Postprocessing of the recorded data involves aspects related to privacy of recorded 
individuals. For audio material recorded in private places, written consent was obtained 
from all people involved. Material recorded in public places does not require such 
consent, but was screened for content, and privacy infringing segments were 
eliminated. Microphone failure and audio distortions were annotated, and the 
annotations are provided with the data. Based on experiments in DCASE 2016, 
eliminating the error regions in training does not influence the final classification 
accuracy. The evaluation set does not contain any such audio errors.
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APPENDIX B 

B.1. Deep Audio Features (Python Package) 

As Theodoros Giannakopoulos proposes in  

https://github.com/tyiannak/deep_audio_features,  

Deep Audio Features is a Python library for training Convolutional Neural Netowrks as 
audio classifiers using MEL SPECTROGRAMS. The library provides wrappers to 
pytorch for training CNNs on audio classification tasks, and using the CNNs as feature 
extractors. 

This is the main Python library utilized for solving most of the problems in the present 
Thesis. 

The input is folders with audio files in different classes. The package uses the folder 
names as classnames, extracts spectrogram representations from the respective 
sounds, trains and validates the CNN and saves the trained model. 

Finally, deep audio features package is capable of performing TL techniques from 
different models as far as the testing of the results. 

The main NN architecture consists of seven layers; 4 CNN and 3 Linear 

The library also can provide different strategies for the TL problems as follows: 

• Strategy 0: Use all the seven layers when transferring knowledge from a source 
model to another 

• Strategy 1: Use only the three linear layers when transferring knowledge from a 
source model to another 

• Layers Freeze: Choose how many layers to freeze in order to transfer 
knowledge from a source model to another 

• Class Weighting: Deals with unbalanced classes 

In the present Thesis all the available techniques have been utilized in order to provide 
the best and most accurate results. 

 

 

 

 

https://github.com/tyiannak/deep_audio_features




Deep Learning Methods for Auditory Scene Analysis 

G. Charitos                                                                                                                                                                                         111 

REFERENCES 

[1] Stuart Rusell, Peter Norvig, Artificial Intelligence: A Modern Approach, 3rd Edition, 2010 

[2] Artificial Intelligence, Wikipedia (https://en.wikipedia.org/wiki/Artificial_intelligence) 

[3] A complete guide to reinforcement learning, deepsense.ai, Big Data Science                   
(https://deepsense.ai/what-is-reinforcement-learning-the-complete-guide/) 

[4] What is AI, TechTarget, (https://www.techtarget.com/searchenterpriseai/definition/AI-Artificial-
Intelligence) 

[5] Deep Neural Networks, Anastasia Kyrykovych, Listlink, 
(https://www.kdnuggets.com/2020/02/deep-neural-networks.html) 

[6] What Is Deep Learning AI? A Simple Guide With 8 Practical Examples, 
(https://www.kdnuggets.com/2020/02/deep-neural-networks.html) 

[7] How to Learn Mathematics For Machine Learning? What Concepts do You Need to Master in 
Data Science?               (https://www.analyticsvidhya.com/blog/2021/06/how-to-learn-mathematics-for-
machine-learning-what-concepts-do-you-need-to-master-in-data-science/) 

[8] 20 Popular Machine Learning Metrics. Part 1: Classification & Regression Evaluation Metrics                                                                
(https://towardsdatascience.com/20-popular-machine-learning-metrics-part-1-classification-regression-
evaluation-metrics-1ca3e282a2ce) 

[9] Loss and Loss Functions for Training Deep Learning Neural Networks 
(https://www.statisticshowto.com/probability-and-statistics/regression-analysis/rmse-root-mean-square-
error/) 

[10]  12 Types of Neural Network Activation Functions: How to Choose? 
(https://www.v7labs.com/blog/neural-networks-activation-functions) 

[11]  Artificial Intelligence (AI) 
(https://www.ibm.com/cloud/learn/what-is-artificial-intelligence) 

[12] Thomas Davenport, Jeff Loucks, and David Schatsky, Bullish on the Business Value of Cognitive 
(Deloitte, 2017) 
(https://www2.deloitte.com/us/en/pages/deloitte-analytics/articles/cognitive-technology-adoption-
survey.html) 

[13] What is Transfer Learning? 
(https://jpt.spe.org/what-is-transfer-learning?gclid=Cj0KCQiAu62QBhC7ARIsALXijXTvvQFvt3rUp-paL-
ZRFUZVtJo0PFROZzIraK9Omg_vy-1XCuoz00MaAkrJEALw_wcB) 

[14] What is Machine Listening? (Part 1) 
(https://medium.com/cochl/what-is-machine-listening-part-1-6fbdf2a3d892) 

[15] Juan P. Bello, Claudio Silva, Oded Nov, R. Luke Dubois, Anish Arora, Justin Salamon, Charles 
Mydlarz, And Harish Doraiswamy, SONYC: A System for Monitoring, Analyzing, and Mitigating Urban 
Noise Pollution, Communications of the ACM, vol. 62, no. 2,  February 2019 

[16] S. Chandrakala, S. L. Jayalakshmi, Environmental Audio Scene and Sound Event Recognition for 
Autonomous Surveillance: A Survey and Comparative Studies, ACM Computing Surveys, Vol. 52, No. 3, 
Article 63. Publication date: June 2019 

[17] Rao B. Visvesvara, Rajeshwari & Rao,  Signals and Systems , PHI Learning Pvt. Ltd., 2009 

[18] Theodoros Giannakopoulos Aggelos Pikrakis, Introduction to AUDIO ANALYSIS: A MATLAB 
Approach, Academic Press, 2014 

[19] John G. Proakis, Dimitris K. Manolakis, Digital Signal Processing, fourth ed., Pearson Education, 
2009. 

[20] Mono vs Stereo Sound: What's the Big Difference? 
(https://www.rowkin.com/blogs/rowkin/mono-vs-stereo-sound-whats-the-big-difference) 

[21] What is a Spectrogram, (https://pnsn.org/spectrograms/what-is-a-spectrogram) 

[22] Dan Lavry, The Optimal Sample Rate for Quality Audio, Lavry Engineering Inc. May 3, 2012 

https://en.wikipedia.org/wiki/Artificial_intelligence
https://deepsense.ai/what-is-reinforcement-learning-the-complete-guide/
https://www.techtarget.com/searchenterpriseai/definition/AI-Artificial-Intelligence
https://www.techtarget.com/searchenterpriseai/definition/AI-Artificial-Intelligence
https://www.kdnuggets.com/2020/02/deep-neural-networks.html
https://www.kdnuggets.com/2020/02/deep-neural-networks.html
https://www.analyticsvidhya.com/blog/2021/06/how-to-learn-mathematics-for-machine-learning-what-concepts-do-you-need-to-master-in-data-science/
https://www.analyticsvidhya.com/blog/2021/06/how-to-learn-mathematics-for-machine-learning-what-concepts-do-you-need-to-master-in-data-science/
https://towardsdatascience.com/20-popular-machine-learning-metrics-part-1-classification-regression-evaluation-metrics-1ca3e282a2ce
https://towardsdatascience.com/20-popular-machine-learning-metrics-part-1-classification-regression-evaluation-metrics-1ca3e282a2ce
https://www.statisticshowto.com/probability-and-statistics/regression-analysis/rmse-root-mean-square-error/
https://www.statisticshowto.com/probability-and-statistics/regression-analysis/rmse-root-mean-square-error/
https://www.v7labs.com/blog/neural-networks-activation-functions
https://www.ibm.com/cloud/learn/what-is-artificial-intelligence
https://www2.deloitte.com/us/en/pages/deloitte-analytics/articles/cognitive-technology-adoption-survey.html
https://www2.deloitte.com/us/en/pages/deloitte-analytics/articles/cognitive-technology-adoption-survey.html
https://jpt.spe.org/what-is-transfer-learning?gclid=Cj0KCQiAu62QBhC7ARIsALXijXTvvQFvt3rUp-paL-ZRFUZVtJo0PFROZzIraK9Omg_vy-1XCuoz00MaAkrJEALw_wcB
https://jpt.spe.org/what-is-transfer-learning?gclid=Cj0KCQiAu62QBhC7ARIsALXijXTvvQFvt3rUp-paL-ZRFUZVtJo0PFROZzIraK9Omg_vy-1XCuoz00MaAkrJEALw_wcB
https://medium.com/cochl/what-is-machine-listening-part-1-6fbdf2a3d892
https://www.rowkin.com/blogs/rowkin/mono-vs-stereo-sound-whats-the-big-difference
https://pnsn.org/spectrograms/what-is-a-spectrogram


Deep Learning Methods for Auditory Scene Analysis 

G. Charitos                                                                                                                                                                                         112 

[23] Albert S. Bregman, Auditory Scene Analysis: The Perceptual Organization of Sound, The MIT 
Press, 1990 

[24] Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli, wav2vec 2.0: A Framework 
for Self-Supervised Learning of Speech Representations, v1, 2020 

[25] Sound Waves, (https://www.pasco.com/products/guides/sound-waves) 

[26] S. Chandrakala, S. L. Jayalakshmi, Environmental Audio Scene and Sound Event Recognition for 
Autonomous Surveillance: A Survey and Comparative Studies, ACM Computing Surveys, Vol. 52, No. 3, 
Article 63, June 2019 

[27] Theodoros Giannakopoulos,  Margarita Orfanidi and Stavros Perantonis, Athens Urban 
Soundscape (ATHUS): A dataset for urban soundscape quality recognition, MultiMedia Modeling (pp.338-
348), 2019 

[28] Acoustic Scene Classification 
(https://dcase.community/challenge2017/task-acoustic-scene-classification) 

 

 

 
 

 

https://www.pasco.com/products/guides/sound-waves
https://dcase.community/challenge2017/task-acoustic-scene-classification

