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Abstract 

Cover song identification (CSI) is the task of determining whether a given recording of a 
song is a new performance other than the original version. Automatically detecting cover 
versions has plenty of applications in the music industry as well as copyright law.  In this 
Thesis we present a methodology for CSI based on Convolutional Neural Networks 
(CNN) and Metric Learning. The model is trained on medium-size datasets of cover 
songs using a variation of the Triplet Loss, called Angular Loss. The experiments 
showcase the performance of the proposed CNN model on English and Greek sets of 
cover songs, as well as other approaches based on deep learning. Our findings 
demonstrate that the proposed method exhibits viable performance for the specific use 
case, achieving high scores on the classification and ranking tasks. This, along with the 
fact that the model can run with minimal hardware requirements, make our method an 
ideal candidate for real-world applications. To further illustrate this point, we designed a 
proof of concept of such a system. Finally, as part of this Thesis, we created two new 
open-source datasets for CSI, that can be used for training or evaluation. 

Thesis Supervisor: Theodoros Giannakopoulos 
Title: Researcher B’ (Demokritos) 



Acknowledgments 
I would like to acknowledge and express my gratitude to my supervisor 

Theodoros Giannakopoulos, for his feedback and general guidance above and 

beyond this Thesis. I would also like to thank my family and dear friends for their 

unwavering support and encouragement throughout the years. Finally I express 

my sincere thanks to Varvara and Eleftheria Konstantinidou, Eleni Mitsea, 

Dimitris Ventouris and the Multimedia Analysis Group of the Computational 

Intelligence Lab (MagCIL) of the National Center for Scientific Research 

“Demokritos" for their invaluable assistance in creating the dataset required for 

the completion of this Thesis. 



Table of Contents 
1.Introduction  9

1.1. Motivation  9
1.2. Related Work  9
1.3. Proposed methodology  10
1.4. Next sections  11

2.Audio Representations  12
2.1. Raw signal representation  12
2.2.Time-based Features  12

2.2.1. Zero crossing rate  12
2.2.2. Statistical measures  13
2.2.3. Energy  13

2.3.Frequency-based Features  13
2.3.1. Fast Fourier Transform  13
2.3.2. Mel Spectrogram  14
2.3.3. Mel Frequency Spectral Coefficients  16
2.3.4. Harmonic Pitch Class Profiles  17

3.Deep Learning  20
3.1. Introduction  20
3.2.Convolutional Neural Networks  20

3.2.1. Introduction  20
3.2.2. Structure  20

3.2.2.1. Filters  20
3.2.2.2. Convolutional Layers  22
3.2.2.3. Pooling Layers  23
3.2.2.4. Fully Connected Layers  23
3.2.2.5. Activation Layers  23
3.2.2.6. Dropout Layers  24
3.2.2.7. Batch-Normalization Layers  24

3.2.3. Common architectures  24
3.2.3.1. LeNet  24
3.2.3.2. AlexNet  25
3.2.3.3. VGGNet  25
3.2.3.4. ResNet  25

3.3.Recurrent Neural Networks  26
3.3.1. Vanilla RNN  27
3.3.2. Long Short-Term Memory  28
3.3.3. Gated Recurrent Unit  29

  - - 2



3.4.Transformers  29
3.4.1. Self-Attention  30
3.4.2. Multi-head attention  30
3.4.3. Encoder-Decoder  31
3.4.4. Positional Encoding  32
3.4.5. Audio Applications  32

4.Methodology  34
4.1. Overview  34
4.3.Feature Extraction  35
4.4.Model Architecture  36
4.5.Loss Function  37

4.5.1. Contrastive Loss  38
4.5.2. Triplet Loss  38
4.5.3. Angular Loss  41

4.6.Evaluation  42
4.6.1. Accuracy, Precision, Recall, F1 Score  42
4.6.2. ROC Curve  43
4.6.3. Precision-Recall Curve.  43
4.6.4. Mean Average Precision  44
4.6.5. Mean Reciprocal Rank  44
4.6.5. Precision at 10  45
4.6.6. Mean Rank of 1st identified cover  45

4.7.Implementation Details  45

5.Experiments  46
5.1. Datasets  46

5.1.1. Covers80  46
5.1.2. Covers1000  46
5.1.3. Custom Dataset  47

5.2.Results on Covers80 test set  48
5.3.Results on Custom test set  50
5.4.Results on Greek covers  52
5.5.LSTM results  54
5.6.Visual Transformer results  55
5.7. t-SNE Visualization  57
5.8.Inference time  59
5.9.Observations  62

6.Web Application  65
6.1. Platform overview  65

6.1.1. Upload songs  65
6.1.2. Manage song database  65

- - 3



6.1.3. Cover check  65
6.1.4. Rank songs  65

6.2.Architecture  67

7.Conclusions 69

  - - 4



List of Figures 

Figure 2.1 Visualization of the FFT. The combination stage is also known as "Butterfly". 
 14

Figure 2.2 Mel scale vs Hertz scale  15

Figure 2.3 The Mel Spectrogram  16

Figure 2.4 Visualization of MFCCs  16

Figure 2.5. Visualization of the chroma profiles w.r.t. the original signal and the music 
notes.  19

Figure 3.1. Visualization of 2D-convolution  21

Figure 3.2. Illustration of a layer consisting of two filters. Notice the input/output 
channel size.  22

Figure 3.3 The different ResNet sizes.  26

Figure 3.4 A schematic representation of the recurrent neural network, unfolding per 
timestep.  26

Figure 3.5. The internal components of an LSTM cell. All operations in orange boxes are 
pointwise operations.  29

Figure 3.6. The GRU components.  29

Figure 4.1 Visualization of the cover song identification pipeline  34

Figure 4.2 Initial and final representation after minimizing the loss function. Notice that 
the white points are not pushed further away, since they already exceed the margin m.  38

Figure 4.3 Visualization of triplet loss minimization  39

Figure 4.4 Visualization of the different types of triplets (determined by the location of 
the negative sample).  40

Figure 4.5 The ROC curve.  43

Figure 4.6 The Precision-Recall curve.  44

Figure 5.1 Training and Validation loss per epoch.  48

Figure 5.2 Confusion matrices (left: unbalanced dataset, right: balanced dataset)  49

Figure 5.3 Covers80 (balanced) - ROC and Precision-Recall Curves  49

Figure 5.4 Covers80 (unbalanced) - ROC and Precision-Recall Curves  50

Figure 5.5 Confusion matrices (left: unbalanced dataset, right: balanced dataset)  51

Figure 5.6 Custom Dataset (balanced) - ROC and Precision-Recall Curves  51
- - 5



Figure 5.7 Custom Dataset (unbalanced) - ROC and Precision-Recall Curves  52

Figure 5.8 Confusion matrices (left: unbalanced, right: balanced)  53

Figure 5.9 Greek Dataset (balanced) - ROC and Precision-Recall Curves  53

Figure 5.10 Custom Dataset (Full songs) - ROC and Precision-Recall Curves  54

Figure 5.11. The results of the LSTM model on the Covers80 test set.  55

Figure 5.12. The results of the ViT model on the Covers80 test set.  56

Figure 5.13 t-SNE plot of the test dataset  58

Figure 5.14 t-SNE plot of the train dataset  58

Figure 5.15 Acoustic or calm songs, seem to be grouped closer together.  63

Figure 5.16 Rock songs with more complex instrumentation are placed closer together. 
 64

Figure 6.2  The user selects a song and retrieves a sorted list based on similarity. The 
icon next to each result indicates a potential cover song (green is positive, red is 
negative). 66

  - - 6



List of Equations 
Equation 2.1. Energy of the signal, calculated in time-domain.  13

Equation 2.2 The Discrete Fourier Transform  13

Equation 2.3 Hertz to mels conversion.  15

Equation 2.4 The elements of the N-length HPCP vector.  18

Equation 3.1. Convolution operation between a filter F and an image I  21

Equation 3.2. Calculating the output size after convolution  21

Equation 3.3 The output of a convolutional layer, where  is the output of the convolution 
layer,  is the input,  is the filter,  is the bias, and  is the size of the filter (omitting the 
depth dimension).  23

Equation 3.4 Max pooling formula  23

Equation 3.5 Average pooling formula  23

Equation 3.6 ReLU activation function  24

Equation 4.1. Relationship between number of HPCP windows and the resulting 
segment size  35

Equation 4.2 The Contrastive Loss formula  38

Equation 4.3 Requirement regarding the anchor, positive and negative examples in the 
embedding space.  39

Equation 4.4 The Triplet Loss  39

Equation 4.5 The Angular Loss  41

Equation 4.6 Classification scores  42

Equation 4.7 The Average Precision metric 44

- - 7



List of Tables 

Table 4.1 Optimal model architecture  37

Table 5.1 Classification scores on the Covers80 dataset.  48

Table 5.2 Ranking scores on the Covers80 dataset.  50

Table 5.3 Classification scores on the Custom dataset.  50

Table 5.4 Ranking scores on the Custom dataset.  52

Table 5.5 Classification scores on the Greek dataset.  52

Table 5.6 Ranking scores on the Greek dataset.  54

Table 5.7. Classification scores for LSTM on the Covers80 test set.  55

Table 5.8. Ranking scores for LSTM on the Covers80 test set.  55

Table 5.9. Classification scores for ViT on Covers80 set.  56

Table 5.10. Ranking scores for ViT on the Covers80 test set.  56

Table 5.11 Inference time benchmarking.  60

Table 5.12 Accuracy vs segment size for CNN model.  61

Table 5.13. Comparison between different methods on the test sets. 61

  - - 8



1.Introduction 
"Music Streaming Hits Major Milestone as 100,000 Songs are Uploaded Daily to Spotify 

and Other DSPs" - was the title of an article posted in Variety by the end of 2022. This 

number was estimated around 60,000 in 2021 and roughly 40,000 in 2019. Eventually, 

keeping track of new song releases, as well as cover songs, remixes and different versions 

is an increasingly hard challenge. As covers we define performances of the original song 

by other artists, that may have different instrumentation, rhythm, style or sung in a 

different language. These can be found in a variety of contexts, including tribute albums, 

live performances, and online video platforms.  

1.1.Motivation 
Cover song identification (CSI) is the task of determining whether a given recording of a 

song is a new performance other than the original version. This can be important for a 

number of reasons. For example, regarding copyright law, it is necessary to determine 

whether a cover song requires permission or licensing in order to be distributed or 

performed publicly. Similarly, in the context of plagiarism, it is important to identify 

cover songs in order to properly attribute credit to the original artist. Αpplications can 

also be found in the music industry, to improve user experience. For instance, music 

platforms can improve recommendations by taking into account the different versions of 

a song. In addition, it can be useful for music historians and researchers, as it can help to 

trace the evolution and spread of particular songs over time. 

1.2.Related Work 
One of the most common approaches to song identification is audio fingerprinting [1] . 

This involves extracting a compact numerical representation of the audio signal, called a 

fingerprint, and comparing it to a database of known fingerprints. If a match is found, 

the recording is identified. 
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Audio fingerprinting has been successful in many applications, especially mobile 

apps, since it is easy to implement and run, but it has some limitations that make it less 

than ideal for cover song identification. One of the main limitations is that it is sensitive 

to any deviations from the original audio signal. This can make it difficult to identify 

covers of low-quality recordings or recordings that have been significantly altered. In 

addition, it can be unreliable for recordings with changes in arrangement or 

instrumentation. If the song is performed by a different artist, with varying pitch or the 

verses do not align completely, then the fingerprint calculated by the main frequencies 

will be different and the cover won't be identified. 

Another method, described in [2], is based on aligning audio sequences and 

evaluating similarity. The audio of the songs under measurement is segmented into 

windows and a representation is extracted for each window, which is related to the 

melody of the audio. Then these sequences undergo transformations to achieve key 

invariance, and finally the distance between them is calculated using the Smith-

Waterman alignment algorithm. While the method above produces adequate results, 

that quadratic time complexity that arises from Smith-Waterman algorithm, makes it 

hard to implement in low-hardware resource cases.  

There have been various works that leverage deep learning, to solve the task of 

CSI. In [3] Xiaoshuo Xu et al used a carefully structured convolutional neural network 

with HPCP (Harmonic Pitch Chroma Profiles) input, to create a key-invariant model for 

classification. CNNs have also been used with CQT (Constant-Q Transform). Zhesong Yu 

et al [4] used these features to train a custom model using cross-entropy loss.  In [5] the 

authors applied Temporal Pyramid Pooling, to capture output features at different 

scales. Triplet loss and classification loss have also been used in conjunction, to train a 

modified ResNet50 model with instance normalization and batch normalization blocks, 

achieving remarkable results [6].  

1.3.Proposed methodology 
In our work, as opposed to pure algorithmic or heuristic solutions, we investigate the use 

of deep learning techniques to solve this problem. Our method follows a supervised 
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learning approach: We collect a large number of annotated cover songs which are used 

as training data for an AI model. The model learns the underlying associations and 

structure of the audio that makes up a cover song, and is able to determine whether a 

pair of unseen songs are covers or not. At first sight, our approach demonstrates the 

following benefits:  

● The model yields a solid performance across several different genres of music, as 

shown in the experiments. 

● No custom rules or heuristics are used. The model learns directly from data. 

● We can scale the training data and model depending on the available resources. 

● The inference time is low enough, even using CPU, making it suitable for real-

world applications. 

1.4.Next sections 
The next chapters are organized in the following way: 

 In chapter 2 we make an introduction to the most commonly used audio 

representations. These include time and frequency domain features, which make up the 

inputs of the model. 

 In chapter 3 we describe the theoretical background behind the most common 

deep learning models used in audio applications, and reference some notable 

architectures found in literature. 

 The methodology that we followed is extendedly discussed in chapter 4. We 

analyze the datasets used, the choice of model architecture and the training process. 

 The experiments are presented in chapter 5, along with the resulting 

observations. 

 Finally, chapter 6 contains the implementation procedure and technology stack  

of the platform that is used for a real-life application of the trained model. 
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2. Audio Representations 

2.1. Raw signal representation 
In computers, raw audio signals are typically represented as a sequence of numerical 

values, often stored in a digital audio format such as a WAV or AIFF file. These 

numerical values represent the amplitude of the audio signal at discrete points in time, 

known as samples. The sampling rate is the number of samples taken per second, and is 

typically measured in hertz (Hz). Common sampling rates are 44.1 kHz, 48 kHz, and 96 

kHz, which correspond to 44100, 48000, and 96000 samples per second, respectively. 

The numerical values of the samples are typically stored as 16-bit or 24-bit integers, 

depending on the desired audio quality. 16-bit audio is commonly used for consumer 

audio applications, while 24-bit audio is often used for professional audio applications.  

Let's assume a 4-minute long song. With a sample rate of 16 kHz, the resulting 

array would be a sequence of 3840000 values. The downside of using this sequence 

directly as input to a machine learning model is that it is computationally expensive and 

can take a long time to process. Furthermore this representation is very sparse, which 

can make it difficult for the model to learn useful patterns at reasonable amounts of 

data. To address these issues, higher-level features such as time and frequency based 

representations can be extracted. 

2.2. Time-based Features 
Time-based features are extracted from the amplitude values of the audio signal over 

time.  

2.2.1.Zero crossing rate 
Zero crossing rate is a measure of the number of times a signal changes from positive to 

negative or vice versa in a given time period.  

  - - 12



2.2.2.Statistical measures 
Standard statistical measures, such as mean, variance, skewness and kurtosis can be 

used as features in the time domain. 

2.2.3.Energy 
The energy of the signal for a given segment is defined by the following equation. 

 

Equation 2.1. Energy of the signal, calculated in time-domain. 

2.3. Frequency-based Features 
These features are better suited for audio applications. They are extracted from the 

frequency components of the audio signal, using the Fourier transform and can give us 

insight into the spectral content of an audio clip. The most commonly used frequency-

based representations, for music information retrieval (MIR) tasks, are the Fast Fourier 

Transform (FFT), Mel Spectrogram, MFCC (Mel-Frequency Cepstral Coefficients) and 

Harmonic Pitch Class Profiles (HPCP). 

2.3.1. Fast Fourier Transform 
The Fast Fourier Transform (FFT) [7] is an efficient algorithm for calculating the 

Discrete Fourier Transform, a method for analyzing a signal in the frequency domain by 

decomposing it into its constituent sinusoidal components.  

The DFT of a signal (sequence) is defined by the following formula: 

 

Equation 2.2 The Discrete Fourier Transform 
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The time complexity of the standard DFT is . FFT reduces the number of 

calculations required, bringing the complexity down to . It does so by splitting 

the original sequence into an odd and an even part, each of size N/2, calculating the DFT 

of each and combining the output to get the result for the full sequence. The DFT of the 

subsequences can be calculated with the same manner, recursively until the length of 

each sequence becomes equal to 1 (base case of the recursion). This is known as the 

Cooley-Tukey FFT algorithm. 

 

Figure 2.1 Visualization of the FFT. The combination stage is also known as 
"Butterfly". 

Calculating the FFT is the starting point for extracting the next features. 

2.3.2. Mel Spectrogram 
The Mel Spectrogram is a time-frequency representation of a signal, expressed in the 

Mel frequency scale. The first step for creating this representation is to generate the 

Short Time Fourier Transform of the audio signal, by splitting the signal into segments 

using an arbitrary window size (usually tens or hundreds of milliseconds). The windows 

may be overlapping. With a small enough window length, we can assume that the 

frequencies are constant and calculate the FFT. A small window introduces better time 
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resolution but worse frequency resolution and vice versa, due to the fixed-resolution of 

the STFT (the product between the time and frequency deviation is bounded).  Finally 

we concatenate all windows to generate the time-frequency representation known as 

spectrogram.  

The next step involves converting the spectrogram from the hertz scale of the 

signal to the Mel frequency scale. The human perception of audio frequencies is not 

linear across the audible range. Through psychoacoustic experiments, it is shown that we 

can better differentiate sounds at lower frequencies rather than higher ones. We can 

define a scale at which increasing the interval between two frequencies, also leads to the 

same increase in perceivable pitch. Therefore, the Mel scale is defined by the following: 

 

Equation 2.3 Hertz to mels conversion. 

 

Figure 2.2 Mel scale vs Hertz scale 

Next, a filterbank is created, which is a set of overlapping triangular filters that cover the 

entire mel range (typically 0-8000 Hz). A common choice for the number of filters is 

128. Finally for each STFT window, the amplitude is multiplied by the filterbank. 
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Figure 2.3 The Mel Spectrogram 

The Mel Spectrogram is the most common representation of audio, used in conjunction 

with convolutional neural networks, since this 2D input can be naturally handled by 

CNNs. This representation is generic enough and can be used for various audio tasks 

such as speech processing, music information retrieval, and automatic music 

transcription. 

2.3.3. Mel Frequency Spectral Coefficients 
The Mel Frequency Spectral Coefficients (MFCCs) are derived from the Mel spectrogram 

by taking the logarithm of the energy in each frequency bin and then performing a 

Discrete Cosine Transform (DCT) on the resulting array. The resulting coefficients are 

then used as features, usually together with the first and second order differences 

(delta). MFCCs are commonly used in speaker recognition tasks. 

 

Figure 2.4 Visualization of MFCCs 
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2.3.4. Harmonic Pitch Class Profiles 
Harmonic Pitch Class Profiles is a type of spectral representation of a signal that's based 

on the intensity of the twelve different pitch classes. This representation is best suited 

for Music Information Retrieval tasks, since it's compact, closely related to melody and 

provides characteristics like instrumentation and timbre indifference. In order to further 

explain how these features are derived, it's necessary to start with some definitions. 

 In music, an octave is the interval between two pitch sounds, where one has 

double the frequency of the other. Sounds that are a number of octaves apart, belong to 

the same pitch class. In psychoacoustics the quality of the pitch is also referred to as 

"chroma", and sounds that share the same chroma are perceived as similar in color. In 

western music we consider twelve chroma values represented by the set 

{C, C♯, D, D♯, E , F, F♯, G, G♯, A, A♯, B} 

A440 is the pitch corresponding to a frequency of 440Hz ("A" music note). It serves as a 

reference frequency for tuning musical instruments. 

 HPCP is essentially a vector, measuring the intensity of each of the 12 pitch 

classes in a given time frame. This feature is calculated in successive short windows, 

resulting in a sequence of vectors that represent the whole signal. The procedure for 

calculating the HPCP is the following: 

1. Perform FFT on the input signal 

2. Keep frequencies in the range of 100-5000 Hz 

3. Perform peak detection and keep only the local maximum frequency values 

4. Estimate the frequencies of each pitch class using the reference frequency (usually 

A440) 

5. Perform the mapping between frequencies and N pitch classes (usually 12). For 

each peak frequency  we calculate the distance from the reference frequency of 

each pitch class , with the following formula: 

, 
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where  is an integer that minimizes . The reference frequencies are defined as: 

 

The weight of  for frequency bin  is given by: 

, 

where  is the chosen width of the weight window. 

The elements of the HPCP vector are defined as below: 

 

Equation 2.4 The elements of the N-length HPCP vector. 

, where  is the magnitude of the associated frequency. The vector is also normalized by 

the max element. 

ai
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Figure 2.5. Visualization of the chroma profiles w.r.t. the original signal and the 
music notes. 
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3. Deep Learning 

3.1. Introduction 
With the abundance of data and progress in computing power during the past decade, 

deep learning has been very successful in a wide range of applications. Architectures like 

convolutional neural networks, recurrent neural networks and most recently 

Transformers, have achieved major breakthroughs in image and speech recognition, 

natural language processing, music classification and other tasks, pushing the limit on 

what AI and machine learning can achieve. In this section we describe the most 

commonly used deep learning model types for audio applications. 

3.2. Convolutional Neural Networks 
3.2.1. Introduction 
Convolutional Neural Networks (CNN)[8] are a special type of Neural Networks inspired 

by "neocognitron", a computational model for visual pattern recognition introduced by 

Dr. Kunihiko Fukushima in 1980. The first successful application of modern CNNs 

occurred in the 1990's by Yann LeCun et al., who trained the model on the MNIST 

dataset of handwritten digits. Given example images, the model - running in live mode- 

was then able to predict the drawn digits. Throughout the decade of 2010-2020 major 

advancements were made in the field of CNNs, which are widely used up to this day for 

the tasks of image and audio classification. 

3.2.2. Structure 
CNNs rely on convolutions between the input and filters with learnable parameters that 

are used to extract features. In this section, we perform a deeper dive into the 

components that make up a CNN. 

3.2.2.1. Filters 
In general, a filter -or kernel- is a matrix consisting of weights which can be applied to an 

image input through 2D-convolution. By selecting the values of these weights, various 

results can be achieved such as blurring the original image, or edge detection in different 
  - - 20



orientations. In other words, applying different filters on the image produces different 

features that can be used for further processing. In CNNs the filters' weights are not 

predefined, but instead adjusted during the network's training, using backpropagation. 

 

Equation 3.1. Convolution operation between a filter F and an image I 

 

Figure 3.1. Visualization of 2D-convolution 

Some notable parameters of convolution operations in CNNs include padding and stride. 

Suppose an image of size  and a filter of size . The output size of the 

convoluted image is . After successive convolutions the size 

decreases by the same factor each time. To avoid this, zero padding can be introduced 

along the edges of the image so that the dimensions stay consistent across convolutions. 

On the other hand, the stride parameter determines the pixels to skip when performing 

the convolution, along a dimension. For example with stride = 2, the convolution will 

only be calculated for elements 0, 2, 4, etc. instead of each element of the dimension. 

This helps reduce the size of the output. In general the output size for a square image 

and kernel is given by the following formula: 

 

Equation 3.2. Calculating the output size after convolution 

(N − K + 1) × (N − K + 1)
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where  is the output size,  is the input size,  is the amount of padding,  is the size 

of the kernel, and  is the stride. 

3.2.2.2. Convolutional Layers 
A convolutional layer consists of multiple filters, each with its own set of weights, that 

are applied to the input and produce an output. The filters in each layer detect features 

of increasing complexity and abstraction as we move deeper into the network. For 

example, the filters in the first layer might detect edges, while the filters in the last layer 

might detect the presence of a certain type of object. 

Suppose an initial image of dimensions 224 x 224. Images are usually stored in 

RGB format where each pixel is a triplet of numbers, each representing the intensity of 

the respective color (Red, Green, Blue). We refer to each color dimension as a channel. 

Therefore the image can be represented as a tensor of dimensions (224 x 224 x 3). This 

is the input to the first layer of the CNN. The filters are usually of size 3 x 3 or 5 x 5 with 

also a depth dimension, equal to the number of the previous layer's filters. The first 

layer's kernel depth dimension is equal to the size of the input channels (in this case 3). 

Suppose a kernel size of 3 x 3, The output of this layer will be a tensor of dimensions 

(222 x 222 x 32) (without padding), where 32 is the number of filters used in the 

convolutional layer. In this case, the output channel size is 32, which is equal to the input 

channel size of the next layer. 

 

Figure 3.2. Illustration of a layer consisting of two filters. Notice the input/output 
channel size. 
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Equation 3.3 The output of a convolutional layer, where  is the output of the convolution layer, 
 is the input,  is the filter,  is the bias, and  is the size of the filter (omitting the depth 

dimension). 

3.2.2.3. Pooling Layers 
Pooling layers are used to reduce the dimensionality of the input. This helps to reduce 

the amount of computations required to process the input and avoid overfitting. There 

are two commonly used types of pooling: max pooling and average pooling. In max 

pooling, the maximum value of a certain region of the input is chosen as the output. In 

average pooling, we take the average of the values in the region. 

The formula to calculate the output of a pooling layer of region size  and stride  

is given by: 

  

Equation 3.4 Max pooling formula 

 

Equation 3.5 Average pooling formula 

3.2.2.4. Fully Connected Layers 
Fully connected layers are densely connected layers with every neuron in one layer 

connected to every neuron in the next layer. They are typically added at the end of the 

network after the convolutional layers. These are used to combine the output features 

coming from convolutional layers, detect patterns across the input space (in contrast 

with local features, detected by convolutional layers) and to generate the final 

classification or regression output.  

3.2.2.5. Activation Layers 
The output of convolutional or fully connected layers passes through an activation 

function. This layer introduces the necessary non-linearity to the output, enabling the 
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model to learn more complex functions. The most commonly used activation function in 

CNNs is the rectified linear activation unit or ReLU. Others include the Sigmoid and 

Tanh functions. 

 

Equation 3.6 ReLU activation function 

3.2.2.6. Dropout Layers 
Dropout layers work by randomly ignoring a number of layer outputs. This helps to 

reduce overfitting and make the model more robust, since it reduces the phenomenon of 

layers co-adapting to fix previous layers' mistakes, leading to poor generalization on 

actual data. The dropping happens only during the training phase. 

3.2.2.7. Batch-Normalization Layers 
Batch normalization is done by calculating the mean and variance of each layer’s inputs, 

for each mini-batch during the training process. This information is then used to 

normalize the inputs, so that they have a mean of 0 and a standard deviation of 1. The 

resulting vector is then scaled and shifted using learnable parameters, that are adjusted 

during the training process. This normalization helps to reduce the effects of the internal 

covariate shift, as well as improve the overall performance of the network. 

3.2.3.Common architectures 
In this section we mention some of the most known CNN architectures in literature. 

3.2.3.1.LeNet 
LeNet is an early convolutional neural network (CNN) created by Yann LeCun in 1998 

[9]. It is a shallow network consisting of 7 layers, including 3 convolutional, 2 average 

pooling and 2 fully connected layers. It was designed to recognize handwritten digits, 

such as those seen on bank checks. LeNet was one of the first successful applications of 

deep learning. 
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3.2.3.2.AlexNet 
AlexNet is a CNN created by Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton in 

2012 [10]. It consists of 8 layers (5 convolutional and 3 fully connected) and uses 

techniques like the ReLU activation function and dropout regularization. It was the first 

CNN to win the ImageNet Large Scale Visual Recognition Challenge (ILSVRC). 

3.2.3.3.VGGNet 
VGGNet is a convolutional neural network developed by the Visual Geometry Group 

(VGG) at the University of Oxford in 2014 [11]. It was designed to detect objects in 

images and classify them into different categories. VGGNet is a deep, feed-forward 

neural network that consists of 16 layers of convolutional and fully connected layers, 

with a total of 138 million parameters. The network was trained on ImageNet, a large 

dataset of images with 1000 different classes. 

The network consists of five convolutional blocks followed by three fully 

connected layers. Each convolutional block contains two or three convolutional layers, 

followed by a max-pooling layer. The convolutional layers use a 3x3 filter size and a 

stride of 1, while the max-pooling layers use a 2x2 filter size and a stride of 2. The first 

two convolutional blocks use 64 filters, while the remaining three blocks use 128 filters. 

VGGNet was the first network to achieve top-5 accuracy of 92.7% on the 

ImageNet dataset. It is still one of the most popular networks for image classification 

tasks. 

3.2.3.4.ResNet 
ResNet is a deep residual neural network created by Kaiming He, et al. in 2015 [12]. The 

largest variation reaches 152 layers and is one of the deepest networks ever created. 

ResNet was designed to address the problem of vanishing gradients in deep neural 

networks. It uses skip connections, which allow the network to learn from earlier layers 

and helps to reduce the amount of computation required. ResNet comes in different 

sizes of 18, 34, 50, 101 and 152 layers, according to the complexity of the use case. 
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Figure 3.3 The different ResNet sizes. 

3.3. Recurrent Neural Networks 
A recurrent neural network (RNN) is a type of network that's best suited for sequential 

data. Until recent years it was considered state of the art in speech recognition, time-

series forecasting and language modelling. 

RNNs use an internal state mechanism, allowing the network to have a form of 

memory. This means that the output relies not only on the current input, but also on 

past predictions, much like a closed loop system (figure 3.4). 

 

Figure 3.4 A schematic representation of the recurrent neural 
network, unfolding per timestep. 
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3.3.1.Vanilla RNN 
In the simplest form, RNNs can be described by the following equations:  

  

 

where: 

 - hidden state at time step t  

 - input vector at time step t  

 - bias vectors  

 - output vector at time step t 

 - activation function, like ReLU, sigmoid or tanh 

 - weight matrix connecting the input vector at time step t to the hidden state at time 

step t  

 - weight matrix connecting the hidden state at time step t-1 to the hidden state at 

time step t  

 - weight matrix connecting the hidden state at time step t to the output vector at 

time step t 

Vanilla RNNs suffer from a problem known as vanishing/exploding gradient. Updating 

the model's weights requires back-propagation of the loss, both through the network 

layers and also through time. As the sequence length increases, the quantities that 

contribute to the weights' update either increase or decrease exponentially, leading to 

instability. For example, in the case of an RNN with linear activation without bias, the 

gradient of the loss wrt. the hidden state at time t (where 1<t<T), is given by: 

 

The gradients of the loss wrt. the weight matrices are given by: 
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The large powers of  may lead to numerical instabilities as eigenvalues smaller 

than 1 vanish and eigenvalues larger than 1 diverge. 

 For this reason, two other types of recurrent networks are used in almost all 

practical cases, called Long Short-Term Memory and Gated Recurrent Units. 

3.3.2.Long Short-Term Memory  
LSTM networks introduce the notion of a cell that maintains an internal state, retaining 

information across longer sequences [13]. This state is modified through components 

known as "gates", as shown in figure 3.5.  

 The forget gate regulates how much information is discarded from the cell state at 

each step. Its value is given by: 

 

 The input gate is related to new information, entering the cell state. The input to 

the gate is the concatenated vector of the network's input and the previous hidden state.  

 

 

The cell state's update is regulated by the above gates as: 

 

 Finally the output gate controls the information that is outputted from the cell 

(hidden state). 
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Figure 3.5. The internal components of an LSTM cell. All operations in orange boxes 
are pointwise operations. 

3.3.3.Gated Recurrent Unit  
The Gated Recurrent Unit (GRU) [14] is a modified version of the LSTM, which 

combines the input and forget gate into a single update gate and introduces other 

structural changes that result in a simpler model. 

 

Figure 3.6. The GRU components. 

3.4. Transformers 
Introduced in 2017, Transformers [15] rely on the mechanism of Attention [16], being 

able to model very large sequences of data. These networks revolutionized natural 

language processing and led to the rise of large language models that are widely used 
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today to perform text-to-text or text-to-image generation, with GPT-3 [17] and DALL-E 

[18] being the most notable examples.  

 Transformers consist of two main components: the encoder and the decoder part. 

Different architectures may include both or only one of these components. For example 

BERT (BiDirectional Encoder Representations from Transformers) [19] uses only the 

encoder part with 12 encoder layers, while GPT's architecture is a 12-layer decoder-only 

transformer.  

3.4.1.Self-Attention 
Suppose a sequence of vectors , , …,  that represent the input to the transform 

model. These could be the embeddings of the words in a sentence. For each input vector, 

three vectors are created: the query, key and value: 

 

 

 

The weight matrices are learned during training. Then for each  we calculate the 

dot product with each  and divide by the square root of . The output vector for 

each , is then passed through a softmax function.  

 The next step is to multiply each value vector  by the corresponding softmax 

score and sum the vectors, to retrieve the output. These operations are highly 

parallelizable, and can be written in a compact matrix form as: 

 

This matrix is the output of a single attention head. 

3.4.2.Multi-head attention 

We can repeat the above operations with different matrices  and retrieve 

different outputs . We refer to these as heads, where each head can learn a different 
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representation. The outputs of each head are concatenated and multiplied by a 

combination matrix . 

 

The resulting matrix, which captures information from all attention heads, is sent to a 

Feed Forward neural network. Also residual connections and layer normalization 

operations are introduced at the output of the self-attention and feed-forward layers.  

3.4.3.Encoder-Decoder 
Figure 3.7 contains an overview of the architecture. As shown, multiple stacked encoder 

and decoder blocks are used. The decoder part is similar in structure. At each time step t, 

the output of the decoder is used as input to make the prediction at the next time step 

t+1. The Encoder-Decoder Attention is the module used to transfer the context derived 

from the encoder to the decoder, in order to influence the predictions. It works in a 

similar fashion as the Self-Attention module except that it creates its Queries matrix 

from the layer below it, and takes the Keys and Values matrix from the output of the 

encoder stack. 

Figure 3.7 The encoder-decoder transformer architecture. 
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3.4.4.Positional Encoding 
Since the order and distance of input tokens matter, the model needs a method to 

understand the position of the tokens. This is why positional encoding was introduced, 

which is essentially a vector added to each input. Given a token at position , the 

elements of the positional vector  of dimension  are defined by: 

 

 

, where  and  a constant scalar. 

3.4.5.Audio Applications 
While Transformers have been used mostly on NLP applications, there have been 

successful attempts of extending their functionality in other domains, like audio and 

image processing. 

 Vision Transformer (ViT) [20] in an encoder architecture used for image 

classification. The core idea is that the images are split into 16X16 regions (patches) that 

are converted into sequential patch embeddings using a learnable matrix projection. 

These are then used in a similar fashion to the original transformer. 

 Audio Spectrogram Transformer (AST) [21] is an encoder-only transformer that 

takes as input the Mel Spectrogram of an audio signal. It closely resembles the structure 

of ViT, with the differences being the input channels of the image (single channel vs 3-

channel used in ViT) and the ability to handle variable lengths. AST outperforms the 

state-of-the-art CNN models in the test datasets. 

 Transformers have also been used recently for Automatic Speech Recognition 

(ASR) with OpenAI's Whisper [22] encoder-decoder transformer model. The input to the 

model is a 80-channel log-magnitude Mel spectrogram representation of the audio, 

which is passed through 2 convolutional layers with a filter width of 3 and the GELU 

activation function. Then sinusoidal position embeddings are then added and the result 

is fed into the transformer blocks. The model was trained at 680,000 hours of 

multilingual audio under different tasks: transcription, translation, voice activity 
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detection, alignment, and language identification. The performance of Whisper’s ASR is 

close to professional human transcribers with only a fraction of a percentage point 

worse, in word error rate (WER). 
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4.Methodology 

4.1.Overview 
Suppose two songs that we wish to identify as cover/non-cover pairs. The first step is to 

extract the feature representations for both tracks. This will transform the audio tracks 

into numeric representations that can be used as input to our model. Then, the two 

inputs are fed separately to the same model, resulting in two outputs. These are 

essentially vectors representing the tracks in the embedding space of the model, also 

simply known as embeddings. We calculate the euclidean distance between the two 

vectors and if the distance is below a set threshold, the songs are considered a cover pair. 

A visualization is given in the following figure: 

 

Figure 4.1 Visualization of the cover song identification pipeline 

In the embedding space, two songs that are similar will be mapped to points that are 

closer to each other. This property is also helpful if we intended to rank the songs based 

on similarity, rather than just outputting a binary prediction.  

 The distance threshold is a parameter that can be tuned according to the 

application's needs. A low threshold increases the precision of the decision but lowers 

the recall, meaning that fewer songs will be identified as cover pairs, but with higher 

confidence. This could be used in situations where we are not interested in detecting 

every cover pair, but we require high confidence in those that are actually detected. On 
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the other hand, if the requirement was to identify as many cover pairs as possible (for 

example to filter out the obvious non-cover pairs as part of a more sophisticated process) 

one could opt to use a higher threshold.  

4.3. Feature Extraction 
As mentioned in previous chapters, HPCPs perform relatively better in music retrieval 

tasks, since they are able to capture the melody and tonality of the tracks. During the 

experiments, we verified indeed that these features demonstrated better performance 

over others. The input of the model is a  matrix, where  is the number of chroma 

bins and  is the number of HPCP windows. In our application the HPCPs were 

calculated with a sample rate of 22050 samples per second, and each window containing 

2048 samples. We also introduced a 512 sample overlap (hop size) between successive 

windows. The relationship between the number of windows and the segment size in 

seconds is given by: 

 

Equation 4.1. Relationship between number of HPCP windows and the 
resulting segment size 

For example for , the total length of the segmented audio is about 85 seconds 

per segment. Tuning this parameter has a major impact in the performance of the 

model. Too short length and the model may not be able to capture the features that make 

up a cover song. That is because the dataset tracks -and cover songs in general- are not 

perfectly aligned in the time direction. Which means that when the model looks for a 

pattern between two segments of audio (the original and the cover), these segments need 

to have at least some overlap. Therefore the segments have to be large enough to account 

for differences in synchronization. On the other hand if the segments are too large, the 

inference time increases as the model has to process a bigger input. Also it makes real-

time applications more limited. 
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 Furthermore we normalize the representation using z-normalization and scale 

along the time axis with a factor of 0.1, in order to reduce the size and speed-up the 

training. 

 We also perform data augmentation at two different levels: We split the HPCP 

chromagrams into segments, and train the model with variable segment lengths ranging 

from 140 to 440 frames, in order to augment the train set and avoid overfitting to 

specific segment lengths. Moreover, we randomly shift the chromagrams across the 

octave dimension by 1 to 12 positions, to simulate key transpositions. 

4.4. Model Architecture 
Convolutional Neural Networks demonstrated the best performance across other 

choices, for this kind of task. The optimal model consists of 6 convolutional layers + 1 

linear layer, as shown in Table 4.1. After each convolutional layer, a dropout and batch 

normalization layer are added.  

Furthermore, at the last convolutional layer we perform what is known as Global 

Average Pooling [25]. Instead of flattening all the elements of the last layer into a single 

vector and using this as input to the linear layer, we take the average value at each 

channel dimension, leading to a fixed-size vector of 256 elements. This technique has 

several benefits: 

● The model can handle images of variable sizes, since the output size, after the 

global average pooling, is always equal to the number of the output channels of 

the last layer. 

● The model is more robust towards spatial translations of the input. 

● The following fully connected layer needs fewer parameters to optimize. 

Finally a threshold classifier is used, which takes as input the 256-dimensional 

embeddings of two songs, calculates the euclidean distance and compares the result with 

a set threshold. This threshold is adjusted separately, after training the model. 

At this point we've established the structure of the network. Next we will describe 

the loss function used for training.  
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Table 4.1 Optimal model architecture 

4.5. Loss Function 
The model's output is a representation of a song as a fixed size vector in the model's 

embedding space. We require this representation to have the following property: In this 

embedding space, covers of the same song must be closer to one another, than any other 

non related song. This requirement must be represented as a loss function, that the 

model is trained to minimize. In general the approach that aims to establish a similarity 

or dissimilarity between inputs, based on a distance metric is called Metric Learning.  

Layer no. Type Output 
Channels

Kernel 
Size

Padding Stride Activation

conv_1 conv2d 64 3x3 1 1 ReLU

conv_2 conv2d 64 3x3 1 1 ReLU

max_pool_1 max 
pooling

- 1x2 1 1 -

conv_3 conv2d 128 3x3 1 1 ReLU

conv_4 conv2d 128 3x7 1 1 ReLU

max_pool_2 max 
pooling

- 1x2 1 1 -

conv_5 conv2d 256 5x7 1 1 ReLU

conv_6 conv2d 256 5x7 1 1 ReLU

glob_avg_pool
_1

avg 
pooling

- input_h 
x 
input_
w

- - -

lin_1 linear 256 - - - Linear

Total number of parameters: 3,964,352
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4.5.1.Contrastive Loss 
Introduced by S. Chopra et al [26], Contrastive loss works on positive and negative 

examples of similar or dissimilar samples. The model is given pairs of songs (as in figure 

4.1) and the distance between them is calculated. Then the loss is given by the following 

formula: 

 

Equation 4.2 The Contrastive Loss formula 

where,  is 1 if the samples are similar or 0 otherwise,  is the distance between the 

samples, and  is a constant. It is easy to verify that the loss is low when the distance is 

small between positive samples, and large between negative. The  parameter helps the 

stability and convergence of the training procedure.  

 

Figure 4.2 Initial and final representation after minimizing the loss function. Notice 
that the white points are not pushed further away, since they already exceed the 

margin m. 

4.5.2. Triplet Loss 
Triplet loss [27] is another metric learning loss, that is also based on the distance 

between samples. The difference with contrastive loss is that it uses a triplet of data 

points, consisting of an anchor, a positive example, and a negative example. The model is 
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trained to ensure that the anchor is closer to the positive example than to the negative 

example.  

 Suppose  is an anchor song,  a cover of this song and  any other non-cover 

song. In the model's embedding space, we'd require the following condition to be true: 

 

Equation 4.3 Requirement regarding the anchor, positive and negative examples in the 
embedding space.  

, where  the embeddings of the songs respectively. Based on this condition the 

triplet loss is formulated as such: 

 

Equation 4.4 The Triplet Loss 

 

Figure 4.3 Visualization of triplet loss minimization 

 An intuitive explanation of equation 4.3 is that, for a given triplet, the negative 

sample must be mapped further away from the anchor point than the positive sample, at 

least by a quantity m. This is shown in figure 4.3. 

The triplet loss differs from contrastive as it takes into account the relative 

distances of anchor-positive and anchor-negative points, rather than treating them 

separately. This allows for triplet loss to be less greedy, as it doesn't modify the positive 

samples distance, when the condition in 4.3 holds true. This allows for higher inter-class 

variance, in contrast with contrastive loss which tries to map anchor and positive 

samples to the same point, regardless of the negative samples.  

 Regarding the choice of triplets, we need to take into account the following facts: 

a p n

| |xa − xn | |2 ≥ | |xa − xp | |2 + m

xa, xp, xn

ℒtriplet(a, p, n) = max (| |xa − xp | |2 − | |xa − xn | |2 + m,0)
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● The possible combinations of anchor-positive-negative song triplets is cubically 

increased with the number of available songs. 

● Not all triplets contribute are beneficial to the training process. In some 

combinations, the condition 4.3 already holds true, hence the loss is 0 and the 

model's weights are not modified.  

● As the model is trained, triplets that initially violated the condition 4.3 and 

contributed to the initial training stages, will be sorted out and won't be helpful to 

the training process anymore. 

Essentially as the training goes, the triplets fall into one of the following categories: 

● Easy triplets: Sorted triplets that don't violate condition 4.3. 

● Semi-hard triplets: Triplets where the negative sample is further away from the 

anchor than the positive sample, but still below the margin . 

● Hard triplets: Triplets where the negative sample is closer to the anchor than the 

positive. 

A visualization of the above is given in figure 4.4. 

 

Figure 4.4 Visualization of the different types of triplets (determined by the location 
of the negative sample). 
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In our first experiments we used Batch-All online triplet mining. The method's steps are 

the following: 

1. At the beginning of each batch, run the model for all the songs of the batch and 

output the embeddings. 

2. Calculate the distance matrix between all point embeddings 

(  matrix). 

3. Calculate the triplet loss for each anchor-positive-negative pair  

(  tensor). 

4. Apply masking to filter out invalid triplets. 

5. Aggregate the losses into a single value. 

6. Use this value for updating the model's weights. 

The key here is that all valid triplets that violate the condition are used (semi-hard & 

hard triplets). 

We also used Batch-Hard mining, during the last stages of training, which takes 

into account only hard-triplets when calculating the loss. It's recommended not to start 

training directly with batch-hard triplets, because the model may converge to a local 

minimum, mapping the all inputs to a single point. 

4.5.3. Angular Loss 
The final model was trained using a variation of Triplet Loss called Angular Loss [28]. 

This loss aims to improve robustness against feature variance and provide better 

convergence properties. One issue of the standard triplet loss is that the parameter  is a 

global margin used to separate the clusters. This may pose a problem since the intra-

class distance can vary in real life applications. Angular Loss consists of minimizing the 

following hinge loss: 

 

 

Equation 4.5 The Angular Loss 

ℒangular(a , p, n) = max (| |xa − xp | |2 − 4 tan2 a | |xn − xc | |2 ,0)
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The parameter  is tuned between   and . The authors of the paper argue that the 

gradients of the loss w.r.t. , ,  depend on all three points simultaneously, leading to 

more robust results. 

4.6. Evaluation 
The evaluation metrics are divided into two categories: ranking and classification. 

Ranking metrics are used to evaluate the performance of the model at sorting songs 

based on similarity. In an actual scenario, a user would provide a query song against a 

database, to retrieve a list of most relevant (cover) songs. On the other hand, 

classification metrics are used to evaluate the ability of the model to classify pairs of 

songs as cover/not-covers, and can be used to tune the classifier according to the 

application needs. 

 The evaluation is performed on the test dataset described in 5.1. 

4.6.1. Accuracy, Precision, Recall, F1 Score 
We can evaluate the performance of our model in classifying cover/non-cover pairs, 

using the standard classification metrics: 

 

 

 

 

Equation 4.6 Classification scores 
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4.6.2.ROC Curve 
The ROC curve is a visualization of how the true positive rate (TPR) and false positive 

rate (FPR) change, depending on the value of the classifier's threshold. A common 

behavior of this curve is given in the following figure: 

 

Figure 4.5 The ROC curve. 

Minimizing the distance (threshold) in the embedding space, at which two songs are 

considered covers, results in a smaller TPR but also smaller FPR, making the model 

more precise at the cost of recall. Increasing the value relaxes the constraint, allowing 

the model to identify more songs as covers, increasing also the false positives. We can 

use the ROC curve to set the threshold value according to the application needs. 

4.6.3. Precision-Recall Curve. 
To generate the Precision-Recall curve, we calculate these quantities on different cutoffs. 

The result is a graph like the following: 
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Figure 4.6 The Precision-Recall curve. 

4.6.4. Mean Average Precision 
Supposed a set of query songs Q. Mean Average Precision is defined in the following 

manner. For each song i ∈  Q we calculate the distance in the embedding space from 

every other song j ∈  Q − i, and sort by ascending order. The Average precision is 

calculated as:  

 

Equation 4.7 The Average Precision metric 

Where C(i,j) = 1 if j is a cover version of i, else 0, and rank(j) the position of j in the 

sorted vector. The MAP is defined as the mean value of AP(i) for all songs ∈ Q.  

4.6.5. Mean Reciprocal Rank 
The Mean Reciprocal Rank is a ranking metric that takes into account the order of the 

results returned by the model, for a number of given queries. To calculate the MRR, we 

use the following process: 

AP(i ) =
∑j

C(i, j)

rank( j)

∑j C(i, j )
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● For each song  in the dataset, use it as a query and calculate the relative distances 

with the other songs.  

● Sort the songs by ascending distance. 

●  is the position of the first cover song in the sorted results. For example 1 if 

the closest song is a cover, 2 if the second closest is a cover, and so on. 

● The Reciprocal Rank for the query song  is given by: 

  .  

● Finally we calculate the mean value for all query songs with: 

 

where Q is the size of the query song set. 

4.6.5. Precision at 10 
For P@10 we calculate the distance between a song i ∈ Q and every j ∈ Q − i. We sort the 

distance vector in ascending order, and keep only the first 10 elements. Then we count 

the percentage of cover songs and average for all songs i ∈ Q.  

4.6.6. Mean Rank of 1st identified cover 
Mean Rank of 1sr identified cover (MR1) is defined as the average position of the 1st 

correctly identified cover song over all query songs.  

4.7. Implementation Details 
The proposed methodology was implemented  in Python using the following libraries: 

● The chroma features were extracted from audio using the Essentia Python library 

[29]. 

● The models were developed using PyTorch [30] and PyTorch Metric Learning 

[31]. 

● For visualization we used Plotly [32] and Matplotlib [33] . 

The models were trained using a Tesla A100 graphics card. 
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5. Experiments 

In this chapter we discuss the experimental results of our methodology. We evaluated 

the model in two different datasets. Since the number of non-cover pairs greatly exceeds 

the number of cover pairs, we demonstrate the results both on balanced and unbalanced 

versions of the datasets.  

 The unbalanced dataset is created by considering all possible pairs in the dataset. 

The balanced dataset is created by randomly sampling anchor-positive-negative triplets 

from the dataset. 

 In chapters 5.5 and 5.6 we present, for comparison, the results of an LSTM and 

Visual Transformer respectively. The models were trained and evaluated using the same 

data, input and loss function.  

5.1.Datasets 
Various cover song datasets were used for training and evaluation of the models.  

5.1.1.  Covers80 
The Covers80 dataset [23], developed by the Laboratory for the Recognition and 

Organization of Speech and Audio of Columbia University, consists of 80 songs, each 

performed by two different artists. The songs are available in wav format, offering the 

flexibility to extract any representation. This dataset is often used for benchmarking in 

relevant works, therefore we decided to use it as such, for evaluation. This also offers a 

baseline for comparing our approach to other published works. 

5.1.2. Covers1000 
The Covers1000 dataset [24], published by Chris Tralie et al, is another curated dataset 

that contains 395 groups of cover songs. The dataset doesn't provide the raw audios, but 

the following higher-level spectral representations instead: 
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● MFCCs 

● HPCPs 

● CREMA 

● CENS 

● Beats 

 These features have been extracted with Librosa and Essentia libraries. We used this 

dataset for training the model. 

5.1.3. Custom Dataset 
To increase the training samples for our model, we proceeded to create a custom dataset 

of covers songs. The choice of songs was assigned to 10 annotators with the following 

guidelines: 

● A cover song is a different performance of the original song. It may be slower/

faster, have different instrumentation, be live/unplugged or be performed by a 

different artist of different gender. 

● The dataset should consist of various genres of music. We try not to focus over a 

specific genre in order to avoid overfitting the model. 

● The quality of the included songs should be as good as possible. Therefore 

avoiding songs with unrelated intros or blank spaces with speeches within the 

song (as is usually done in some video clips). 

● Attention should be given to the synchronization and duration of the original and 

cover songs. For better results, the difference in synchronization should not 

exceed 60 seconds.P 

This dataset consists of 208 groups, each containing the original song and up to 4 cover 

versions. The majority of the dataset was used during the training phase, and a part of it 

for evaluation. 

 We also evaluate on a Greek dataset consisting of 26 unique songs with up  

to 5 cover versions each. The total number of tracks is 62. The dataset consists of greek 

songs, as well as cover versions of english songs performed by greek artists. 
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5.2. Results on Covers80 test set 
Our model achieved an Accuracy score of 80.9% (balanced) and 93.2% (unbalanced) on 

the Covers80 dataset, when evaluating segments of 90 seconds, and full songs 

respectively. The complete scores are shown in table 5.1. 

  

Figure 5.1 Training and Validation loss per epoch. 

Table 5.1 Classification scores on the Covers80 dataset. 

Class Precision Recall F1 Support

Non-covers (balanced) 75.03% 92.85% 82.99% 16400

Covers (balanced) 90.67% 69.09% 78.41% 16400

Non-covers (unbalanced) 99.78% 93.33% 96.48% 26554

Covers (unbalanced) 6.6% 69.66% 12.06% 178
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Figure 5.2 Confusion matrices (left: unbalanced dataset, right: balanced dataset) 

 

Figure 5.3 Covers80 (balanced) - ROC and Precision-Recall Curves 
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Figure 5.4 Covers80 (unbalanced) - ROC and Precision-Recall Curves 

Table 5.2 Ranking scores on the Covers80 dataset. 

5.3. Results on Custom test set 
The model performed better on the Custom test dataset, with an Accuracy score of 90% 

(balanced) and 92% (unbalanced). 

Table 5.3 Classification scores on the Custom dataset. 

Mean Reciprocal 
Rank

Mean Average 
Precision

MR1 P@10

0.5908 0.5823 17.46 0.076

Class Precision Recall F1 Support

Non-covers (balanced) 85.61% 96.04% 90.52% 7300

Covers (balanced) 95.49% 83.86% 89.3% 7300

Non-covers (unbalanced) 99.7% 92.96% 96.21% 5172

Covers (unbalanced) 16.12% 83.33% 27.02% 84
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Figure 5.5 Confusion matrices (left: unbalanced dataset, right: balanced dataset) 

 

Figure 5.6 Custom Dataset (balanced) - ROC and Precision-Recall Curves 
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Figure 5.7 Custom Dataset (unbalanced) - ROC and Precision-Recall Curves 

Table 5.4 Ranking scores on the Custom dataset. 

5.4. Results on Greek covers 
For this experiment, we include cover songs that are performed by greek artists. The 

covers in Greek are based on original Greek or foreign songs. The model, despite not 

being trained on any Greek song, seems to perform well on this dataset as well, since it 

relies mostly on the song's melodies rather than the actual lyrics. 

Table 5.5 Classification scores on the Greek dataset. 

Mean Reciprocal 
Rank

Mean Average 
Precision

MR1 P@10

0.8474 0.8365 2.17 0.101

Class Precision Recall F1 Support

Non-covers (balanced) 93.04% 89.16% 91.06% 6000

Covers (balanced) 89.6% 93.33% 91.42% 6000

Non-covers (unbalanced) 99.8% 90.39% 94.86% 3436

Covers (unbalanced) 22.89% 94.23% 36.84% 104
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Figure 5.8 Confusion matrices (left: unbalanced, right: balanced) 

 

Figure 5.9 Greek Dataset (balanced) - ROC and Precision-Recall Curves 
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Figure 5.10 Custom Dataset (Full songs) - ROC and Precision-Recall Curves 

Table 5.6 Ranking scores on the Greek dataset. 

5.5. LSTM results 
The input to the LSTM model is a sequence of 12-dimensional vectors, where each vector 

is essentially the HPCPs.  

 The network consists of 3 hidden layers, with a hidden state size of 256. The 

outputs of the last LSTM layer at every timestep are aggregated using average pooling. 

The output is sent to a 2-layer FF network with ReLU activation. 

 The model performed poorly, compared to the CNN model, achieving an F1 score 

of 60.5% on the Covers80 dataset (balanced). The results are demonstrated below. 

Mean Reciprocal 
Rank

Mean Average 
Precision

MR1 P@10

0.8209 0.7958 2.11 0.169
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Figure 5.11. The results of the LSTM model on the Covers80 test set. 

Table 5.7. Classification scores for LSTM on the Covers80 test set. 

Table 5.8. Ranking scores for LSTM on the Covers80 test set. 

5.6.Visual Transformer results 
Due to the hardware limitations as well as the large data required to train a transformer, 

the best accuracy achieved for the covers80 balanced dataset was around 66.62%. The 

full results are available in the tables below. Note that the transformer was not pre-

Precision Recall F1 Support

63.33% 51.8% 56.99% 16400

59.22% 70% 64.16% 16400

Mean 
Reciprocal 

Rank

Mean 
Average 

Precision

MR1 P@10

0.2698 0.2683 49.75 0.041
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trained on any dataset. In general using pre-trained models tends to yield better results. 

The model could potentially improve if trained with more data, using a lower level 

representation like the Mel-Spectrogram.  

 

Figure 5.12. The results of the ViT model on the Covers80 test set. 

Table 5.9. Classification scores for ViT on Covers80 set. 

Table 5.10. Ranking scores for ViT on the Covers80 test set. 

Precision Recall F1 Support

67.77% 63.65% 65.62% 16400

65.71% 69.65% 67.62% 16400

Mean 
Reciprocal 

Rank

Mean 
Average 

Precision

MR1 P@10

0.1589 0.1531 45.44 0.038
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5.7. t-SNE Visualization 
t-distributed stochastic neighbour embedding (t-SNE) [34] is a non-linear 

dimensionality reduction technique for visualizing high dimensional data. The algorithm 

works by projecting the original data onto a lower-dimensional space, such that similar 

data points are mapped to nearby points. It does so by creating two probability 

distributions in the high and lower dimensions. In the high-dimensional space, t-SNE 

calculates the probability that a data point will be chosen as the "neighbour" of another 

data point. This probability is based on the similarity between the two data points. In the 

low-dimensional space, t-SNE defines a similar probability distribution, where the 

probability of two data points being neighbours is based on their distance in the low-

dimensional space. The t-SNE algorithm then adjusts the positions of the data points in 

the low-dimensional space iteratively, in an attempt to minimize the divergence between 

the two distributions. 

 t-SNE is able to preserve the distance between neighbour points, and can be used 

to visualize cover songs. However the dimensions themselves are not interpretable, and 

absolute distances are not correlated with inter-song similarity.  

 In the following diagrams, points that have the same color represent covers of the 

same song, and ideally should be closer together. These have been generated by creating 

the embeddings for the test and train dataset, using the best CNN model. 
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Figure 5.13 t-SNE plot of the test dataset 

 

Figure 5.14 t-SNE plot of the train dataset 
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5.8. Inference time 
The amount of time it takes for the model to make predictions on new data is a crucial 

factor to consider when using the model in real-life applications. If the inference time is 

too long, it can slow down the performance of the system or application in which the 

model is being used. On the other hand, if the inference time is short, it can enable the 

model to make predictions or decisions quickly and efficiently, which can be important 

for applications that require fast response times or real-time processing, such as cover 

song identification from a live recording. 

 Another factor which affects inference time, is the device on which the model 

runs. In general GPU's allow for parallelization of the operations that are made during 

the prediction calculation, resulting in a speedup of several magnitudes compared to 

CPU inference. This comes at a cost, since GPUs are way more expensive than CPUs and 

require more power. 

 We tested our model on various song lengths using either CPU or GPU for 

inferencing, to determine the feasibility of the model for real-life applications. The CNN/

LSTM models were tested using an Apple M1 Pro 10-core CPU/16-core GPU. The Visual 

Transformer was benchmarked on a high-end Tesla A100 GPU. It is shown that the 

runtime of the proposed CNN model is quite acceptable, since a batch of 512 3-minute 

songs would require about 30ms to process on a low-end GPU. This benchmark does not 

include the time required to generate the chroma features from the raw audio. 
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Table 5.11 Inference time benchmarking. 

Device Segment 
size 

(seconds)

Segment size 
(input image 
dimensions)

Avg. time per sample 
(milliseconds)

Total time for 512 samples 
(milliseconds)

CNN LSTM ViT CNN LSTM ViT

CPU 15 12 x 65 1.2136 1.1661 - 621.36 597.04 -

20 12 x 90 1.8997 1.6250 - 972.64 832 -

30 12 x 130 2.7294 2.3839 - 1397.45 1220.55 -

60 12 x 260 5.5028 5.3672 - 2817.43 2748 -

120 12 x 400 9.3708 8.1955 - 4797.84 4196.09 -

180 12 x 780 19.636 18.2107 - 10053.63 9323.87 -

GPU 15 12 x 65 0.0208 0.0224 0.1226 10.64 11.47 62.77

20 12 x 90 0.0199 0.0228 0.1237 10.18 11.67 63.33

30 12 x 130 0.0245 0.0350 0.1253 12.54 17.92 64.15

60 12 x 260 0.0252 0.0311 0.1277 12.90 15.92 65.38

120 12 x 400 0.0382 0.0483 0.1276 19.55 24.73 65.33

180 12 x 780 0.0572 0.1283 0.1942 29.28 65.69 99.43
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Table 5.12 Accuracy vs segment size for CNN model. 

Table 5.13. Comparison between different methods on the test sets. 

Segment size 
(seconds)

Accuracy (Covers80 - 
balanced)

15 58.03%

20 63.20%

30 67.58%

60 75.51%

120 78.79%

180 79.25%

Model MAP MRR MR1 P@10 F1

Covers80

CNN 0.5823 0.5908 17.46 0.076 80.70%

LSTM 0.2683 0.2683 49.75 0.041 60.05%

ViT 0.1531 0.1589 45.44 0.038 66.62%

Custom Dataset

CNN 0.8365 0.8474 2.17 0.101 89.91%

LSTM 0.4177 0.4289 20.34 0.055 63.48%

ViT 0.2582 0.2710 18.90 0.045 60.41%

Greek Dataset

CNN 0.7958 0.8209 2.11 0.169 91.24%

LSTM 0.4031 0.4773 12.06 0.084 67.32%

ViT 0.2994 0.3542 12.35 0.088 66.90%
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5.9.Observations 
The above experiments show that our model demonstrates good performance in 

identifying similar/dissimilar songs. The generated embeddings do capture said 

similarities and can be used in conjunction with a simple threshold classifier to identify 

cover pairs. The distance is also easily tuneable, to aim either for high precision or high 

recall, depending on the application. 

 Regarding the training data, the model seems to achieve this performance with a 

reasonable number of samples. This is possible due to the nature of the chroma features, 

which are already a compact representation of audio with characteristics that are suited 

for this task. More samples could potentially boost the performance further, or be used 

with a different, more generic representation, such as the Mel-Spectrogram. 

 Another interesting property of our methodology has to do with the audio input. 

The fully convolutional network architecture eliminates the limitation for fixed size 

inputs, and therefore the model can handle variable lengths at inference. This is 

extremely useful in real-life applications for live recordings that may last a few seconds, 

or in cases where the audio tracks are not synchronized.  

 Synchronization of audio tracks is a potential issue that arises when checking 

similarity between songs. For example a cover song may include a longer intro than the 

original, different tempo or crowd cheers in case of live performances. This causes the 

tracks to be misaligned, and may lead to performance degradation. Fortunately the 

nature of fully convolutional networks is such that the discovered features are 

translation invariant. This means that the network searches for local features across the 

image, irrespectively of the absolute position of these features in the input space, thus 

reducing the need for the tracks to be synchronized. 

 The model seems to be invariant of the lyrics or language used, as shown in the 

greek dataset experiment, since it focuses primarily on melody. 

 Furthermore, we attempted to rank the songs based on distances from other 

songs and determine if the ranking can be used as a sorting mechanism to search for 

similar songs. We found out that songs that are in general more soft, melodic and 

contain primarily piano, are placed further apart than aggressive rock songs with 

  - - 62



multiple loud instruments. However we did not find a solid pattern, as there are cases 

where completely different songs are placed close enough than others, without an 

obvious explanation. This is because the embedding dimensions themselves are hard to 

interpret and we cannot be sure about the exact way the model associates covers songs. 

In songs that have a characteristic, distinct melody, the model seems to achieve higher 

precision. In the following figures, we choose a soft-piano song (gangsta's paradise piano 

cover) and a live rock performance (Killing in the name) and sort all the other database 

songs, based on ascending distance. We can see that similar styles are more likely to be 

placed closer in the embedding space. 

 

Figure 5.15 Acoustic or calm songs, seem to be grouped closer together. 
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Figure 5.16 Rock songs with more complex instrumentation are placed closer 
together. 
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6. Web Application 
The model was deployed as part of a web application that allows the user to upload songs 

and identify potential cover songs.  

6.1. Platform overview 
The platform allows the user to upload songs using the UI, and compare them with 

others present in the database. The comparison can be either to check directly if 2 songs 

are a cover pair, or rank songs based on similarity. 

6.1.1. Upload songs 
The user submits the YouTube URL of the desired song using a form in the Home page. 

The platform then downloads the song from YouTube, extracts the chroma features and 

calculates the embeddings using the model. The embeddings are saved to the database 

along with the song's metadata for future reference. 

6.1.2.Manage song database 
The platform offers the standard CRUD (create-read-update-delete) functionalities to 

the user, allowing them to manage existing songs and view them in a table format along 

with their metadata. 

6.1.3.Cover check 
The user can select two songs in the database and check whether they are covers of the 

same song, using the pre-trained model. The platform returns the binary output and the 

relative distance between the songs in the embedding space. 

6.1.4.Rank songs 
The user can select a query song and retrieve a sorted list of all the other songs, based on 

the euclidean distance in the embedding space. Songs that are closer to the query song 

will appear on top. 
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Figure 6.1 The application's home page. The user can upload songs from YouTube or 

check whether two songs are covers or not. 

 

Figure 6.2  The user selects a song and retrieves a sorted list based on similarity. The 
icon next to each result indicates a potential cover song (green is positive, red is 

negative). 
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Figure 6.3  Song management page. 

6.2. Architecture 
The application's frontend is built using Javascript and React, and served using an 

embedded Node server.  

The backend is built using Python and Flask and the model is served using 

Pytorch (CPU inference). Regarding storage, the song's metadata and embeddings are 

saved in a MongoDB database, while the song's chroma features are stored in a Google 

Cloud Bucket due to the amount of space required. 
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Figure 6.4 Platform architecture. 
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7. Conclusions 
Due to major advancements in the recent years, Deep Learning has been wildly adopted 

for a variety of applications, including Speech Recognition, Speech Synthesis and Music 

Information Retrieval. In this thesis we presented a complete framework for 

automatically identifying whether two recordings are covers of the same song, using 

Deep Neural Networks. This task is known as Cover Song Identification (CSI).  

 We’ve experimented with various models and architectures, with Convolutional 

Neural Networks being the model of choice for the given task, since it outperforms the 

LSTM and Vision Transformer models for the given amounts of data and available 

hardware. 

 Commonly used in Music Information Retrieval tasks, Harmonic Pitch Class 

Profile features turned out to be a good selection for the task of CSI as well. These 

features are closely related to melody, and can be naturally used as an input to the CNN, 

allowing for the model to learn with moderate amounts of data. 

 To tackle the problem of CSI, we trained the model to generate embeddings of 

songs, that have the property of mapping similar tracks (covers) closer together. The loss 

function based on similarity is expressed using Angular Loss - a variation of the common 

Triplet Loss, used in metric learning. We've shown that the proposed architecture 

demonstrates adequate performance on the test datasets, achieving an accuracy of over 

80%, and is also resilient to different languages, lyrics and instrumentation. The model 

is also tunable to aim either for precision or recall and can be used with little hardware 

requirements, making it affordable to implement in real-life applications.  For this we 

implemented a proof of concept application, where the users upload songs to the 

platform and can use the trained model to identify similar songs.  

 Finally we also created two new public datasets consisting of english and greek 

cover songs, that can be used for training or evaluation purposes.  

 Future work could include training and using a state-of-the-art model for 

extracting embeddings for audio, instead of a CNN, such as the Audio Spectrogram 

Transformer. This method requires far more data and hardware resources to be 
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implemented, and using a pre-trained transformer is a common practice. A multimodal 

approach can also be beneficial to further improve the method. OpenAI’s Whisper model 

is capable of accurately extracting transcripts even from audio with music background. 

Therefore a fusion model that combines audio and lyrical similarities could push the 

performance even higher. 
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